Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

35601.

Trigonometry kaise seekhen

Answer» 1.2.3.P.B.P.H.H.B.Pakistan bhuka pet hindustan hara bhara
Pandit bol pandit har har bhole
P/H ; B/H; p/B papa bedi pilo; Ha ha beta
Practice the solved questions.....Do NCERT properly.....N examplar......
Please fast
35602.

2x2+6x+12 factorise

Answer» Isme square nahi h to ye factorization possible nahi h
This question is wrong
Is the question correct ?
35603.

Probability of getting 53 saturday in a year

Answer» In ordinary year p(e) will be 1/7 and in leap year 2/7
53/365
1/7
35604.

how many solution of the pair of linear equations c+y-10=0 and x+y-7=0 has?

Answer»
35605.

The points (k+1,1) (2k+1,3) and (2k+2,2k) are collinear. Then find k

Answer» {tex}{/tex}We know that if three points A, B, C are collinear, then area of\xa0{tex}\\Delta ABC =0{/tex}Given that points A(k + 1, 1), B(2k + 1, 3) and C(2k + 2, 2k) are collinear.Here, x1= k+1 , x2\xa0=2k+1, x3= 2k+2, y1= 1, y2= 3, y3= 2k{tex}\\Rightarrow {/tex}\xa0Area of\xa0{tex}\\Delta ABC =0{/tex}{tex}\\Rightarrow {/tex}\xa0{tex}\\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|=0{/tex}{tex}\\Rightarrow {/tex}{tex}\\frac{1}{2}|(k+1)(3-2k)+(2k+1)(2k-1)+(2k+2)(1-3)|=0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}|k(3-2k)+1(3-2k)+(2k)^2-(1)^2+(2k+2)(-2)|=0{/tex}{tex}\\Rightarrow{/tex} |3k - 2k2 + 3 - 2k + 4k2 - 1 -\xa04k - 4 |= 0{tex}\\Rightarrow{/tex}\xa0|2k2 - 3k - 2 |= 0{tex}\\Rightarrow{/tex}\xa02k2 - 4k + k - 2 = 0{tex}\\Rightarrow{/tex}\xa02k(k - 2) + 1(k - 2) = 0{tex}\\Rightarrow{/tex}\xa0(2k + 1) (k - 2) = 0{tex}\\Rightarrow{/tex}\xa0k = -\xa0{tex}\\frac { 1 } { 2 }{/tex}, k = 2
35606.

Prove root 3 as irrational

Answer» Let √3 be a rational number then it can be written in the form of a/ b, b≠0 and a and b are co prime numbers . √3=a/b , now squaring on both sides gives 3=a²/b²........... 3b²=a² it means a² is divisible by 3 , so a is also divisible by 3 ....... Let a=3c now squaring on both sides gives a²=9c² . putting value of a².... 3b²=9c² , it gives us b²=3c² .. it means b² is divisible by 3 so b is also divisible by 3 ..... Therefore our assumption is wrong . They have a common factor as 3 . So √3 is an irrational number . Hence proved
NCERT question.....Maths can\'t type here
35607.

What is ShreeBhattacharya rulev

Answer»
35608.

x/4+y/3=5/12 ; x/2+y=1 find the value of x and y in the solition of equation

Answer» X=11 and y = - 9/2
35609.

BPT thearem

Answer» In a triangle ABC if DE II BC then AD/DB = AE/EC
given - DE parallel BCto prove - AD÷DB=AE÷EC
it\'s very easiy...
35610.

Sn=3n2-n

Answer» Or of we put value of n in this equation any than we find the vvalue of S1,S2 etc
Ky afind karna h
35611.

