Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

3401.

×

Answer»
3402.

2017 2018 exam date for class 10th

Answer» Exam is on 5.
Datesheet will announced this week but the exam will be in March
3403.

Sample paper class 10 maths solutions

Answer»
3404.

Ab

Answer»
3405.

Which branch is better ? Commerce or pcb

Answer»
3406.

If A=2n+13 and B=n+7, where n is a natural number than find HCF of A and B.

Answer» answer
HCF(A,B)=1, since A and B are coprimes.
Try
3407.

Hi shrushti are u there ????

Answer»
3408.

Find the probability that the month June may have five Monday in a 1.leap year 2.non-leap year

Answer»
3409.

If the sum of an A.P is ap2 + bp,find its common difference

Answer» We are given that sum\xa0of first p terms of this APSp= ap2 + bpLet the first term= x and common difference = d{tex}{\\mathrm S}_1=\\mathrm a(1)^2+\\mathrm b(1)=\\mathrm a+\\mathrm b{/tex}So first term x = a+bNow S2 = a(2)2 + b(2)S2 = 4a + 2b,{tex}\\mathrm{So}\\;{\\mathrm s}_2={\\mathrm a}_1+{\\mathrm a}_2=\\mathrm x+\\mathrm x+\\mathrm d=4\\mathrm a+2\\mathrm b{/tex}2x + d = 4a+2b2(a+b)+d = 4a+2b2a+2b+d=4a+2bd=4a+2b-2a-2bd = 2aTherefore, the common difference of the given AP is 2a.
3410.

Koi h ya yaha PE bhi kisi Ko mere se baat nhi karni???

Answer»
3411.

Yahaaaa

Answer»
3412.

0 ➗ 0 karne par proof karo ans 0,1,2or infinity ye sare ans ane chaiye

Answer» 0/0=01/0=02/0=0
0÷0 = infinity
3413.

Hmm sahil ab bolo kya bol rhe the

Answer»
3414.

Hlo.... Yaha mil

Answer»
3415.

Koi mera bhai nd frnd banega

Answer»
3416.

Can I start writing answers from Section-D in Board Exam?

Answer»
3417.

What is anodising ????

Answer» Anodising is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.
3418.

Galvanization ????

Answer» Right prateek
Coating iron and steel with a thin layer of zinc
3419.

What is amalgam ???? From chemistry

Answer» A solution of a metal in mercury( hg).
Metal +mercury
3420.

What is tatti

Answer» Bhai maths mein tatti kab se aane lagi.
3421.

Find the value of tan15°, tan75°

Answer»
3422.

Sahil I am going know so

Answer»
3423.

Sahil are you there here

Answer»
3424.

Area of a quadrilateral ABCD whose vertices are A(3,-1),B(9,-5),C(14,0),D(9,19)

Answer» Join A and CNow, Area of quadrilateral ABCD = Area of\xa0{tex} \\Delta{/tex}ABC + Area of\xa0{tex}\\Delta{/tex}ACDArea of\xa0{tex} \\Delta A B C = \\frac { 1 } { 2 } | 3 ( - 5 - 0 ) + 9 ( 0 + 1 ) + 14 ( - 1 + 5 ) |{/tex}{tex}= \\frac { 1 } { 2 } | - 15 + 9 + 56 |{/tex}{tex}= \\frac { 1 } { 2 } \\times 50{/tex}= 25 sq. unitsArea of\xa0{tex}\\Delta ACD = \\frac{1}{2}|3(0 - 19) + 14(19 + 1) + 9( - 1 - 0)|{/tex}{tex}= \\frac { 1 } { 2 } | - 57 + 280 - 9 |{/tex}{tex}= \\frac { 1 } { 2 } \\times 214{/tex}= 107 sq. unitsArea of quad. ABCD = Area of\xa0{tex}\\Delta{/tex}ABC + Area of\xa0{tex}\\Delta{/tex}ACD= (25 + 107) sq. units=132 sq. units
3425.

2x^+ax-a^=0 . Find the value of x

Answer»
3426.

States Euclid\'s Division LEMMA

Answer» Euclid’s Division Lemma: If we have two positive integers a and b,then there exists unique integers\xa0q\xa0and\xa0r\xa0which satisfies the conditiona = bq + r (where 0\xa0≤ r ≤ b)Example: If we have two integers a=27 b=4Then {tex}27 = 4 × 6 + 3,{/tex}Here q = 6 and r = 3
3427.

2018-19 ka syllabus

Answer»
3428.

