Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

34401.

Find the sum of the following Aps -37,-33,-29,...,to 12 terms.

Answer» Here, {tex}a=-37,\\ d=-33-(-37)=-33+37=4\\ and\\ n=12{/tex}Now we know that ,\xa0Sn={tex}\\frac{n}{2}{/tex}[2a+(n-1)d]Therefore, S12=\xa0{tex}\\frac{{12}}{2}{/tex}[2{tex}\\times{/tex}{tex}(-37)+(12-1)4]{/tex}= {tex}6[-74+44]{/tex}= 6{tex}\\times{/tex}(-30)= -180Therefore, sum of given A.P is -180.
34402.

Sin theth-cos theth/sin theta+cos theta

Answer» Question is not complete, please send it again with full question.
34403.

a=? d=-3 n=18 an=-5

Answer» We know thatan=a+(n-1)d \'an=-5,a=?,n=18,d=-3By putting the value of An,d,n in this formula We get,-5=a+(18-1)-3-5=a+(17*-3)-5=a+(-51)\'a=51-5\'a=46
34404.

The following real numbers have decimal expansion write in the p by q form 43.123456789

Answer» Thank u so much ?
Solution :\xa0431234567891000000000
34405.

2x +3ky=55x +2y =6 Find the value of k if the above has unique solution

Answer» 2x+ 3ky =55x + 2y =6It is given that it has a unique solution So, a1/ a2 is not equal to b1/b22/5 is not equal to 3k/2Cross multiplying we get,4 = 15k》k=4/15
Solve this problem from elimination method 1st cut the 2x and 5x by multiple
34406.

Complete the square of 9x²+7x-2

Answer» 9x2+9x_2x-29x(x+1)_2(x+1)(9x-2)(x+1)9x-2=0/x+1=09x=2/x=-1X=9/2;. X=-1
34407.

If alpha and beta are zeroes of the polynomial f(x)=x^2-x-k such that alpha - beta =9. Find k?

Answer» Since\xa0{tex}\\alpha \\text { and } \\beta{/tex}\xa0are the zeroes of the polynomial, then{tex}{/tex}{tex}\\alpha + \\beta = - \\frac { \\text { Coefficient of } x } { \\text { Coefficient of } x ^ { 2 } }{/tex}{tex}{/tex}{tex}{/tex}{tex}\\Rightarrow\\ \\alpha + \\beta = - \\left( \\frac { - 1 } { 1 } \\right) = 1{/tex}.........(i)Given,\xa0{tex}\\alpha - \\beta = 9{/tex}...............(ii)Solving (i) and (ii),\xa0{tex}\\alpha = 5 , \\beta = - 4{/tex}{tex}\\alpha \\beta = \\frac { \\text { Constant term } } { \\text { Coefficient of } x ^ { 2 } }{/tex}{tex}\\Rightarrow\\ \\alpha \\beta = - k{/tex}{tex}\\Rightarrow\\ {/tex}(5)(-4) = -k{tex}\\Rightarrow{/tex}k = 20So,required value of k is 20
34408.

Huda has auctioned plots

Answer»
34409.

If 1/2 and 1 are zeroes of 2x^4-3x³-3x²-6x-2 , find the other zeroes

Answer» 1/2=x, 1=xx-1/2=0 , x-1=0(x-1/2)(x-1)=0=x^2-x-x/2+1/2=x^2-3x/2+1/2=(x^2-3x/2+1/2)/(2x^4-3x^3-3x^2-6x-2)2x^2-4=02x^2=4x^2=2x=+√2,-√2Hence,proved.
....
34410.

23*576\\34+589-684(60-43)

Answer» 23*576\\34+589-684(60-43)= 13248/34 + 589 - 684(17)= 13248/34 + 589 - 11628= 13248/11005=\xa01.20381644707
13248/34+589-684*17=13248/34+589-11628=13248/11005=1.20381644707
34411.

Genral form of quadric polynomials in alfa bita gama

Answer» x^2-(α+β)x+αβ
34412.

2 X square + X - 528 middel term splitting

Answer» 2x^2+x-528=02x^2+33x-32x-528=0x(2x+33)-16(2x+33)=0x=16,-33/2
34413.

Find the largest three digit number divisible by 12,15,20 and 18 leaving remainder 5 in each case

Answer» LCM(12,15,20,18)=180180+5=185The largest 3 digit number=185
34414.