Find value of angle theta if cos theta /1-sin theta+cos theta/1+sin theta÷4

Answer» Given,\xa0{tex}\\frac { \\cos \\theta } { 1 - \\sin \\theta } + \\frac { \\cos \\theta } { 1 + \\sin \\theta } = 4{/tex}Taking LCM\xa0{tex}\\frac { \\cos \\theta ( 1 + \\sin \\theta ) + \\cos \\theta ( 1 - \\sin \\theta ) } { ( 1 - \\sin \\theta ) ( 1 + \\sin \\theta ) } = 4{/tex}\xa0{tex}\\frac { \\cos \\theta [ 1 + \\sin \\theta + 1 - \\sin \\theta ] } { 1 - \\sin ^ { 2 } \\theta } = 4{/tex}\xa0{tex}\\frac { \\cos \\theta ( 2 ) } { \\cos ^ { 2 } \\theta } = 4{/tex}\xa0{tex}\\frac { 2 } { \\cos \\theta } = 4{/tex}\xa0{tex}\\cos \\theta = \\frac { 2 } { 4 } = \\frac { 1 } { 2 }{/tex}\xa0{tex}\\cos \\theta = \\cos 60 ^ { \\circ }{/tex}{tex}\\therefore \\theta = 60 ^ { \\circ }{/tex}
Given,\xa0{tex}\\frac { \\cos \\theta } { 1 - \\sin \\theta } + \\frac { \\cos \\theta } { 1 + \\sin \\theta } = 4{/tex}Taking LCM\xa0{tex}\\frac { \\cos \\theta ( 1 + \\sin \\theta ) + \\cos \\theta ( 1 - \\sin \\theta ) } { ( 1 - \\sin \\theta ) ( 1 + \\sin \\theta ) } = 4{/tex}\xa0{tex}\\frac { \\cos \\theta [ 1 + \\sin \\theta + 1 - \\sin \\theta ] } { 1 - \\sin ^ { 2 } \\theta } = 4{/tex}\xa0{tex}\\frac { \\cos \\theta ( 2 ) } { \\cos ^ { 2 } \\theta } = 4{/tex}\xa0{tex}\\frac { 2 } { \\cos \\theta } = 4{/tex}\xa0{tex}\\cos \\theta = \\frac { 2 } { 4 } = \\frac { 1 } { 2 }{/tex}\xa0{tex}\\cos \\theta = \\cos 60 ^ { \\circ }{/tex}{tex}\\therefore \\theta = 60 ^ { \\circ }{/tex}
35612.

If tan²Φ=1-a²,prove that secΦ+tan³ΦcosecΦ=(2-a²)³/²

Answer»
35613.

(3x+1)x+3y-2

Answer» (3x+1)x +3y-23x²+x+3y-2
3xsqare+x+3y-2
35614.

Determime the AP whose third term is 16 and 7 th term exceed the 5th term by 12

Answer» An=a+(n-1)d So, 16=a+2d(equ1). , A7 =a+6d, A5= a+4d Now, according to statement we have, a+6d=a+4d+12 solving this equation we get. d=6 putting this value in( equ 1) we get a=4. Now we have a.=4 ,d= 6 so AP will be 4,10, 16 ,22 ,28.............
35615.

Most important chapters for boards are?

Answer» Haaaa
All are important
35616.

Find the sum of the 25 terms of an A.P. whose nth term is given by an=An+B

Answer»
35617.

Foctorastion of 1/abx=1/a+1/b+1/x

Answer» Given,{tex}\\frac { 1 } { ( a + b + x ) } = \\frac { 1 } { a } + \\frac { 1 } { b } + \\frac { 1 } { x }{/tex}{tex}\\Rightarrow \\quad \\frac { 1 } { ( a + b + x ) } - \\frac { 1 } { x } = \\frac { 1 } { a } + \\frac { 1 } { b } \\Rightarrow \\frac { x - ( a + b + x ) } { x ( a + b + x ) } = \\frac { b + a } { a b }{/tex}{tex}\\Rightarrow \\quad \\frac { - ( a + b ) } { x ( a + b + x ) } = \\frac { ( a + b ) } { a b }{/tex}On dividing both sides by (a+b){tex}\\Rightarrow \\quad \\frac { - 1 } { x ( a + b + x ) } = \\frac { 1 } { a b }{/tex}Now cross multiply{tex}\\Rightarrow{/tex}\xa0x(a + b + x) = -ab\xa0{tex}\\Rightarrow{/tex}\xa0x2 + ax + bx + ab = 0{tex}\\Rightarrow{/tex}\xa0x(x +a) + b(x +a) = 0{tex}\\Rightarrow{/tex}\xa0(x\xa0+ a) (x + b) = 0{tex}\\Rightarrow{/tex}\xa0x + a = 0 or x + b = 0{tex}\\Rightarrow{/tex}\xa0x = -a or x = -b.Therefore, -a and -b\xa0are the roots of the equation.
35618.