Sir 10 class CBSE me date sheet bata do

Answer» Yet date sheet not release
3429.

What is trignometric ratios

Answer»
3430.

X^2+3|X|+2=3 ,find the no. Of real roots

Answer»
3431.

Aditi sharam whatspp pe aao

Answer»
3432.

Find the root of the equation of 16x-10/x=27

Answer» -10/11 i think
3433.

For board exam we have to prepare optional exercise also or not?

Answer» Nothing is optional bhai. Vese vo thofe high lvl ke hote hai u can leave it
3434.

Show graphically that the system of equation 3x-y=2,9x-3y=6

Answer» Graph of {tex}3x - y = 2{/tex}:We have, {tex}3x - y = 2\\Rightarrow y = 3x - 2{/tex}When x = 2, we havey = 3 {tex}\\times{/tex}\xa02 - 2 = 4When x = 1, we havey = 3 {tex}\\times{/tex}\xa01 - 2 = 1\xa0\tx21y41\tPlotting the points {tex}A(2, 4)\\ and\\ B(1, 1){/tex} onthe graph paper and drawing a linepassing through A and B, we obtain thegraph of {tex}3x - y = 2{/tex} as shown in Fig.Graph of {tex}9x - 3 y = 6{/tex} :We have, {tex}9x - 3y = 6{/tex}{tex}\\Rightarrow \\quad y = 9 x - 6{/tex}{tex}\\Rightarrow \\quad y = \\frac { 9 x - 6 } { 3 }{/tex}When, x = 0, We\xa0have{tex}y = \\frac { 9 \\times 0 - 6 } { 3 } = - 2{/tex}When x = -1, we have{tex}y = \\frac { 9 \\times - 1 - 6 } { 3 } = - 5{/tex}\tx0-1y-2-5\tPlotting the points {tex}C(0,-2) and D (-1, - 5){/tex} on the graph paper and drawing a line passing through these two points on the same graph paper we obtain the graph of{tex}9x - 3y = 6{/tex}. We find the C and D both lie on the graph of {tex}3x - y = 2{/tex}. Thus, the graphs of the two equations are coincident.\xa0Hence, the system of equations has infinitely many solutions.
3435.

Similarity theoram in maths

Answer» Bpt theorem
3436.

The end points of a diameter of a circle are P (-3,8) and Q (7,4) . Find the centre of circle .

Answer»
3437.

How we can prepare different materials Ron different books in a better way for board exam

Answer»
3438.

How we can prepare in a better way from different books for our

Answer»
3439.

Tan (45-theta) - cot(45+theta

Answer»
3440.

Hii everyone where is Akshita

Answer»
3441.

Using the quadratic equation ,solve the equation:a×a×b×bx×x-(4b×b×b×b-3a×a×a×a) x-12a×a×b×b

Answer» The given quadratic equation isa2b2x2 - (4b4 - 3a4)x - 12a2b2 = 0.Comparing with Ax2 + Bx + C = 0, we getA = a2b2, B = -(4b4 - 3a4), C = -12a2b2Using the quadratic formula, {tex}x = \\frac { - B \\pm \\sqrt { B ^ { 2 } - 4 A C } } { 2 A }{/tex}we get{tex}= \\frac { \\left\\{ \\left( 4 b ^ { 4 } - 3 a ^ { 4 } \\right) \\right\\} \\pm \\sqrt { \\left( - \\left( 4 b ^ { 4 } - 3 a ^ { 4 } \\right) \\right\\} ^ { 2 } - 4 \\left( a ^ { 2 } b ^ { 2 } \\right) \\left( - 12 a ^ { 2 } b ^ { 2 } \\right) } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\sqrt { 16 b ^ { 8 } + 9 a ^ { 8 } - 24 a ^ { 4 } b ^ { 4 } + 48 a ^ { 4 } b ^ { 4 } } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\sqrt { 16 b ^ { 8 } + 9 a ^ { 8 } + 24 a ^ { 4 } b ^ { 4 } } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\sqrt { \\left( 4 b ^ { 4 } + 3 a ^ { 4 } \\right) ^ { 2 } } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\left( 4 b ^ { 4 } + 3 a ^ { 4 } \\right) } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}\\frac { 4 b ^ { 4 } - 3 a ^ { 4 } + 4 b ^ { 4 } + 3 a ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } } , \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } - 4 b ^ { 4 } - 3 a ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 8 b ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } } , \\frac { - 6 a ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } } = \\frac { 4 b ^ { 2 } } { a ^ { 2 } } , - \\frac { 3 a ^ { 2 } } { b ^ { 2 } }{/tex}{tex}\\therefore{/tex} the solutions of equation are {tex}\\frac { 4 b ^ { 2 } } { a ^ { 2 } } \\text { and } \\frac { - 3 a ^ { 2 } } { b ^ { 2 } }{/tex}.
3442.

