Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

3451.

EValuate sin^2 5 + sin^2 10 +................ sin^2 85 +cos^2 45

Answer» 8 +√2
3452.

I love ?❤️❤️❤️❤️

Answer» Bakwas band kar nahi to CBSE ko complain doonga
3453.

I have one question

Answer» ???
3454.

if 9+17+25+....+x=450,then find value of x

Answer» 90
3455.

If p (y)=y6-3y4×2y2+6 and q (y)=y5-y3+2y2+y-6 then find p (y)+q(y) and p (y)-q (y)

Answer»
3456.

What is x+x

Answer» 2x
2x
3457.

Find the sum of first twelve terms of AP: 1, 6, 11, 16, 21,.........................101.

Answer» 342
162
3458.

Find middle term of AP 6,13,20............ 216

Answer» 111
3459.

Prove that 5+√2 is irrational number

Answer» But I take a test of cbse they gives a answer or not
I know
bro its too easy
Muje bhi and ata me dhek ra hu KO cbse wale bhejte he Kya nai
So easy
Bheje answer fir
3460.

If the mode of data 3,5,8,9,8,12,7,12 and x is 8,find the value of x.

Answer»
3461.

Show that points(a,b+c),(b,C+a) and (c,a+b) are collinear

Answer» Use the formula of area of triangle. It will come out 0 so it is collinear
3462.

Evluate⅔cosec²58°-⅔cot²58°tan32°-5/3tan13° tan37°tan45° tan53°tan77°

Answer» 1
3463.

In figure angleBAC=90degree show DE square=BD intoEC

Answer» Given: {tex}\\triangle {/tex}ABC is right-angled at A and DEFG is a squareTo Prove: DE2 = BD {tex} \\times{/tex} ECProof: Let {tex}\\angle{/tex} C = x ........(i)Then, {tex}\\angle{/tex} ABC = 90o - x[ {tex}\\because {/tex} ABC is right angled]Also {tex}\\triangle {/tex} BDG is right-angled at D.{tex}\\angle{/tex}BGD = 90o - (90o - x) = x ..............(ii)From (i) and (ii), we get{tex}\\angle{/tex}BGD = {tex}\\angle{/tex}C.............(iii)Consider {tex}\\triangle {/tex} BGD and {tex}\\triangle {/tex} CEF{tex}\\angle{/tex}CEF = {tex}\\angle{/tex}BDG = 90o [ {tex}\\because {/tex}DEFG is square]{tex}\\angle{/tex}BGD = {tex}\\angle{/tex}C [From (iii)]{tex}\\therefore {/tex}{tex}\\triangle {/tex}BGD {tex}\\cong{/tex}{tex}\\triangle {/tex}FEC [By AA similarity]{tex}\\therefore {/tex}{tex}\\frac{{BD}}{{EF}} = \\frac{{DG}}{{EC}}{/tex}{tex}\\Rightarrow {/tex} EF{tex} \\times{/tex} DG = BD {tex} \\times{/tex} ECBut EF = DG {tex} \\times{/tex} DE [ {tex}\\because {/tex} side of a square]{tex}\\Rightarrow {/tex} DE {tex} \\times{/tex} DE = BD {tex} \\times{/tex} EC{tex}\\Rightarrow {/tex} DE2 = BD {tex} \\times{/tex} EC
3464.

Find the value of sin(45°+ x)- cos(45°- x)

Answer» {tex}sin (45^o +{/tex}\xa0x{tex}) - cos (45^o -{/tex}\xa0x){tex}= sin 45^o cos{/tex}\xa0x\xa0{tex}+ cos 45^o sin{/tex}\xa0x\xa0{tex}- [cos 45^o cos{/tex}\xa0x\xa0{tex}+ sin 45^o sin{/tex}\xa0x][{tex}\\because{/tex}\xa0sin ( A + B ) = sin A cos B + cos A sin B and cos ( A - B ) = cos A cos B + sin A sin B ]=\xa0{tex}\\frac { 1 } { \\sqrt { 2 } } \\cos \\theta + \\frac { 1 } { \\sqrt { 2 } } \\sin \\theta - \\left[ \\frac { 1 } { \\sqrt { 2 } } \\cos \\theta + \\frac { 1 } { \\sqrt { 2 } } \\sin \\theta \\right]{/tex}= 0
3465.

why the value of pi is 22/7?