If -2 is zero of the quadratic polynomial x² + 3x + K , then find the value of k

Answer» The -2 is the zero of p(x).then x=-2 put the value of x you got answer.
x²+3x+K=0(-2)²+3*(-2)+K=04+(-6)+K=0-2+K=0K=2
35619.

Find the area of the triangle whose vertices are (2,3),(4,-3),(2,6)

Answer» Put the value in triangle formula
Use the area of triangle formula by taking any of the values as x1y1,x2y2,x3y3 according to ur wish and u will get the same answer
35620.

What is empirical relation between mean,mode and median?

Answer» Empirical relation between mean, median and mode:Mode = 3 median - 2 mean
3MEDIAN=MODE+2MEAN
35621.

If -5 is a root of (2x^2+px-15)=0 and roots of p(x^2+x)+k=0 are equal,then find p and k.

Answer» Since (-5) is a root of given quadratic equation\xa02x2 + px + 15 =0,then,{tex}2 ( - 5 ) ^ { 2 } + p ( - 5 ) - 15 = 0{/tex}{tex}50 - 5 p - 15 = 0{/tex}{tex}5 p = 35 \\Rightarrow p = 7{/tex}Now\xa0{tex}p \\left( x ^ { 2 } + x \\right) + k = 0{/tex}\xa0has equal roots\xa0{tex}p x ^ { 2 } + p x + k = 0{/tex}So\xa0{tex}( b ) ^ { 2 } - 4 a c = 0{/tex}{tex}( p ) ^ { 2 } - 4 p \\times k = 0{/tex}{tex}( 7 ) ^ { 2 } - 4 \\times 7 \\times k = 0{/tex}28k = 49{tex}k = \\frac { 49 } { 28 } = \\frac { 7 } { 4 }{/tex}hence p = 7 and {tex}k = \\frac { 7 } { 4 }{/tex}
35622.

Without adding find the sum of 1+3+5+7+9+11+13.

Answer» If you want to check take number as me as your choice but all number are in odd or in sequence.
in my question you will observe that all numbers are odd and in sequence and i give only 7 number so we square 7 and will get answer 49.
How
49
35623.

Find the root of

Answer» kiska
35624.

How many of you think maths a tough subject

Answer» ?
U all r right but for me maths is tough and science is too easy
Subject is not tough We set our mentality that math is tough
subjects are not tuff we decide which one is essay or tuff
35625.

Please explain theorem 10.2

Answer»
35626.

Show that cot theta + tan theta is equal to secant theta cosecant theta

Answer» Iss question me cot theta ko cos upon sin kro aur tan theta ko sin upon cos kr do aage apne aap aajaye ga ki kya kr naa h
35627.

Write the empirical relationship between the three measures of central tendency??

Answer» Empirical Relationships between the three measure of central tendency2 Mean = 3 Median -Mode\xa0
35628.

prove that median of triangle divides the triangle into two parts of equal areas

Answer» You are not eligible to sit un 10 class, better you sit in 9 class and then passed ro 10
35629.

in any triangle abc prove that (a-b)^2 cos^2c/2 + (a+b)^2 sin^c/2=c^2

Answer» L.H.S. =\xa0{tex}{(a - b)^2}{\\cos ^2}\\frac{c}{2} + {(a + b)^2}{\\sin ^2}\\frac{c}{2}{/tex}{tex} = ({a^2} + {b^2} - 2ab){\\cos ^2}\\frac{c}{2}{/tex}{tex} + ({a^2} + {b^2} + 2ab){\\sin ^2}\\frac{c}{2}{/tex}{tex} = {a^2}{\\cos ^2}\\frac{c}{2} + {b^2}{\\cos ^2}\\frac{c}{2} - 2ab\\;{\\cos ^2}\\frac{c}{2}{/tex}{tex} + {a^2}{\\sin ^2}\\frac{c}{2} + {b^2}{\\sin ^2}\\frac{c}{2} + 2ab\\;{\\sin ^2}\\frac{c}{2}{/tex}{tex} = {a^2}\\left( {{{\\cos }^2}\\frac{c}{2} + {{\\sin }^2}\\frac{c}{2}} \\right){/tex}{tex} + {b^2}\\left( {{{\\cos }^2}\\frac{c}{2} + {{\\sin }^2}\\frac{c}{2}} \\right){/tex}{tex} = 2ab\\left( {{{\\cos }^2}\\frac{c}{2} - {{\\sin }^2}\\frac{c}{2}} \\right){/tex}= a2 + b2 - 2 ab cosC{tex} = {a^2} + {b^2} - 2ab\\left( {\\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}} \\right){/tex}= a2 + b2 - a2 - b2 + c2=c2 R.H.S.
35630.