If tan A=cot B, then find A+B.

Answer» {tex}\\tan A = \\cot B{/tex}{tex}\\Rightarrow \\tan A = \\tan \\left( 90 ^ { \\circ } - B \\right) \\quad \\because \\tan \\left( 90 ^ { \\circ } - \\theta \\right) = \\cot \\theta{/tex}{tex}\\Rightarrow A = 90 ^ { \\circ } - B \\quad \\quad \\quad \\because A \\text { and } 90 ^ { \\circ } -B{/tex}\xa0are both acute angles{tex}\\Rightarrow A + B = 90 ^ { \\circ }{/tex}
3443.

Sahil I am confused please real wala.reply karo

Answer»
3444.

Sahil so Gaye kya

Answer»
3445.

Hy amaira??

Answer»
3446.

prove that the parallelogram circumscribe a circle is a rhombus

Answer» Given ABCD is a parallelogram in which all the sides touch a given circleTo prove:- ABCD is a rhombusProof:-{tex}\\because{/tex}\xa0ABCD is a parallelogram{tex}\\therefore{/tex}\xa0AB = DC and AD = BCAgain AP, AQ are tangents to the circle from the point A{tex}\\therefore{/tex}\xa0AP = AQSimilarly, BR = BQCR = CSDP = DS{tex}\\therefore{/tex}(AP + DP) + (BR + CR) = AQ + DS + BQ + CS = (AQ + BQ) + (CS + DS){tex}\\Rightarrow{/tex}\xa0AD + BC = AB + DC{tex}\\Rightarrow{/tex}\xa0BC + BC = AB + AB [{tex}\\because{/tex} AB = DC, AD = BC]{tex}\\Rightarrow{/tex}\xa02BC = 2AB{tex}\\Rightarrow{/tex}\xa0BC = ABHence, parallelogram ABCD is a rhombus
3447.

intregation

Answer»
3448.

(a+b) ka cube = ?

Answer» a3+b3+3a2b+3ab2
A3+B3+3a2b+3ab3
3449.

If xsin^3theta+ycos^3theta=sinthetacostheta And xsintheta=ycostheta . To prove:x^2+y^2=1

Answer» We have,xsin3{tex}\\theta{/tex}\xa0+ ycos3{tex}\\theta{/tex}\xa0= sin{tex}\\theta{/tex}\xa0cos{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0(xsin{tex}\\theta{/tex}) sin2{tex}\\theta{/tex}\xa0+ (ycos{tex}\\theta{/tex}) cos2{tex}\\theta{/tex}\xa0= sin{tex}\\theta{/tex}\xa0cos{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0x sin{tex}\\theta{/tex}\xa0(sin2{tex}\\theta{/tex}) + (x sin{tex}\\theta{/tex}) cos2{tex}\\theta{/tex}\xa0= sin{tex}\\theta{/tex}\xa0cos{tex}\\theta{/tex}\xa0[{tex}\\because{/tex}\xa0x sin{tex}\\theta{/tex}\xa0= y cos{tex}\\theta{/tex}]{tex}\\Rightarrow{/tex}\xa0x sin{tex}\\theta{/tex}\xa0(sin2{tex}\\theta{/tex}\xa0+ cos2{tex}\\theta{/tex}) = sin{tex}\\theta{/tex}\xa0cos{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0x sin{tex}\\theta{/tex}\xa0= sin{tex}\\theta{/tex}\xa0cos{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0x = cos{tex}\\theta{/tex}Now, xsin {tex}\\theta{/tex}\xa0= ycos{tex}\\theta{/tex}{tex}\\Rightarrow{/tex}\xa0cos{tex}\\theta{/tex}\xa0sin{tex}\\theta{/tex}\xa0= y cos{tex}\\theta{/tex}\xa0[{tex}\\because{/tex} x = cos{tex}\\theta{/tex}]{tex}\\Rightarrow{/tex}\xa0y = sin{tex}\\theta{/tex}Hence, x2 + y2 = cos2{tex}\\theta{/tex}\xa0+ sin2{tex}\\theta{/tex}\xa0= 1
3450.

Find the perpendicular distance of A(5,12) from the Y axis

Answer» 12
12