Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 34251. |
Prove that root 6is not a rational number |
| Answer» | |
| 34252. |
Why respiraton is a exothermic reaction |
| Answer» As we inhale oxygen the oxygen reacts with food and release co2 and energy.hence,here energy is released that\'s why respiration is a exothermic reaction | |
| 34253. |
5x+3y=352x+4y=28 |
| Answer» | |
| 34254. |
If the sum of zero of the quadratic polynomial 3x^2-kx+6 is 3,Then find value of k |
| Answer» 9 | |
| 34255. |
What are prime numbers? |
|
Answer» Is one also a prime number. The numbers which have only two factors i.e. 1 and the number itself are called prime numbers.Eg.2,5,7,11 etc... |
|
| 34256. |
can i get the info about the board exam of india class 10 |
| Answer» | |
| 34257. |
Mujhe math samjhni aati |
|
Answer» Mathematics ko roj practice karo, atleast 40 minutes. Then all will be good. Join a tuition nearby for constant practice. Practice se sab ho jygi.. |
|
| 34258. |
Secx -cosecx =4/3 find sinx-cosx |
|
Answer» In majoritism a single community has all the power What is majoritarianism |
|
| 34259. |
6x² _ 3_ 7x |
| Answer» use splitting midle term method6x2-7x-3=6x2 -2x + 9x - 3=2x(3x - 1) +3(3x -1)= (3x -1)(2x+3) | |
| 34260. |
Find the area of triangle whose vertices are given |
|
Answer» Use heron\'s formula Where is it given |
|
| 34261. |
X²+x-p(p+1)=0 |
| Answer» | |
| 34262. |
If angle B and angleQ are acute angle such that sin B = sin Q then prove that angle B = angle Q |
| Answer» Consider two right triangles ABC and PQR in which\xa0{tex} \\angle B{/tex} \xa0and\xa0{tex}\\angle Q{/tex} are the right angles.We have,In\xa0{tex}\\triangle ABC{/tex}{tex}\\sin B=\\frac{AC}{AB}{/tex}\xa0and, In\xa0{tex}\\triangle PQR{/tex}\xa0{tex}\\sin Q=\\frac{PR}{PQ}{/tex}{tex} \\because \\quad \\sin B = \\sin Q{/tex}{tex} \\Rightarrow \\quad \\frac { A C } { A B } = \\frac { P R } { P Q }{/tex}{tex} \\Rightarrow \\quad \\frac { A C } { P R } = \\frac { A B } { P Q } = k{/tex}(say) ...... (i){tex} \\Rightarrow {/tex} AC = kPR and AB = kPQ .....(ii)Using Pythagoras theorem in triangles ABC and PQR, we obtain\xa0AB2 = AC2 + BC2 and PQ2 = PR2 + QR2{tex} \\Rightarrow \\quad B C = \\sqrt { A B ^ { 2 } - A C ^ { 2 } } \\text { and } Q R = \\sqrt { P Q ^ { 2 } - P R ^ { 2 } }{/tex}{tex} \\Rightarrow \\quad \\frac { B C } { Q R } = \\frac { \\sqrt { A B ^ { 2 } - A C ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = \\frac { \\sqrt { k ^ { 2 } P Q ^ { 2 } - k ^ { 2 } P R ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } }{/tex}\xa0[ using (ii) ]{tex} \\Rightarrow \\quad \\frac { B C } { Q R } = \\frac { k \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } { \\sqrt { P Q ^ { 2 } - P R ^ { 2 } } } = k{/tex}...(iii)From (i) and (iii), we get{tex} \\frac { A C } { P R } = \\frac { A B } { P Q } = \\frac { B C } { Q R }{/tex}{tex} \\Rightarrow \\quad \\Delta A C B - \\Delta P R Q{/tex}\xa0[By S.A.S similarity]{tex} \\therefore \\quad \\angle B = \\angle Q{/tex}\xa0Hence proved. | |
| 34263. |
Syllabus for sa1 |
| Answer» | |
| 34264. |
Koi Bata skta Hai Kya class 10 ka result kab ayega |
