Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

34601.

Hcf of 328 and 678

Answer» I was just checking this feature
2
34602.

For the p(x)=ax2+bx+c if α and β are zeros then find. 1. α3+β3 and 2. 1/α3+1/β3

Answer» It is given that {tex} \\alpha{/tex}\xa0and {tex} \\beta{/tex}\xa0are the zeros of the quadratic polynomial\xa0{tex}f(x)=ax^2+bx+c{/tex}\xa0{tex} \\therefore \\quad \\alpha + \\beta = - \\frac { b } { a } \\text { and } \\alpha \\beta = \\frac { c } { a }{/tex}Now,\t{tex}\\alpha^3 + \\beta ^3{/tex}\t= {tex}(\\alpha + \\beta )(\\alpha^2 -\\alpha\\beta + \\beta ^2){/tex}\t=\xa0{tex}(\\alpha + \\beta)( \\alpha^2+\\beta^2-\\alpha\\beta+2\\alpha\\beta-2\\alpha\\beta){/tex}\t=\xa0{tex} (\\alpha + \\beta)[(\\alpha + \\beta)^2-3\\alpha \\beta]{/tex}\t=\xa0{tex}(\\alpha + \\beta)^3-3\\alpha \\beta(\\alpha + \\beta){/tex}\t=\xa0{tex} \\frac { - b ^ { 3 } +3abc} { a ^ { 3 } }{/tex}\t{tex}=\\frac{-b^3+3abc}{a^3}{/tex}\xa0\t\t{tex} \\frac { 1 } { \\alpha ^ { 3 } } + \\frac { 1 } { \\beta ^ { 3 } } = \\frac { \\alpha ^ { 3 } + \\beta ^ { 3 } } { ( \\alpha \\beta ) ^ { 3 } }{/tex}\t{tex}=\\frac { (\\alpha + \\beta)( \\alpha^2+\\beta^2-\\alpha\\beta) } { ( \\alpha \\beta ) ^ { 3 } }{/tex}\t{tex}=\\frac { (\\alpha + \\beta)( \\alpha^2+\\beta^2-\\alpha\\beta+2\\alpha\\beta-2\\alpha\\beta) } { ( \\alpha \\beta ) ^ { 3 } }{/tex}\t{tex}=\\frac { (\\alpha + \\beta)[(\\alpha + \\beta)^2-3\\alpha \\beta] } { ( \\alpha \\beta ) ^ { 3 } }{/tex}\t{tex}=\\frac { [(\\alpha + \\beta)^3-3\\alpha \\beta(\\alpha + \\beta)] } { ( \\alpha \\beta ) ^ { 3 } }{/tex}\t{tex} = \\frac { \\frac { - b ^ { 3 } +3abc} { a ^ { 3 } } } { \\left( \\frac { c } { a } \\right) ^ { 3 } } {/tex}\t{tex}=\\frac{-b^3+3abc}{a^3}\\;\\times\\;\\frac{a^3}{c^3}{/tex}\t{tex}= \\frac { 3 a b c - b ^ { 3 } } { c ^ { 3 } }{/tex}\t
34603.

Express 280 in least common factor

Answer»
34604.

3x/2-5y/3=-2. ,X/3+y/2=13/6

Answer» The given system of equations may be written as{tex}9x -10y + 12 = 0{/tex} ...(i){tex}2x + 3y - 13 = 0{/tex}.... (ii)From (ii), we get\xa0{tex} y = \\frac { 13 - 2 x } { 3 }{/tex}Substituting\xa0{tex} y = \\frac { 13 - 2 x } { 3 }{/tex}\xa0in (i), we get{tex} 9 x - \\frac { 10 ( 13 - 2 x ) } { 3 } + 12 = 0{/tex}{tex} \\Rightarrow{/tex}\xa0{tex}27x - 10(13 - 2x) + 36 = 0{/tex}{tex} \\Rightarrow{/tex}\xa0{tex}27x -130 + 20x + 36 = 0{/tex}{tex} \\Rightarrow{/tex}\xa0{tex}47x - 94 = 0{/tex}{tex} \\Rightarrow{/tex}\xa0{tex}47x = 94{/tex}{tex} \\Rightarrow x = \\frac { 94 } { 47 } = 2{/tex}Substituting {tex}x = 2{/tex} in (i), we get9\xa0{tex} \\times{/tex} 2 - 10y + 12 = 0\xa0{tex} \\Rightarrow 10 y = 30 {/tex}{tex}\\Rightarrow y = \\frac { 30 } { 10 } = 3{/tex}Hence, x = 2 and y = 3 is the required solution.
34605.