Answer» Yes3.14 and 22/7
3466.

Q: If the mean of the following data is 20.6. Find the value of p.x: 10 15 p 25 35 f: 3 10 25 7 5

Answer» p= 20
3467.

CotA-CosA/CotA+CosA=CosecA-1/CosecA+1

Answer»
3468.

Can we get some discount on solved test paper of math

Answer» You are buying it from amazon?
Yes 70 percent
I think no but you can check I don\'t know much about it.
3469.

If ∆ABC is similar to ∆DEF, if AB= 4cm....

Answer»
3470.

How many diagonals in triangle

Answer»
3471.

Hlo..Everyone..

Answer»
3472.

TSA of cuboid

Answer» The total surface area of a cuboid is given by the formula SA = 2lh + 2wh + 2lw where l = length, w = width, and h = height.
3473.

Hii friends kaise ho sab

Answer» Badeya
3474.

How to find a width of rectangle whose length is 2m and the area is 4m

Answer» Area= lb4=2bB=2
3475.

Euclid Formula

Answer» Dividend =(divisor × quotient) + remainder
3476.

RIMSHA PLZZ COME YRTR

Answer»
3477.

Without using t tables find the value ofCos70/sin20+ cos57#cosec33_2cos60

Answer»
3478.

Solve the equation -4+(-1)+2+....+x = 437

Answer» (-4) + (-1) + 2 + 5 + ---- + x = 437.Now,-1 - (-4) = -1 + 4 = 32 - (-1) = 2 +\xa01 = 35 - 2 = 3Thus, this forms an A.P. with a = -4, d = 3,l = xLet their be n terms in this A.P.Then,Sn\xa0=\xa0{tex}\\frac { n } { 2 } [ 2 a + ( n - 1 ) d ] {/tex}{tex}\\Rightarrow 437 = \\frac { n } { 2 } [ 2 \\times ( - 4 ) + ( n - 1 ) \\times 3 ]{/tex}{tex}\\Rightarrow{/tex}\xa0874 = n[-8 + 3n - 3]{tex}\\Rightarrow{/tex}874 = n[3n - 11]{tex}\\Rightarrow{/tex}874 = 3n2\xa0- 11n{tex}\\Rightarrow{/tex}3n2\xa0- 11n - 874 = 0{tex}\\Rightarrow{/tex}3n2\xa0- 57n + 46n - 874 = 0{tex}\\Rightarrow{/tex}3n(n - 19) + 46(n - 19) = 0{tex}\\Rightarrow{/tex}3n + 46 = 0 or n = 19{tex}\\Rightarrow n = - \\frac { 46 } { 3 }{/tex}\xa0or n\xa0= 19Numbers of terms cannot be negative or fraction.{tex}\\Rightarrow{/tex}\xa0n = 19Now, Sn\xa0=\xa0{tex}\\frac { n } { 2 } [ a + l ]{/tex}{tex}\\Rightarrow 437 = \\frac { 19 } { 2 } [ - 4 + x ]{/tex}{tex}\\Rightarrow - 4 + x = \\frac { 437 \\times 2 } { 19 }{/tex}{tex}\\Rightarrow - 4 + x = 46{/tex}{tex}\\Rightarrow x = 50{/tex}
3479.

RIMSHA. ...........

Answer»
3480.

3 sinA + 5 cosA = 5 prove that 5 sinA - 3 cosA = 3

Answer»
3481.

