Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

34701.

Congurent symbol

Answer» ≅
34702.

Area of squar

Answer» Thanks
Side into side
34703.

Find the zeroes of the following polynomial-5√5x^+30x+8√5

Answer» The given quadratic polynomial is\xa0{tex}5 \\sqrt{5} x^{2}+30 x+8 \\sqrt{5}.{/tex}In order to factorize it, we have to find two numbers / and m such thatl + m = 30 and lm\xa0{tex}=5 \\sqrt{5} \\times 8 \\sqrt{5}=200{/tex}Clearly, 10 + 20 = 30 and 10\xa0{tex}\\times{/tex}20=200. Therefore, l = 10 and m = 20Now,\xa0{tex}5 \\sqrt{5} x^{2}+30 x+8 \\sqrt{5}{/tex}{tex}=5 \\sqrt{5} x^{2}+10 x+20 x+8 \\sqrt{5}{/tex}{tex}=\\left(5 \\sqrt{5} x^{2}+10 x\\right)+(20 x+8 \\sqrt{5}){/tex}{tex}=\\left(5 \\sqrt{5} x^{2}+10 x\\right)+(4 \\sqrt{5} \\times \\sqrt{5} x+8 \\sqrt{5}){/tex}{tex}=5 x(\\sqrt{5} x+2)+4 \\sqrt{5}(\\sqrt{5} x+2){/tex}{tex}=(5 x+4 \\sqrt{5})(\\sqrt{5} x+2){/tex}{tex}=\\sqrt{5}(\\sqrt{5} x+4)(\\sqrt{5} x+2){/tex}
34704.

Find distance between pair of points: (2,3),(4,1)

Answer» 2√2
2^2 2 roort 2
4√2
2√2
34705.

Irrational prove karna

Answer» Kisko
34706.

Maths circles ruls

Answer»
34707.

Root 5 rational no. Hai ya nhi

Answer» Nahi
Nahi
34708.

75+89

Answer» Ye addition apse nahi huee Board exam main kya karoge????
164
164
164
164
164
34709.

Prove that root 5 is a rational number

Answer» Let √5 is rational no.Let two integers[ p ] [ q ]√5=p/qWe consume wrong that √5is rational but,it is irrarional
Root5 is an irrational number.
34710.

76+65.79

Answer» 141.79
141.79
141.799
141.79?????
141.79
34711.

60/360 × 3.14 × 15 × 15

Answer» 117.75
117.75????
117.75
34712.

Construct an obtuse angle and bisect it

Answer» By using compass or ......???
34713.

What is snow flakes of Mathematics ??? ???

Answer»
34714.

Write an AP whose first term is 10 and common difference is 3

Answer» 10, 13, 16, 19, 22,............
The first term,a = 10common difference,d = 3So, the next two terms would be a +d, a +2d.That is, the next two terms are 13, 16, 19, 21,........
34715.

For what the value of k ,10 , k-2 are in AP

Answer» How
Yes its 11
11
34716.

Test of lesson 1 and 2

Answer» Matlab kya ha
Ok
34717.

Is hindi a vocational subject?

Answer» Hindi is not a vocational subject. Hindi is a main subject.
No it\'s not a vocational subject.
34718.

What is the value of sin

Answer» sin 30=1/2, sin 45 =1 / √2sin 60=\xa03/2 and sin 90 =1
Also sin=1/cosec
Perpendicular /hypotenuse
34719.

If angle b and angle q are acute such that sinb =sin q then prove that angle b = angle q

Answer» When sinb=sinq So sin angle b=sin angle qThen angle b = angle q
34720.

any girl talk to me please

Answer» Kyu nhi
Why??
34721.

Solve for x√2^(2)+7x+5√2=0

Answer»
-√2 answer
-5√2-2/7
18root 2 answer
34722.

Sin60-cot45

Answer» √3-2/2
Sin60=√3/2Cot45 =1Sin60-cot45=√3/2-1After Taking LCM =(√3-2)/2
root 3/2 -1
?
34723.

100-50

Answer» This app is for helping in a logic questions not that what is 100-50...faltu mat bhejo
50
34724.

the circumference of a circle exceeds the daimeter by 16.8cm find the circumference of the circle

Answer» 2 x 3.14 x r = 2r + 16.8r(6.28-2)=16.8r= 16.8/4.28So circumference = 2 x 3.14 x 16.8 / 4.28 = 24.65 cm\xa0
but how to solve this question
24.64
Edjfjxesidic
34725.