Check if 3q divided by p and 2q are the zeroes of the polynomial px2 + (4p2 - 3q) x - 12pq

Answer»
34606.

The middle term splitting of 2 X square + 3x - 90 = 0

Answer» 2x^2 +3x - 90 =02x^2 +15x -12x - 90 =02x^2 - 12x +15x - 90 =02x(x-6) +15(x-6) =0(2x+15)(x-6) =0 so, x= -15/2 or x= 6
You solve solve it using any other method bcoz there are some equations which are difficult to be solved with middle splitting method.
34607.

Find the HCF of 56,96, and 324 by Euclid\'s algorithms

Answer» Euclid division lemma:-a=bq+r324 = 96(3) + 3696 = 36(2) + 2436 = 24(1) + 1224 = 12(2) + 0hcf of 324 and 96 is 12.Now find the hcf of 12 and 56,56 = 12(4) + 812 = 8(1) + 48 = 4(2)+0hcf of 12 and 56 is 4.Therefore, hcf of 56.96 and 324 is 4
4
34608.

Matrix A= [cos x -sinx and A**32 =[0 -1 sin x cosx]. 1 0] then x=?

Answer»
34609.

math board paper came from ncert book or from some where else???

Answer» Both from book and reference book..
34610.

Find largest four digit number which when divided 4 , 7, 13 leaves remainder 3 in each case

Answer» 367 Is the required number
34611.

Equal to -1 and B equal to 1 by 2

Answer» What kya nikalna h
To kay
34612.

A=-1,d=1÷2

Answer» To kya
34613.

Proof of BPT theorem?

Answer» Given :\xa0In {tex}\\triangle A B C{/tex}, DE || BC and intersects AB in D and AC in E.\xa0Prove that :\xa0{tex}\\frac{AD}{DB} = \\frac{AE}{EC}{/tex}Construction:\xa0Join BC, CD and draw EF {tex}\\perp{/tex} BA and DG {tex}\\perp{/tex} CA. Now from the given figure we have,EF {tex}\\perp{/tex} BA (Construction)EF is the height of ∆ADE and ∆DBE (Definition of perpendicular)Area({tex}\\triangle{/tex}ADE) ={tex}\\frac{AD.EF}{2}{/tex} .....(1)Area({tex}\\triangle{/tex}DBE) = {tex}\\frac{DB.EF}{2}{/tex} ....(2)Divide the two equations we have{tex}\\frac{Area \\triangle ADE}{Area \\triangle DBE} = \\frac{AD}{DB}{/tex} .....(3){tex}\\frac{Area \\triangle ADE}{Area \\triangle DEC} = \\frac{AE}{EC}{/tex} .....(4)Therefore, {tex}\\triangle \\mathrm{DBE} \\sim \\triangle \\mathrm{DEC}{/tex} (Both the ∆s are on the same base and\xa0between the same || lines).....(5)Area({tex}\\triangle{/tex}DBE) = Area({tex}\\triangle{/tex}DEC) (If the two triangles are similar their\xa0areas are equal){tex}\\frac{AD}{DB} = \\frac{AE}{EC}{/tex}\xa0[from equation 3,4 and 5]Hence proved.
34614.

Kx+y=ksquare and x+ky=1 have infinitely many solutions

Answer» {tex}k x + y = k ^ { 2 } \\text { and } x + k y = 1{/tex}{tex}a_1 = k , b_1 = 1, c_1= k^2{/tex}and {tex}a_2 = 1, b_2 = k , c_2 = 1{/tex}{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { k } { 1 } , \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { 1 } { k } , \\frac { c _ { 1 } } { c _ { 2 } } = \\frac { k ^ { 2 } } { 1 }{/tex}For infinitely many solution{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { c _ { 1 } } { c _ { 2 } }{/tex}{tex}\\frac { k } { 1 } = \\frac { 1 } { k } = \\frac { k ^ { 2 } } { 1 } {/tex}{tex}\\frac { k } { 1 } = \\frac { 1 } { k }{/tex}{tex} k ^ { 2 } = 1{/tex}{tex}k = \\pm 1{/tex}
34615.