Solve 1352xx +2545x+2325 and find its zero

Answer»
34415.

SecA+tanA/secA-tanA=(1-tanA)2 (CosA)

Answer»
34416.

Given that cos a =p/q, find the value of tan a

Answer» cos a=p/q{tex}\\begin{array}{l}\\sin\\;a=\\sqrt{1-\\frac{p^2}{q^2}}\\;\\\\=\\frac1q\\sqrt{q^2}-p^2\\\\So\\;\\tan\\;a=\\frac{\\sin\\;a}{\\cos\\;a}=\\frac{\\frac1q\\sqrt{q^2}-p^2}{\\displaystyle\\frac pq}\\\\=\\frac1p\\sqrt{q^2}-p^2\\end{array}{/tex}
34417.

The difference between two numbers is 26 and one number is 3times the other.find them

Answer» According to second problemsX=3YSubstituting X= 3y 3Y-3=262Y=26Y=13Substituting value of Y in an equation X=3YX=3×13X=39
Let the two numbers X and Y respectively where X is greater than Y According to first problemX-Y=26
34418.

Using prime factorisation find the hcf and lcm of:24,36,40

Answer» {tex}\\begin{array}{l}\\text{24=8×3=2}^3\\times3\\\\\\end{array}{/tex}{tex}\\begin{array}{l}\\text{36=4×9=2}^2\\times3^2\\\\\\end{array}{/tex}{tex} \\begin{array}{l}\\text{40=8×5=2}^3\\times5\\\\\\end{array}{/tex}Therefore, HCF = Product of the smallest power of each common prime factor in the numbers = 22 = 4Therefore, LCM = Product of the greatest power of each prime factor involved in the numbers {tex} \\begin{array}{l}=2^3\\times3^2\\times5=8\\times9\\times5=360\\\\\\end{array}{/tex}
34419.

Find the sum of the first 30 terms of an Ap whose nth term is 2+1/2n

Answer» Ibwant to know examination patter 2020
34420.

If angle A and B are acute angles such that cosA=cosB,then show that angleA =angleB

Answer» Given cos A = cos BHence,\xa0{tex}\\frac{{AC}}{{AB}} = \\frac{{BC}}{{AB}}{/tex}{tex} \\Rightarrow AC = BC{/tex}Since angle opposite to equal sides in a\xa0{tex}\\Delta {/tex}\xa0are equal{tex}\\therefore \\angle B = \\angle A{/tex}Hence proved
34421.

For any positive integer n prove that n cube -n is divisible by 6

Answer» n3\xa0- n = n (n2\xa0- 1) = n (n - 1) (n + 1)\xa0Whenever a number is divided by 3, the remainder obtained is either 0 or 1 or 2.∴ n = 3p or 3p + 1 or 3p + 2, where p is some integer.If n = 3p, then n is divisible by 3.If n = 3p + 1, then n – 1 = 3p + 1 –1 = 3p is divisible by 3.If n = 3p + 2, then n + 1 = 3p + 2 + 1 = 3p + 3 = 3(p + 1) is divisible by 3.So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 3.⇒ n (n – 1) (n + 1) is divisible by 3.\xa0Similarly, whenever a number is divided by 2, the remainder obtained is 0 or 1.∴ n = 2q or 2q + 1, where q is some integer.If n = 2q, then n is divisible by 2.If n = 2q + 1, then n – 1 = 2q + 1 – 1 = 2q is divisible by 2 and n + 1 = 2q + 1 + 1 = 2q + 2 = 2 (q + 1) is divisible by 2.So, we can say that one of the numbers among n, n – 1 and n + 1 is always divisible by 2.⇒ n (n – 1) (n + 1) is divisible by 2.Since, n (n – 1) (n + 1) is divisible by 2 and 3.∴ n (n-1) (n+1) = n3\xa0- n is divisible by 6.( If a number is divisible by both 2 and 3 , then it is divisible by 6)
34422.

