Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

35551.

Traingle a=12\'b=34;c=45,m/

Answer» Maths ispe nhi ho skti
35552.

I have problem to ch - Triangle plzz help me

Answer» Bhai aise kaise help karo
35553.

2 7 12.......... 10an=?

Answer» a=2d=5n=10an=?an=a+(n-1)dan=2+(10-1)5an=2+45an=47
35554.

6th class math book

Answer» To problem kya hai
35555.

The area of a square field is 6050m2 .The length of its diagonal is

Answer» February...2nd weak...
Febuary 20 approx
Febuary ke ...1 ya 2 nd weak mw start hjayege....
Kisi ko pta hai kya board exam kab hoga February ya march se?
35556.

1/2*22/7*7*7=187 how????

Answer» πr²/2 (area of semi circle)
35557.

5x-6=0+2+1=1x

Answer»
35558.

1 and 1

Answer» Gud sgun...??
11??
35559.

Solve x and y 217x+113y=973113x+217y=887

Answer» Fhkvzuvxg
35560.

Showthat one and only one out of n,n+2 ,n+4 is divisible by 3 where n is any positive integer

Answer» Bhak
35561.

5x(3_2)

Answer» 5x
5x
35562.

If two zeroes of polynomials are 2,3 and the polynomials are 3x3-4x+3 find the one zero

Answer» _1/6
Hzbuss
35563.

For some integers m, every even integer is of the form:-(i) m (ii) m+1 (iii) 2m (iv) 2m+1

Answer» 1
35564.

Easiest way to find trigonometric identities

Answer»
35565.

Can it can be prove that 5=0

Answer» Yes, by multiplying to both side with zero a
5×0 =0Simple
No
35566.

2+75312

Answer» 75314
35567.

x¹+x²+x³+x⁴+.........x¹°° is a polynomial or notGive reason

Answer»
35568.

Prive that: tan /(1+ tan^2)^2 +cot/(1+cot^2)^2 =sin×cos

Answer» LHS\xa0{tex}=\\frac{\\tan A}{\\left(1+\\tan ^{2} A\\right)^{2}}+\\frac{\\cot A}{\\left(1+\\cot ^{2} A\\right)^{2}}{/tex}{tex}=\\frac{\\tan A}{\\left(\\sec ^{2} A\\right)^{2}}+\\frac{\\cot A}{\\left(\\ cosec ^{2} A\\right)^{2}}{/tex}{tex}=\\frac{\\sin A}{\\cos A}{/tex}\xa0. cos4\xa0A\xa0{tex}+\\frac{\\cos A}{\\sin A}{/tex}\xa0.\xa0sin4\xa0A= sin A cos3\xa0A + cos A sin3\xa0A= cos A sin A (cos2\xa0A + sin2\xa0A)= sin A cos A = RHS\xa0
35569.

Sin 90=

Answer» 1 obviously
1 LOL
1
Ncert mai clearly diya hai dude!
1
35570.

sin-cos+1÷sin+cos-1=1÷sec-tan

Answer» We have to prove that,{tex}\\frac{{\\sin \\theta - \\cos \\theta + 1}}{{\\sin \\theta + \\cos \\theta - 1}} = \\frac{1}{{\\sec \\theta - \\tan \\theta }}{/tex} using identity\xa0{tex}sec^2\\theta=1+tan^2\\theta{/tex}LHS = {tex}\\frac{{\\sin \\theta - \\cos \\theta + 1}}{{\\sin \\theta + \\cos \\theta - 1}} {/tex}{tex} = \\frac{{\\tan \\theta - 1 + \\sec \\theta }}{{\\tan \\theta + 1 - \\sec \\theta }}{/tex} [ dividing the numerator and denominator by {tex}\\cos{\\theta}{/tex}.]{tex} = \\frac{{(\\tan \\theta + \\sec \\theta)-1 }}{{(\\tan \\theta - \\sec \\theta )+1}}{/tex}{tex}=\\frac{\\{{(\\tan\\theta+\\sec\\theta)-1\\}}(tan\\theta-\\sec\\theta)}{\\{{(\\tan\\theta-\\sec\\theta)+1\\}}(\\tan\\theta-\\sec\\theta)}{/tex} [ Multiplying and dividing by {tex}(\\tan{\\theta}-\\sec{\\theta}){/tex}]{tex}=\\frac{{(\\tan^2\\theta-\\sec^2\\theta)-}(tan\\theta-\\sec\\theta)}{\\{{(\\tan\\theta-\\sec\\theta)+1\\}}(\\tan\\theta-\\sec\\theta)}{/tex} [{tex}\\because (a-b)(a+b)=a^2-b^2{/tex}]{tex} = \\frac{{-1-\\tan \\theta + \\sec \\theta }}{{(\\tan \\theta - \\sec \\theta+1)(\\tan{\\theta}-\\sec{\\theta}) }}{/tex}[{tex}\\because \\tan^2\\theta-\\sec^2\\theta=-1{/tex}]{tex}=\\frac{-(\\tan\\theta-\\sec\\theta+1)}{(\\tan\\theta-\\sec\\theta+1)(\\tan\\theta-\\sec\\theta)}{/tex}{tex}=\\frac{-1}{\\tan{\\theta}-\\sec{\\theta}}{/tex}{tex} = \\frac{1}{{\\sec \\theta - \\tan \\theta }}{/tex}=RHSHence Proved.
35571.