Euclid

Answer» Great mathematician ?
34616.

If a and b are two prime numbers then find hcf(a,b).

Answer» 1
34617.

√cosecx+1/cosecx-1=cosx/1-sinx=cotx/cosecx-1

Answer»
34618.

What is the HCF of Smallest prime number and smallest composite number

Answer» Prime number is 2Composite number is 1
Answer is 2 because smallest prime number is 2 and smallest composite number is 4 .
Smallest prime number = 2Smallest composite number = 4Factors of 2 are 1 and 2Factors of 4 are 1, 2 and 4Highest common factor (HCF) = 2
1
2
29
34619.

What is geomitry

Answer» Geometry is the\xa0branch of mathematics concerned with the properties and relations of points, lines, surfaces, solids, and higher dimensional analogues.
230-220×(0.5)=?
34620.

What is meant by a prime and Real number

Answer» Real numbers means in which the number is divided by 1and itself
prime nos are nos which comes in 1 and its own table
34621.

IF A(5,2) B(2,-2) and C(-2,t) are the vertices of a rightangled triangle with

Answer» we are given that A (5, 2), B (2, - 2) and C (-2, t) are the vertices of a right-angled triangle with {tex}\\angle B{/tex} = 90°.AB2 = ( 2 - 5)2 + ( - 2 - 2)2 =9 + 16 = 25BC2 = (- 2 - 2)2 + (t + 2)2 = 16 + (t + 2)2AC2 = (5 + 2)2\xa0+ (2 - t)2 = 49 + (2 - t)2Since {tex}\\triangle{/tex}ABC is a right angled triangle{tex}\\therefore{/tex}\xa0AC2 = AB2 + BC2or, 49 + (2 - t)2 = 25 + 16 + (t + 2)2or, 49 + 4 - 4t + t2 = 41 + t2\xa0+ 4t + 4or, 53 - 4t = 45 + 4tor, 8t = 8{tex}\\therefore{/tex}\xa0t =1
34622.

if the point p(x,y) is equidistant from the point A(a+b,b-a) and B(a-b,a+b) prove that bx=ay

Answer» |PQ| = |PR{tex}\\begin{aligned} \\sqrt { [ x - ( a + b ) ] ^ { 2 } + [ y - ( b - a ) ] ^ { 2 } } = \\sqrt { [ x - ( a - b ) ] ^ { 2 } + [ y - ( b + a ) ] ^ { 2 } } \\end{aligned}{/tex}Squaring, we get[x - (a + b)]2 + [y - (b\xa0- a)]2\xa0= [x - (a - b)]2 + [y - (a + b)]2or, [x - (a + b)]2 - [x - a + b]2\xa0= (y - a - b)2 - (y - b + a)2or, (x - a - b + x - a + b) ( x - a - b - x + a - b)= (y - a - b + y - b + a)(y - a - b - y + b - a)or, (2x - 2a) (- 2b) = (2y - 2b) (- 2a)or, (x - a)b = (y - b)aor, bx = ay.Hence Proved.
34623.

Tan 48 ÷ cot 64

Answer» Illogical
34624.

HCF of smallest composite number and smallest prime number.

Answer» 2
2 bcoz smallest composite no. Is 4 and smallest prime no. Is2
1
34625.

What are the projects for AP???

Answer»
34626.

Prove that 2 root 3 -1 is an irrational number

Answer» Let us assume that {tex}2\\sqrt 3 - 1{/tex}\xa0is a rational.\xa0numberThen, there exist positive co-primes a and b such that{tex}2\\sqrt 3 - 1 = \\frac{a}{b}{/tex}{tex}2\\sqrt 3 = \\frac{a}{b} + 1{/tex}{tex}\\begin{array}{l}2\\sqrt3=\\frac{\\mathrm a+\\mathrm b}{\\mathrm b}\\\\\\end{array}{/tex}{tex}\\sqrt 3 = \\frac{{a + b}}{{2b}}{/tex}Here\xa0{tex}\\begin{array}{l}\\frac{\\mathrm a+\\mathrm b}{\\mathrm b}\\\\\\end{array}{/tex}\xa0is a rational number ,so {tex}\\sqrt3{/tex}\xa0is a rational numberThis contradicts the fact that {tex}\\sqrt 3{/tex}\xa0is an irrational numberHence {tex}2\\sqrt 3 - 1{/tex}\xa0is irrational
34627.