Pove that 7 is irrational number

Answer» \xa0let us assume that\xa0{tex}\\sqrt 7{/tex}\xa0be a rational number.{tex}\\sqrt { 7 } = \\frac { a } { b }{/tex}, where a and b are integers and co-primes and b{tex} \\neq{/tex}0Squaring both sides, we have{tex}\\frac { a ^ { 2 } } { b ^ { 2 } } = 3{/tex}or,\xa0{tex}a ^ { 2 } = 7 b ^ { 2 }{/tex}--------(i)a2\xa0is divisible by 7.Hence a is divisible by 7..........(ii)Let a = 7c ( where c is any integer)squaring on both sides we get(7c)2\xa0= 7b249c2\xa0= 7b2b2\xa0= 7c2so b2\xa0is divisible by 7hence, b is divisible by 7..........(iii)From equation(ii) and (iii), we have7 is a factor of a and b which is contradicting the fact that a and b are co-primes.Thus, our assumption that\xa0{tex}\\sqrt 7{/tex} is rational number is wrong.Hence,\xa0{tex}\\sqrt 7{/tex}\xa0is an irrational number.
Yes
34423.

Convert tanA in the term of cotA

Answer» For tanA,{tex}\\tan A = \\frac { 1 } { \\cot A }{/tex}
34424.

If (x+1) is a factor of 2x3+ax2+2bx+1 , then find the value of a and b given that 2a-3b=4.

Answer» Since {tex}(x + 1){/tex} is a factor of {tex}2x^3 + ax^2 + 2bx + 1{/tex}{tex}\\Rightarrow{/tex}{tex}x = -1{/tex} is a zero of {tex}2x^3 + ax^2 + 2bx + 1{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}2(-1)^3 + a(-1)^2 + 2b(-1) + 1 = 0 {/tex}{tex}\\Rightarrow{/tex}\xa0{tex}a - 2b - 1 = 0{/tex}{tex}\\Rightarrow{/tex}\xa0a - 2b = 1 ...(i)Given that {tex}2a - 3b = 4{/tex} ...(ii)Multiplying equation (i) by 2, we get{tex}2a - 4b = 2{/tex} ...(iii)Subtracting equation (iii) from (ii), we getb = 2Substituting b = 2 in equation (i), we havea - 2(2) = 1{tex}\\Rightarrow{/tex}\xa0a - 4 = 1{tex}\\Rightarrow{/tex}\xa0a = 5Hence, a = 5 and b = 2.
34425.

Write the decimal representation of 1458

Answer» 18.12
34426.

Word problems on polynomials

Answer»
34427.

30 example on elimination method

Answer» Answers
Hey
34428.

Find (HCF×LCM) for the numbers 100 and 900

Answer» O hello ....Mr. .....I\'ve already found my answers before u\'r reply.........So don\'t be so oversmart???
Seems you are dumb and have no focus on studies.It is clearly stated in the NCERT book that\xa0HCF x LCM = Product of the\xa0two numbersSo, HCF x LCM = 100 x 900 = 90,000
34429.

How do the sumroot5

Answer»
34430.

If Sin+2Cos=1, then prove that 2Sin-Cos=2

Answer» 0
34431.

Evaluate the following. COS (40-A) -SIN (50-A) +COS40+COS50*SIN40+SIN50

Answer» Question is incomplete, please upload it correctly.
34432.

(3)-(7)

Answer» So silly ? - 4
34433.

The LCM of 2·5,0·5 and 0·175 is (a) 2·5 (b)5 (c) 7·5 (d) 1·75

Answer» 0.5
34434.

If sideof triangle are 16cm,30cm,34cm what is its area

Answer» Let In\xa0{tex}\\triangle ABC{/tex}AB=16 cm,BC=30 cm and AC=34 cmAB2+BC2162+302=256+900=1156=342=AC2SO AB2+BC2=AC2HENCE\xa0{tex}\\triangle ABC{/tex}\xa0is a right angle triangleso are of\xa0{tex}\\triangle ABC{/tex}=1/2*AB*BC=1/2*16*30=240 CM2
34435.

(1+tan×tan)(1+cot×cot)

Answer» Your question is incorrect.Question.{tex}\\huge \\frac{1+\\tan^2\\theta}{1-\\cot^2\\theta}{/tex}Solution:{tex}\\huge \\frac{1+\\tan^2\\theta}{1-\\cot^2\\theta}{/tex}\xa0{tex}\\huge\\implies \\frac{\\sec^2\\theta}{cosec^2\\theta}\\implies {\\sec^2\\theta}\\times \\frac{1}{cosec^2\\theta}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\begin{cases}\\ \\sec^2\\theta=1+\\tan^2\\theta \\\\cosec^2\\theta=1+\\cot^2\\theta \\\\end{cases}{/tex}{tex}\\huge \\implies{/tex}{tex}\\huge \\frac{1}{\\cos^2\\theta}\\times{\\sin^2\\theta}\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\begin{cases}\\ \\sec^2\\theta=\\frac{1}{\\cos^2\\theta} \\\\cosec^2\\theta=\\frac{1}{\\sin^2\\theta} \\\\end{cases}{/tex}{tex}\\huge\\implies \\frac{\\sin^2\\theta}{\\cos^2\\theta}\\implies \\boxed {\\tan^2\\theta}{/tex}
34436.