|
Answer» Hello guys I think yuvraj tum abhi class 10 mai aaye ho kyonki Mene class 10 ka paper de Diya h Paper hone ke baad Second week of may Thanks jashan Abhi tak date final nhi hui Koi mere question ka bhi jawab do |
|
| 34265. |
For any positive interger n prove that N3-n is divisibile by 6 |
| Answer» | |
| 34266. |
Divison 5 |
| Answer» | |
| 34267. |
Nee loose |
| Answer» | |
| 34268. |
Is it possible to correct DOB in class 10 |
| Answer» Yes you are genius | |
| 34269. |
Page number 35 maths class solution |
| Answer» | |
| 34270. |
CBSE 2017-18 year board paper |
| Answer» | |
| 34271. |
Solve 3x+4y=11 and 4x-5y=24 and hence fund the value of \' m\' for which y=mx+3 |
| Answer» Since, Y is equal to MX + 3,. 3x+ 4y = 3x+4{mx+3} and 4x-5{mx+3}3x+4mx+12 and 4x-5mx-15 24-11=13 Therefore,13=4x-5mx-15-3x-4mx-12 =X-9mx-27 | |
| 34272. |
1+Tan×TanA Divided by 1+cot×cot A |
|
Answer» I think 1+tan squareA ÷ 1+cot square A = sec square A÷cos square A ( according to trigonometric identity second) Your gùùuuuuu |
|
| 34273. |
The product of -1/3 and -1/4 |
|
Answer» 1/12 or 0.0833 0.0833333 1/12 |
|
| 34274. |
Can I get some extra questions from polynomials for practise |
| Answer» | |
| 34275. |
What is smallest composite no |
| Answer» 4 | |
| 34276. |
What is formula of total surface of completely closed frustum? |
| Answer» 4×3^3 | |
| 34277. |
SinA+CosA=a then sinA-cosA=? |
|
Answer» Vishal from where are you? Hu |
|
| 34278. |
If sin A =3÷4 calculate cosA and tanA |
| Answer» CosA= 5÷4 and tan a = 3÷4 | |
| 34279. |
Number between 1 and 100 |
| Answer» | |
| 34280. |
How can do triangle chapter |
| Answer» | |
| 34281. |
Mean remainder |
| Answer» | |
| 34282. |
Find the least no. Which is divisible by all the no. Between 1 to 10 ( both inclusive) |
|
Answer» Get lost mental gawar Your kaccha |
|
| 34283. |
Chode |
| Answer» | |
| 34284. |
If α and β are the zeroes of the polynomial f(x)=x²-5x+k and α- β =-1, find the value of k |
| Answer» Pls answer.... it\'s urgent | |
| 34285. |
Hlo everyone how studies going on of 10th class |
| Answer» Concentrate you study | |
| 34286. |
Show that any positive odd intger is of the form 6q+1,or 6q+3,or 6q+5 where q is some integer |
|
Answer» 0 Let n be a given positive odd integer . On dividing n by 6 , let m be the quotient and r be the reminder Then by Euclid division lemma ,we have n =6m+r where 0 |
|
| 34287. |
2+2=???? |
|
Answer» 4 4and so silly 4 4 |
|
| 34288. |
What is the value of √5+√ 5.... |
| Answer» 2√5 | |
| 34289. |
how to division |
| Answer» | |
| 34290. |
Solve for x and y given x≠0,y≠0, 2/x+2/3=1/6, 3/x+2/y=0 hence find p for which y=px-4 |
| Answer» Taking\xa0{tex} \\frac { 1 } { x } = u{/tex}\xa0and\xa0{tex} \\frac { 1 } { y } = v.{/tex}The given system of equations become{tex} 2 u + \\frac { 2 } { 3 } v = \\frac { 1 } { 6 }{/tex}Therefore,\xa0{tex} 12u+4v=1{/tex}............(i)and, {tex}3u+2v=0{/tex}..........(ii)Multiplying (ii) by 2 and subtracting from (i), we get{tex} 6 u = 1 \\Rightarrow u = \\frac { 1 } { 6 }{/tex}Putting\xa0{tex} u = \\frac { 1 } { 6 }{/tex}in (i), we get{tex} 2 + 4 v = 1 \\Rightarrow v = - \\frac { 1 } { 4 }{/tex}Hence,\xa0{tex} x = \\frac { 1 } { u } = 6{/tex}\xa0and\xa0{tex} y = \\frac { 1 } { v } = - 4{/tex}So. the solution of the given system of equations is {tex}x=6,y=-4{/tex}\xa0Putting x = 6, y = -4 in {tex}y=ax-4{/tex}, we get{tex}-4=6a-4{/tex}{tex} \\Rightarrow a=0{/tex}\xa0 | |