Find the roots of quadratic equation 9xsquare - 9(a+b)x +(2asquare +5ab +2bsquare)

Answer» D = b2 - 4ac{tex}= ( - 9 ( a + b ) ) ^ { 2 } - 4 \\times 9 \\times \\left( 2 a ^ { 2 } + 5 a b + 2 a b ^ { 2 } \\right){/tex}= 81(a + b)2 - 36(2a2 + 5ab + 2b2)= 9[9(a2 + b2 + 2ab - 8a2 - 20ab - 8b2)]= 9[a2 + b2 - 2ab]= 9(a - b)2{tex}x = \\frac { - b \\pm \\sqrt { D } } { 2 a } = \\frac { 9 ( a + b ) \\pm \\sqrt { 9 ( a - b ) ^ { 2 } } } { 2 \\times 9 }{/tex}{tex}{ \\Rightarrow x = 3 \\frac { [ 3 ( a + b ) \\pm ( a - b ) ] } { 2 \\times 9 } }{/tex}{tex}{ \\Rightarrow x = \\frac { ( 3 a + 3 b ) \\pm ( a - b ) } { 6 } }{/tex}{tex}\\Rightarrow x = \\frac { 3 a + 3 b + a - b } { 6 } \\text { or } x = \\frac { 3 a + 3 b - a + b } { 6 }{/tex}{tex}\\Rightarrow x = \\frac { 4 a + 2 b } { 6 } \\text { or } x = \\frac { 2 a + 4 b } { 6 }{/tex}{tex}\\Rightarrow x = \\frac { 2 a + b } { 3 } \\text { or } x = \\frac { a + 2 b } { 3 }{/tex}
3482.

Angle of 170\'

Answer»
3483.

In a Deck of cards find the probability of a spade or a red card

Answer» Spade 13/52 , red card 26/52
13 / 52
3484.

Show that the reciprocal of an irrational no. Is irrational ?

Answer» let x be irrational and 1/x be rational then 1/x=a/b where a and b are integer where (a)not = 0 and (B) not= 0 Now x= 1/1/x =1/a/b = b/a where a and b are integer not = 0 , hence x is rational but this is contradiction becoz x is irrational so, 1/x is irrational ☺ hope it\'s helpful. ..
3485.

Formula of frustum

Answer» Frustum ka kya ??
3486.

Find the coordinates of the point on y -axis which is nearest to the point (-2,5).

Answer» The point on y-axis that is nearest to the point(-2,5) is (0,5).
3487.

When the date sheet will be announced

Answer»
3488.

pythogorus thearome

Answer» (H)^2=(P)^2 + (B)^2
3489.

2x +3y =8

Answer» On a graph paper, draw a horizontal line X\'OX and a vertical line YOY\' as the x-axis and the y-axis respectively.Graph of {tex}2x + 3y = 8{/tex}{tex}2x + 3y = 8{/tex}{tex}\\Rightarrow{/tex}\xa0y = {tex}\\frac{8 - 2x}{3}{/tex}. ...(i)Thus, we have the following table for {tex}2x + 3y = 8{/tex}\tx{tex}1{/tex}{tex}-5{/tex}{tex}7{/tex}y{tex}2{/tex}{tex}6{/tex}{tex}-2{/tex}\tNow, plot the points{tex} A (1, 2), B(-5, 6)\\ and\\ C(7, -2){/tex} on the graph paper.Join AB and AC to get the graph line BC.Thus, the line AC is the graph of the equation {tex}2x + 3y = 8{/tex}.Graph of {tex}x - 2y + 3 = 0{/tex}{tex}x - 2y + 3 = 0{/tex}{tex}\\Rightarrow y = \\frac { x +3 } {2 }{/tex}........(ii)Thus, we have the following table for {tex}x - 2y + 3 = 0\xa0{/tex}\tx{tex}1{/tex}{tex}3{/tex}{tex}-3{/tex}y{tex}2{/tex}{tex}3{/tex}{tex}0{/tex}\tNow, plot the points {tex}P(3,3)\\ and\\ Q (-3, 0){/tex} on the same graph paper.The point {tex}A(1,2){/tex} has already been plotted.Join PA\xa0and QA\xa0to obtain the line PQ.Thus, the line PQ is the graph of the equation {tex}x - 2y + 3 = 0{/tex}Two graphs lines intersect at the point {tex}A(1,2){/tex}{tex}\\therefore{/tex}\xa0{tex}x = 1, y = 2{/tex}\xa0is the solution of the given system of equations.
3490.