What is the HCF of smallest prime number and the smallest composite number? Help me friends.......

Answer» Smallest prime number is 2Smallest composite number is 4H.C.F(2,4) is 2
1
34726.

question paper design 2018-19 mathematics

Answer» Check Question Papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
34727.

Convert each of the following per cent into a fraction in the lowest term means??

Answer» Where is the percentage??
Plz answer quickly
34728.

Solve for x and y37x+43y=123 43x+ 37y=117

Answer» 37x + 43y = 123 ……..(1)43x + 37y = 117 ……..(2)Adding (1) and (2)80x + 80y = 24080(x + y) = 240x + y = 240/80 = 3 ……..(3)Subtracting (1) from (2),6x – 6y = -66(x – y) = -6x – y = −6/6 = -1 ……..(4)Adding (3) and (4)2x = 3 – 1 = 2 x = 1Subtracting (4) from (3)2y = 3 + 1 = 4 y = 2Hence, solution is x = 1, y = 2
Try with elimination method
Ans 1 and 2
This will be done by addition and subtraction
1&2
34729.

We can say that 1,1,1... is an AP

Answer» yes
Yes because the common diffrence is same t2-t1=1-1=0
Can say
No
34730.

a cot theta + b cosec theta =p, b cot theta +a cosec theta =q, then find value of p^2 –q^2

Answer» a cotA + b cosecA =pb cotA + a cosecA=qso p2 -q2\xa0= (\xa0a cotA + b cosecA)2 - (b cotA + a cosecA)2=cot2A( a2-b2) +cosec2A (b2-a2) + 2ab cotA cosecA- 2ab cotA cosecA=( a2-b2) (cot2A-cosec2A)=\xa0( a2-b2)(-1)=b2-a2
a2 + b2
34731.

Sec A + tanA =P, find the value of cosec A?

Answer» {tex}sec\\ \\theta+ tan\\ \\theta = p{/tex} ...(i)Also {tex}sec^2\xa0\\theta - tan^2 \\theta = 1{/tex}{tex}\\Rightarrow{/tex}\xa0(sec\xa0{tex}\\theta{/tex}\xa0- tan\xa0{tex}\\theta{/tex}) (sec\xa0{tex}\\theta{/tex}\xa0+ tan\xa0{tex}\\theta{/tex}) = 1{tex}\\Rightarrow{/tex}\xa0p(sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex}) = 1[using equation (i)]{tex}\\Rightarrow{/tex}\xa0sec\xa0{tex}\\theta{/tex}\xa0-\xa0tan\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{1}{p}{/tex}\xa0...(ii)(ii) - (i) we get{tex}-2 tan{/tex}\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{1-p^{2}}{p}{/tex}{tex}\\Rightarrow{/tex}- tan\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{1-p^{2}}{2 p}{/tex}{tex}\\Rightarrow{/tex}- cot\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{2 p}{1-p^{2}}{/tex}cot\xa0{tex}\\theta{/tex}\xa0{tex}=\\left(\\frac{2 p}{1-p^{2}}\\right)^{2}{/tex}{tex}=\\frac{-4 p^{2}}{\\left(1-p^{2}\\right)^{2}}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}cosec^2{/tex}\xa0{tex}\\theta{/tex}\xa0- 1\xa0{tex}=\\frac{-4 p^{2}}{\\left(1-p^{2}\\right)^{2}}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}cosec^2{/tex}\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{-4 p^{2}}{\\left(1-p^{2}\\right)^{2}}+1=\\frac{-4 p^{2}+\\left(1-p^{2}\\right)^{2}}{\\left(1-p^{2}\\right)^{2}}{/tex}{tex}cosec^2{/tex}\xa0{tex}\\theta{/tex}\xa0{tex}=\\frac{-4 p^{2}+1+p^{4}-2 p^{2}}{\\left(1-p^{2}\\right)^{2}}{/tex}{tex}=\\frac{\\left(1+p^{2}\\right)^{2}}{\\left(1-p^{2}\\right)^{2}}{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}cosec\\\xa0\\theta{/tex}\xa0{tex}=\\frac{1+p^{2}}{1-p^{2}}{/tex}
34732.

Cos theta + sin theta =root 2 cos theta prove that cos theta - sin theta =root 2 sin theta

Answer»
34733.