Find the quadratic equation by factorisation of 2 x square minus x + 1 by 8 is equal to zero

Answer»
34628.

Find quadratic equations by factorisation of2x-x1/8=0

Answer»
34629.

tan A- 2 cos A tan A +2cos A-1=0, then find the value of A .

Answer»
34630.

∆ABC~∆DEF, If DE = 2AB and BC= 3cm then EF is equal to

Answer» Given that\xa0{tex}\\triangle{/tex}ABC ~ {tex}\\triangle{/tex}DEFWe know that when two triangles are similar, then the ratios of the lengths of their corresponding sides are equal.\xa0{tex}\\Rightarrow \\frac { A B } { D E } = \\frac { B C } { E F }{/tex}{tex}\\Rightarrow \\frac { 1 } { 2 } = \\frac { 3 } { E F }{/tex}{tex}\\Rightarrow{/tex}\xa0EF = {tex}\\frac 32{/tex} cm
34631.

2 (ax-by)+(a+4b)=02(bx+ay)+(b-4a)=0This is question of pair of linear equation in two variable...

Answer» I have done..
Thnx for suggestion...
Bracket open krke subtract n sumplify....
34632.

Check whether 14n can end with the digit zero for any natural number n. Explain

Answer» No 14n cannot be end with digit 0 becoz it does not have 5 in its prime factors.
34633.

9x2-9(p+q)x+(2p2+5pq+2q2)solve this for x

Answer» Given{tex}9 x ^ { 2 } - 9 ( a + b ) x + 2 a ^ { 2 } + 5 a b + 2 b ^ { 2 } = 0{/tex}Now,\xa0{tex}2 a ^ { 2 } + 5 a b + 2 b ^ { 2 } = 2 a ^ { 2 } + 4 a b + a b + 2 b ^ { 2 }{/tex}{tex}= 2 a [ a + 2 b ] + b [ a + 2 b ]{/tex}= (a + 2b) (2a + b)Hence the given equation becomes,{tex}9 x ^ { 2 } - 9 ( a + b ) x + ( a + 2 b ) ( 2 a + b ) = 0{/tex}or,\xa0{tex}9 x ^ { 2 } - 3 [ 3 a + 3 b ] x + ( a + 2 b ) ( 2 a + b ) = 0{/tex}{tex}9x^2-3(a+2b)x-3(2a+b)x+(a+2b)(2a+b)=0{/tex}{tex}3x[3x-(a+2b)]-(2a+b)[3x-(a+2b)]=0{/tex}or,\xa0{tex}[ 3 x - ( a + 2 b ) ] [ 3 x - ( 2 a + b ) ] = 0{/tex}{tex}\\Rightarrow\\ either\\ 3x=a+2b\\ or\\ 3x=2a+b{/tex}{tex}\\Rightarrow\\ either\\ x=\\frac{a+2b}{3}\\ or\\ x=\\frac{2a+b}{3}{/tex}Hence, the roots =\xa0{tex}\\frac { a + 2 b } { 3 } , \\frac { 2 a + b } { 3 }{/tex}
34634.

Comparment paper 2019

Answer» Tumhe dena hai kya compartment
34635.

P(x)=x²-2x-8 splitting middle term

Answer» P(x) = x² - 2x - 8 = x² - 4x + 2x - 8 = x(x - 4) + 2(x - 4) = (x - 4) (x - 2)
P(x) = x² - 2x - 8= x2 - 4x + 2x - 8= x(x - 4) + 2 ( x - 4)= (x - 4) ( x + 2)
34636.

x-y=8. 3x-3y=16 by table method

Answer» x - y = 8.................(1)3 x - 3 y = 16.............(2)Here,\xa0{tex}a _ { 1 } = 1 , b _ { 1 } = - 1 , c _ { 1 } = - 8{/tex}{tex}a _ { 2 } = 3 , b _ { 2 } = - 3 , c _ { 2 } = - 16{/tex}We see that\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } \\neq \\frac { c _ { 1 } } { c _ { 2 } }{/tex}Hence, the lines represented by the equations(1) and (2) are parallel.Therefore, equations (1) and ( 2 ) have no solution, i.e., the given pair of linear equation is inconsistent.
34637.

How the pi value is calculated?