x/a- y/b = a-b ax+by =a2+b2

Answer» {tex}\\frac { x } { a } - \\frac { y } { b } = 0{/tex}{tex} \\Rightarrow x = \\frac { a y } { b }{/tex}....................(i)ax + by = (a2\xa0+ b2) .......................(ii)Substituting (i) in (ii),we get{tex}a \\left( \\frac { a y } { b } \\right) + b y = \\left( a ^ { 2 } + b ^ { 2 } \\right){/tex}{tex}\\Rightarrow \\frac { a ^ { 2 } y } { b } + b y = \\left( a ^ { 2 } + b ^ { 2 } \\right){/tex}{tex}\\Rightarrow a ^ { 2 } y + b ^ { 2 } y = \\left( a ^ { 2 } b + b ^ { 3 } \\right){/tex}{tex}\\Rightarrow y \\left( a ^ { 2 } + b ^ { 2 } \\right) = b \\left( a ^ { 2 } + b ^ { 2 } \\right){/tex}{tex}\\Rightarrow y = b{/tex}Substituting in (i),we get{tex} x = \\frac { a b } { b }{/tex}\xa0⇒ x = a.So, solution of given equation is x = a and y = b.
34437.

Rationalise the denominator of five upon four root two+three root three

Answer» 4root 2 minus 3root 3
34438.

Express 7180 in decimal notation

Answer» The question is incomplete. please reupload it.
34439.

What is the biggest number of two digit

Answer» 99??
99.....??
Ovio 99 ??
34440.

Prove root5 is an irrational number

Answer» let root 5 be rationalthen it must in the form of p/q [q is not equal to 0][p and q are co-prime]root 5=p/q=> root 5 * q = psquaring on both sides=> 5*q*q = p*p ------> 1p*p is divisible by 5p is divisible by 5p = 5c [c is a positive integer] [squaring on both sides ]p*p = 25c*c --------- > 2sub p*p in 15*q*q = 25*c*cq*q = 5*c*c=> q is divisble by 5thus q and p have a common factor 5there is a contradictionas our assumsion p &q are co prime but it has a common factorso\xa0√5 is an irrational
34441.

Who are the students of Tamilnadu ?answer me

Answer»
34442.

Verify that 3 is a zero of the linear polynomial p (x)=9x - 27

Answer» p(3)=9×3-27 =27-27=0Hence, verified.?
34443.

Factorise 2x square - 5 x + 6

Answer» => 2x2 - 5 x + 6(Adding terms 2x and -2x)=>\xa02x2 - 5 x + 6 + 2x - 2x=>\xa02x2 - 5 x -2x + 6 + 2x=>\xa02x2 - 7\xa0x + 6 + 2x=> { (x - 2) (2x - 3) } + 2x (Answer)\xa0
34444.

A+b+c+d=abcd

Answer» Hlo
Hiii yash ..
Hi hlo
34445.

Does the standard math paper come from NCERT

Answer» Yes board exams paper always comes from ncert book of maths
Rd sharma and ouswal
No Out of syllabus
34446.

What means PT

Answer» Practice test.
34447.

HOW MANY 2DIGIT NUMBERS ARE DIVISIBLE BY 2

Answer» 45
45
45
34448.

Agar main ncert book ke problemspura karlo toh kya 90 percent mil jayenge ?

Answer» Dekh bhai y jaruri nhi ki ncrt ka hi same question aega language change ho skta h digit change ho skta h or 80% ncert s hi puchta h baki 20% side s
Number to bhagte - bhagte tumhare pas aayega .
34449.

2x+8y=68. Find x

Answer» If y=0 ,2x+8(0)=68X=68/2X=34
Where is the second equation?
Which is the scecond equation
34450.

Board me sabse zyada questions konsi book se atte hai?

Answer» Mostly NCERT
Ncert
Only ncert bas twist krke de dete ha
From NCERT book?
Ncert ....?
NCERT