What is the value of alpha minus beta

Answer» √b²-4ac/a
35572.

Write the quadratic polynomial whose roots are 2 and -3

Answer» Roots of polynomial are 2 and -3 . So we get the sum of roots = -1 and product of roots =-6. So polynomial is x²+1x-6.
35573.

Sides of the similar triangle 4cm and 9cm are in the ratio of?

Answer» 2/3
35574.

Find the value of -8-(10) using no. Line

Answer» - 18
35575.

Can anybody tell me that what is da difference between a tangent to a circle and a secant

Answer» Tanget touch at a single point whereas secant touch at two points....
Tangent touches only one point of the perimeter of cirle (eg football on the ground ) and secant touches two points of the perimeter of circle....
Tangent touch at only one point but secant at two point
35576.

2:3

Answer» 2/3
It means 2/3
What is the question ? Clarify your question .
35577.

Prove that 6-root3 is irrational.

Answer» Yes
Let 6√3 be a rational number , so it can be written in the form of a/b where b≠0 and a and b are co prime numbers ......... .......... 6√3=a/b .. now √3 = a/b-6 , as we know that √3 is an irrational number , therefore our assumption is wrong. Hence due to contradiction 6√3 is an irrational number .hence proved .
35578.

For what value of k the quadratic equation x^2 -2(k+1)x+k^2=0 has real and equal roots

Answer»
35579.

What is the total surface area of the frustum?

Answer» πl(R ➕ r) ➕πR^2 ➕πr^2
35580.

X =3 is one root of quadratic x² -2kn-6=0 find the value of k

Answer» x2-2kn-6=0(3)2-2k(3)-6=09-6k-6=03-6k=0-6k=3K=-3/6=-1/2
x2 - 2kx - 6 = 0(3)2 - 2k(3) - 6 = 09 - 6k - 6 = 0-6k - 3 = 0- 6k = 3k = 3/-6k = -1/2
Put x=3 and solve
35581.

Cosec = 5/3 evaluate 4sec - 2tan + 5 sin .÷ 20 cosec - 3 cosec + 9 cot

Answer» Ans of the question is 13/49
35582.

What is meant by concentric circles?

Answer» Many circles having same radii
A circle inscribed in an same circle is known as concentric circle
35583.

Find the HCFof of 65 & 117 and express it in the form 65m+117n

Answer» First find the HCF of 65 and 117 by Using Euclid\'s division algorithm,117 = 65{tex}\\times{/tex} 1 + 5265 = 52{tex}\\times{/tex} 1 + 1352 = 13{tex}\\times{/tex} 4 + 0So, HCF of 117 and 65 = 13HCF = {tex}65m + 117n{/tex}For, {tex}m= 2{/tex} and {tex}n = -1{/tex},HCF = 65{tex}\\times{/tex} 2 + 117{tex}\\times{/tex} (-1)= 130 - 117= 13Hence, the integral values of m and\xa0n are 2 and -1 respectively and the HCF of 117 and 65 is 13.
35584.

Ncert book need for cbse board exam ?

Answer» Yes,offcourse
Yes why not
Obviously yes!
Yes or no
35585.

What is a composit number ?

Answer» Wo no.jinke one hi factor ho . This is called composite number.
Composite numbera have mor than 2 factors. For example:- 4 ,6.......
Which has more than two factor
35586.

√3tantheta=1 then find the value of sin²theta-cos²theta

Answer» -1/2
1
35587.