Answer» The circumference of a circle is found with the formulaC= π*d = 2*π*rThus pi equals a circle\'s circumference divided by its diameter.
\t03-3-20-4\tx - 6 = 0{tex}\\Rightarrow{/tex}\xa0x = 6Plotting the points on graph, we getthe unique solution is x = 6, y = 2.
34638.

2x_3y=6

Answer» According to question given equation is{tex}2x - 3y = 6{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}-3y = 6 - 2x{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}3y = 2x - 6{/tex}{tex}\\Rightarrow{/tex}\xa0y =\xa0{tex}\\frac{2x - 6}{3}{/tex}The solution table of the equation {tex}2x - 3y = 6{/tex} is\xa0 x y
34639.

a2x2_3abx+2b2

Answer»
34640.

2-(-6+3) =?

Answer» 5
5 is correct answer
2-(-6+3)= 2 - (-3)= 2 + 3= 5
5
Sorry its 5 not 55 typed by mistake
55
5
34641.

1/7x+1/6y=3 and 1/2x-1/3y=5

Answer» Please solve this
X=1/14 and Y=1/6
34642.

Is 2√x+5(√x)ka whole cube a polynomial?Give reason

Answer»
34643.

Easy way how to square numbers

Answer»
34644.

What is cross multiplication

Answer» The below equation is solved by cross multiplication method:Given 5x + 4y - 4 = 0 .........(i)x - 12y - 20 = 0 ........(ii)Here, a\u200b\u200b\u200b\u200b\u200b\u200b1\u200b = 5, b1\u200b\u200b\u200b\u200b\u200b= 4, c\u200b\u200b\u200b1=\xa0-4a\u200b\u200b\u200b\u200b\u200b\u200b2\u200b= 1, b\u200b\u200b\u200b\u200b\u200b\u200b2\xa0= - 12, c\u200b\u200b2\xa0= - 40By cross-multiplication method,{tex}\\frac { x } { b _ { 2 } c _ { 1 } - b _ { 1 } c _ { 2 } } = \\frac { y } { c _ { 1 } a _ { 2 } - c _ { 2 } a _ { 1 } } = \\frac { 1 } { a _ { 1 } b _ { 2 } - a _ { 2 } b _ { 1 } }{/tex}{tex}\\frac { x } { - 80 - 48 } = \\frac { y } { - 4 + 100 } = \\frac { 1 } { - 60 - 4 }{/tex}{tex}\\frac { x } { - 128 } = \\frac { y } { 96 } = \\frac { 1 } { 64 }{/tex}{tex}\\frac { x } { - 128 } = \\frac { 1 } { - 64 } \\text { and } \\frac { y } { 96 } = \\frac { 1 } { - 64 }{/tex}Hence,\xa0{tex}x = 2 \\text { and } y = \\frac { - 3 } { 2 }{/tex}
34645.

What number squared= 12345678987654321?

Answer» ☒⛝
??
No.thanks.....no sorry..........
Right answer bestie....thnx?
111111111
34646.

A man sold a chair and a table together for rs1520 thereby making a profit of 25 percent

Answer» He makes a profit of rs 304
34647.

135and225 find the HCF

Answer» 135)225(1 - 135 ----------- 90)135(1 - 90 -------- 45)90(2 - 90 --------- 0 ---------: hcf of 135 and 225 is 45
135 and 225Since 225 > 135, we apply the division lemma to 225 and 135 to obtain225 = 135 × 1 + 90Since remainder 90 ≠ 0, we apply the division lemma to 135 and 90 to obtain135 = 90 × 1 + 45We consider the new divisor 90 and new remainder 45, and apply the division lemma to obtain90 = 2 × 45 + 0Since the remainder is zero, the process stops.Since the divisor at this stage is 45,Therefore, the HCF of 135 and 225 is 45.
34648.

route 3 sin x is equal to cos x

Answer» {tex}\\sqrt 3{/tex} sin x = cos xsin x / cos x = 1 / {tex}\\sqrt 3{/tex}tan x = 1/{tex}\\sqrt 3{/tex}tan 30 = 1 /{tex}\\sqrt 3{/tex}Hence x = 30
Cot is equal to 30
34649.

Cos 90 - sin 90

Answer» 0 - 1 = -1
34650.

(A+b )2

Answer» (a+b)²=a²+b²+2ab
a2+b2+2ab.
a2 + 2ab + b2