1/a+1/b+1/y=1/a+b+ya≠0 b≠0 & y=-a+b

Answer» What find
34734.

How to draw perpendicular in right triangle ABC on BC?

Answer» Draw altitude AD on BC.
34735.

find the length of median AD if vertices are a(1,-1) B (-4,6) C (-3,-5 )

Answer» Firstly find mid point of BC by mid point formula, then find length of AD by distance formula.
(1;-1)
34736.

Hi friends.... I am new here .,can u all help me in my doubts

Answer» Yes Ofcourse ?
Yes ??
Ok, Osama Bin Laden Zinda Hein??
Ofcourse
Yes☺️
34737.

In an AP is the sum of its first n terms is 3n^2+5n and its kth term is 164 find the value of k.

Answer»
S = 3n2\xa0+ 5n\xa0S1\xa0= a1\xa0= 3 + 5 = 8\xa0S2\xa0= a1\xa0+ a2= 12 + 10 = 22 ⇒ a2\xa0=\xa0S2\xa0-\xa0S1\xa0= 22 - 8 = 14\xa0S3\xa0= a1\xa0+ a2\xa0+ a3 = 27 + 15 = 42⇒a3\xa0=\xa0S3\xa0-\xa0S2\xa0= 42 - 22 = 20\xa0∴ Given AP is 8,14,20,.....\xa0Thus a = 8 , d = 6 Given tk= 164.\xa0164 = [a + (k -1)d]\xa0164 = [(8) + (k-1)6]\xa0164 = [8 + 6k - 6]\xa0164 = [2 + 6k]162= 6k, k= 162 / 6.\xa0∴ k = 27
34738.

7, 10, 8, 11, 9, 12, ... What number should come next?

Answer» 10 will be the next no. Here uh can use the formula an=a+(n-1)d
10
15
10
10
34739.

Q.2. 3,5, 9,17,33,.....?

Answer» 65
65 can be found by same formula
65
67
65
32
34740.

How I find last 5 years question papers which are came in bord exams

Answer» Buy oswal sample papers book
34741.

How to solve 576=60n-2nsquare-576

Answer»
34742.

Why the area of cylinder is added in examplé 14 of chapter surface area and volume

Answer» Because the metal sheet is also used in making the cylinder.
ncert ,rs aagrawal ya rd sharma book ya koi others books
34743.

Writa 10 th term of ap 2,3333

Answer» a=2d=3333-2=333110th term=?10th term=a+9d " " =2+9×3331 " " =2+29979 " " =29981So, the 10th term of the APs=29981
29981
34744.

If diameter of a circle is 7cm. Find perimeter of semi circle

Answer» 11
D=7,r=7/2 Perimeter =2πr/2 =πr=22/7*7/2=22/2=11
11
Circumference of semicircle ___ 1/2*2TT r
34745.

Which term of the AP :121,117,113,......................., is its first negative term

Answer» Please solve this step by step
32nd term
34746.

what we will use in application of trignometrey what we take tan,cot,sin,cos,sec,cosec

Answer» It depends on angle given in figure If you have to find hypotenuse then you can use both sin and cos For base,use cos tan For perpendicular, use sin, tan
34747.

Explain how to solve with completing the square method

Answer» Steps\tStep\xa01 Divide all terms by a (the coefficient of x2).\tStep\xa02 Move the number term (c/a) to the right side of the equation.\tStep\xa03\xa0Complete the square\xa0on the left side of the equation and balance this by adding the same value to the right side of the equation
(1/2.x)2
34748.

ABC is an equilateral triangle D is a point on BC such that BD=1/3BC then prove that 9AB^2 = 7AD^2

Answer» Sorry i can not draw figure here\xa0Just drop perpendicular AE from A to BC\xa0suppose side of triangle is 6x thenAD=2x and DE=x and AB = 3x and BE=3xso AE2= AB2 -BE2= (6x)2 -(3x)2 =36x2-9x2 =27x2Now in triangle ADEAD2=AE2 + DE2 =27 x2\xa0+ x2\xa0 = 28 x2AD2\xa0= 28/36 *36x2 = 28/36 *AB2 = 7/9*AB27 AD2\xa0= 9 AB2\xa0\xa0\xa0\xa0
Sorry , show that 9AD^2 = 7AB^²
34749.

X/a +y/b=a+b

Answer»
34750.

Find the quadratic equations the sum and product of whose zeroes are -3and 2,respectively

Answer» x^2+3x+2