The Nth term of an AP is 6m+2 find the common different

Answer» t1 = 6(1)+2 = 6+2=8 t2 = 6(2)+2=12+2 =14 !! d = t2-t1 = 14-8=6
3491.

Prove that a parallelogram circumscribing a circle is a rhombus

Answer» Given ABCD is a parallelogram in which all the sides touch a given circleTo prove:- ABCD is a rhombusProof:-{tex}\\because{/tex}\xa0ABCD is a parallelogram{tex}\\therefore{/tex}\xa0AB = DC and AD = BCAgain AP, AQ are tangents to the circle from the point A{tex}\\therefore{/tex}\xa0AP = AQSimilarly, BR = BQCR = CSDP = DS{tex}\\therefore{/tex}(AP + DP) + (BR + CR) = AQ + DS + BQ + CS = (AQ + BQ) + (CS + DS){tex}\\Rightarrow{/tex}\xa0AD + BC = AB + DC{tex}\\Rightarrow{/tex}\xa0BC + BC = AB + AB [{tex}\\because{/tex} AB = DC, AD = BC]{tex}\\Rightarrow{/tex}\xa02BC = 2AB{tex}\\Rightarrow{/tex}\xa0BC = ABHence, parallelogram ABCD is a rhombus
3492.

No one is speaking to me

Answer» Whatever
3493.

Draw a circle of radius 4cm.draw a diameter POQ.through p or q draw tangent to the circle

Answer» Steps of construction:\tDraw a circle of radius 4 cm.\tDraw diameter POQ.\tConstruct.\xa0{tex}\\angle PQT = 90^\\circ {/tex}\tProduce PQ to T\', then TQT\' is the required tangent at the point Q.
3494.

What is the exams date?

Answer»
3495.

Area of square

Answer» Side ×side
Side ×side
Side*side
3496.

If the numbers n - 2, 4n - 1 and 5n + 2 are in AP, find the value of n.

Answer»
3497.

Sin2A+Cos2A=1.Proved that.

Answer»
3498.

If the m term of AP is 1/n and n term 1/m than show that it\'s mn term=1

Answer» Let a and d be the first term and common difference respectively of the given A.P. Thenan = a + (n - 1)d{tex}\\frac { 1 } { n } ={/tex}\xa0mth term\xa0{tex}\\Rightarrow \\frac { 1 } { n } {/tex}= a + ( m - 1 ) d\xa0...(i){tex}\\frac { 1 } { m }{/tex}= nth term{tex}\\Rightarrow \\frac { 1 } { m } {/tex}= a + ( n - 1 ) d\xa0...(ii)On subtracting equation (ii) from equation (i), we get{tex}\\frac { 1 } { n } - \\frac { 1 } { m } = {/tex} [a+ (m-1) d] -[ a+ (n -1)d]= a + md - d - a - nd + d{tex}= ( m - n ) d{/tex}{tex} \\Rightarrow \\frac { m - n } { m n } = ( m - n ) d {/tex}{tex}\\Rightarrow d = \\frac { 1 } { m n }{/tex}Putting d = {tex}\\frac { 1 } { m n }{/tex}\xa0in equation (i), we get{tex}\\frac { 1 } { n } = a + \\frac { ( m - 1 ) } { m n } {/tex}{tex}\\Rightarrow \\frac { 1 } { n } = a + \\frac { 1 } { n } - \\frac { 1 } { m n } {/tex}{tex}\\Rightarrow a = \\frac { 1 } { m n }{/tex}{tex}\\therefore{/tex}\xa0(mn)th term = a + (mn - 1) d=\xa0{tex}\\frac { 1 } { m n } + ( m n - 1 ) \\frac { 1 } { m n } {/tex}{tex}\\left[ \\because a = \\frac { 1 } { m n } = d \\right]{/tex}= {tex}\\frac { 1 } { m n } + \\frac { mn } { m n } - \\frac { 1 } { m n }{/tex}= 1
3499.

Explain why 1323334356715 is a composite number

Answer» {tex}13233343563715=5\\times11\\times73\\times10139\\times325079{/tex}.This number is having factors other than 1 and the number itself,therefore it is a composite number.
3500.

What is alternative angle in a segment of a circle?

Answer»