5x+2y=2k, 2(k+1)x+ky=(3k+4)

Answer» {tex}5x + 2y = 2k{/tex}{tex}2(k + 1)x + ky = (3k + 4){/tex}These are of the form{tex}a_1x + b_1y + c_1\xa0= 0 , a_2x + b_2y + c_2\xa0= 0{/tex}where,{tex}a_1= 5\xa0,b_1= 2, c_1\xa0= -2k,{/tex}{tex}a_2= 2(k +1)\xa0,b_2= k\xa0,c_2\xa0= -(3k + 4){/tex}For infinitely many solutions, we must\xa0have{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { c _ { 1 } } { c _ { 2 } }{/tex}This holds only when{tex}\\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 } { k } = \\frac { - 2 k } { - ( 3 k + 4 ) }{/tex}{tex}\\Rightarrow \\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 } { k } = \\frac { 2 k } { ( 3 k + 4 ) }{/tex}Now, the following cases arises:Case 1:{tex}\\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 } { k }{/tex}[Taking I and II]{tex}\\Rightarrow 5 k = 4 ( k + 1 ) \\Rightarrow 5 k = 4 k + 4{/tex}k = 4Case 2:{tex}\\frac { 2 } { k } = \\frac { 2 k } { ( 3 k + 4 ) }{/tex}[Taking II and III]{tex}\\Rightarrow{/tex}2(3k +\xa04) = 2k2\xa0{tex}\\Rightarrow{/tex}6k + 8 = 2k2{tex}\\Rightarrow{/tex}{tex}2k^2\xa0-\xa06k + 8 =\xa00{/tex}{tex}\\Rightarrow{/tex}{tex}2(k^2\xa0- 3k + 4)=\xa00{/tex}{tex}\\Rightarrow{/tex}{tex}k^2\xa0- 3k - 4 = 0{/tex}{tex}\\Rightarrow{/tex}{tex}k^2\xa0- 4k + k - 4 = 0{/tex}{tex}\\Rightarrow{/tex}k(k - 4) + 1(k - 4) = 0{tex}\\Rightarrow{/tex}(k - 4)(k +\xa01) = 0(k - 4) = 0 or k + 1 = 0{tex}\\Rightarrow{/tex}\xa0k = 4 or k = -1Case 3:{tex}\\frac { 5 } { 2 ( k + 1 ) } = \\frac { 2 k } { ( 3 k + 4 ) }{/tex}[Taking I and II]{tex}\\Rightarrow 15 k + 20 = 4 k ^ { 2 } = 4 k{/tex}{tex}\\Rightarrow{/tex}4k2\xa0+ 4k - 15k - 20 = 0{tex}\\Rightarrow{/tex}\xa04k2\xa0- 11k - 20 = 0{tex}\\Rightarrow{/tex}4k2\xa0- 16k + 5k - 20 =0{tex}\\Rightarrow{/tex}4k(k - 4) + 5(k - 4) = 0{tex}\\Rightarrow{/tex}(k - 4)(4k + 5) = 0{tex}\\Rightarrow k = 4 \\text { or } k = \\frac { - 5 } { 4 }{/tex}Thus, k = 4, is the common value of which there are infinitely many solutions.
35588.

If the points (-1.5,3),(k,2),(-3,4)are collinear.find k?

Answer» 0
35589.

HCf of 625

Answer» 5×5×5×5= 625
Its the number itself i.e. 625
5 power 4
5 is the hcf
35590.

Formula of area of square

Answer» (Side)^2 OR side × side
Side × side
Side *side
35591.

AP is 2,6,4,8,5 .find common difference.

Answer» This is not AP
It is not in the form of an A.P
No common diference6-2=4 4-6=-2then no c..d
This is not in the form of AP
4
35592.

How to learn trigonometry formulas and identities ? How it apply in quesrions ?

Answer» Sin cosec cos=sec tan =cot
35593.

How many digits will be there in decimal part of 73÷2power4 × 5 power 3

Answer»
35594.

Find root of the equation:-* 4x2+4bx-(a2-b2)=0* ax2+bx+c=0

Answer» 16a2
35595.

TanA +TanB/ CotA + CotB =tanA.tanB

Answer»
35596.

150+(-40)×20

Answer» =150 - 800= - 650
-650
35597.

[email\xa0protected]+(+88+=(

Answer» What type of question us this .And from which chapter does it belong
What
35598.

If the median of the series exceeds the mean by 3, find by what number the mode exceeds its mean?

Answer» 3(median) = 2(mean) + modeLet the mean be \'x\'So, median will be x + 3Then, according to the question3(x+3) = 2(x) + mode3x + 9 = 2x + mode3x - 2x + 9 - modex+9 = modeNow, mode - mean⇒ x+9 - x= 9 So, mode exceeds the mean by 9. \xa0
35599.

What happens to a value of tanA when A increases from 0°to90°

Answer» Value of tan A increases when A increases from {tex}0^o{/tex} to {tex}90^o{/tex}{tex}(0,\\frac{1}{\\sqrt{3}},1,\\sqrt{3},{/tex}\xa0not defined at\xa0{tex}90^{\\circ}{/tex})
35600.

Sin theta value

Answer» Perpendicular /hypotenuse
Sin theta=p/h
Length/ hypotenuse
0