| 34291. |
Solve for x &y given x≠0,y≠0, 2/x+2/3=1/6,3/x+2y=0 |
| Answer» | |
| 34292. |
(-3,10 ,)(6,-8) divided by -1,6 |
| Answer» Let A →\xa0(–3, 10), B → (6, –8) and P → (–1, 6)Let P divide AB in the ratio K: 1.{tex}P \\to \\left\\{ {\\frac{{(K)(6) + (1)( - 3)}}{{K + 1}},\\frac{{(K)( - 8) + (1)(10)}}{{K + 1}}} \\right\\}{/tex}or {tex}P \\to \\left( {\\frac{{6K - 3}}{{K + 1}},\\frac{{ - 8K + 10}}{{K + 1}}} \\right){/tex}But P {tex}\\rightarrow{/tex} (-1, 6){tex}\\therefore \\;\\frac{{6K - 3}}{{K + 1}} = - 1{/tex}{tex}\\Rightarrow{/tex} 6K - 3 = -K - 1{tex}\\Rightarrow{/tex} 7K = 2\xa0{tex}\\Rightarrow K = \\frac{2}{7}{/tex}and {tex}\\frac{{ - 8K + 10}}{{K + 1}} = 6{/tex}{tex}\\Rightarrow{/tex} -8k + 10 = 6K + 6{tex}\\Rightarrow{/tex} 14K = 4{tex}\\Rightarrow K = \\frac{4}{{14}} = \\frac{2}{7}{/tex} | |
| 34293. |
prove that 2-3root 5 is an irrational number |
| Answer» Let 2-3√5 be rational no.2-3√5=a/b,And so on... Practice by yourself | |
| 34294. |
How to prove any root number is irrrational |
| Answer» suppose 3–√3 is rational, then 3–√=ab3=ab for some (a,b)(a,b) suppose we have a/ba/b in simplest form.3–√a2=ab=3b23=aba2=3b2if b is even, then a is also even in which case a/b is not in simplest form.if b is odd then a is also odd. Therefore:ab(2n+1)24n2+4n+12n2+2n2(n2+n)=2n+1=2m+1=3(2m+1)2=12m2+12m+3=6m2+6m+1=2(3m2+3m)+1a=2n+1b=2m+1(2n+1)2=3(2m+1)24n2+4n+1=12m2+12m+32n2+2n=6m2+6m+12(n2+n)=2(3m2+3m)+1Since (n^2+n) is an integer, the left hand side is even. Since (3m^2+3m) is an integer, the right hand side is odd and we have found a contradiction, therefore our hypothesis is false. | |
| 34295. |
In question ma ham ulta Ku karna pata ha ??????? |
| Answer» | |
| 34296. |
Find 2q is irrational no and write in form of p/q |
| Answer» | |
| 34297. |
Complete the series4,9,16,25,_ |
| Answer» 36 | |
| 34298. |
If zeros of polynomial x3-3x2+x+1and a-b a+b find a and b plz answer this |
| Answer» Given polynomial is f(x) = x3\xa0- 3x2\xa0+ x + 1Let\xa0{tex} \\alpha{/tex}\xa0= (a - b),\xa0{tex} \\beta{/tex}\xa0= a and\xa0{tex} \\gamma{/tex}\xa0= (a + b)Now,\xa0{tex} \\alpha + \\beta + \\gamma{/tex}\xa0=\xa0{tex} - \\frac { ( - 3 ) } { 1 }{/tex}⇒\xa0(a - b) + a + ( a + b ) = 3⇒ a - b + a + a+ b = 3⇒ a + a + a = 3⇒\xa03a = 3⇒ a = 3/3⇒\xa0a = 1Also,\xa0{tex} \\alpha \\beta + \\beta y + \\gamma \\alpha = \\frac { 1 } { 1 }{/tex}⇒\xa0(a - b)a + a (a + b) + (a + b)(a - b) = 1\xa0⇒\xa0a2\xa0- ab + a2\xa0+ab + a2\xa0- b2\xa0= 1⇒\xa03a2\xa0- b2\xa0= 1 ( ∵ a = 1)⇒\xa03(1)2\xa0- b2\xa0= 1( ∵ a = 1)⇒ 3 - b2 = 1⇒\xa0b2\xa0= 2⇒\xa0b =\xa0{tex} \\pm \\sqrt{2}{/tex}Hence, a = 1 and b =\xa0{tex} \\pm \\sqrt{2}{/tex} | |
| 34299. |
What is the smallest no which when divided by 144 180 192 leaves a reminder of 3 |
| Answer» | |
| 34300. |
What isthesa |
| Answer» | |