Hey everyone ............

Answer» And ankita
Hello shikayna...
Hiiiiiiiiiii........
Hiiii
Hii......
Hiiii
35631.

find the mid point of the following points (-1,0) ,(-5,-1)

Answer» (-3,-0.5)
(-3,-0.5
35632.

Maths ka paper kaisa Gaya. For govt. School

Answer» It was toooooooo good and lengthy
Bahut aacha
35633.

Syllabus for class 10 2019

Answer» What is
35634.

What is probability of choosing M from word MATHEMATICS

Answer» 2/11
2/11
https://shrinkearn.com/NtBH
2/11
35635.

find the length of a tangent drawn from a point 13cm away from the centre of a circle of radius 12cm

Answer» 5cm
5cm
35636.

Root 6 ki value

Answer» 36
2.4494897427
35637.

which chapter are removed by ncert in hindi

Answer» Tu harsh he kya
Haaa
animesh r u from barwni...
Kshitij me se dev, aatma कथ्य, stri - shiksha ke virodhi kutkro ka khandan and sanskratiThen kratika me se ehi thaiya jhulni herani ho rama and me kyo likhta hu
35638.

If 3= y , y = 4 and O =3y , so what is the value of Y+ O .

Answer» Y+O = 4+3y = 4+ y × y = 4+2yY+O = 4+2y
4+3y
35639.

If x=asin~+bcos~ Y=acos-bsin~ Prove that x2+y2=a2+b2(~ symbolises teta and 2 is square of a;b;x;y)

Answer» According to the question,{tex}x^2 + y^2 = (asin\\theta\xa0+ bcos\\theta)^2 + (acos\\theta\xa0- bsin\\theta)^2{/tex}=\xa0{tex}a^2sin^2\\theta+b^2cos^2\\theta+2abcos\\theta sin\\theta+a^2cos^2\\theta+b^2sin^\\theta -2ab sin\\theta cos\\theta{/tex}= a2(sin2{tex}\\theta{/tex}\xa0+ cos2{tex}\\theta{/tex}) + b2(cos2{tex}\\theta{/tex}\xa0+ sin2{tex}\\theta{/tex}){tex}= a^2 + b^2{/tex} [{tex}\\because{/tex}\xa0sin2{tex}\\theta{/tex} + cos2{tex}\\theta{/tex}\xa0= 1].{tex}\\therefore{/tex}{tex}x^2 + y^2 = a^2 + b^2.{/tex}
35640.

Using quadratic formula, solve the following equation : abx^2+(b^2-ac)x-bc=0

Answer» We have, abx2 + (b2 -ac) x-bc = 0{tex}\\implies{/tex}abx2 + b2 x - acx - bc = 0{tex}\\implies{/tex}bx ( ax+b) - c (ax + b) = 0{tex}\\implies{/tex}(ax + b) (bx - c) = 0Either ax+b = 0 or bx - c = 0{tex}\\implies x = -{b \\over a},\\, {c \\over b}{/tex}Hence, {tex}x = -{b \\over a},\\, {c \\over b}{/tex} are the required solutions.
35641.

Board exams kab se ho rhe hain?

Answer» Why pre board held ????
Thnx
All the best every one.
Pre board from February, board from March.
35642.

0+0=0 but 1+1=2 why

Answer» Because thenot value of zero
35643.

Wat is a polynomial

Answer» A polynomial is a mathematical expression that consists of variables and constants combined using addition, subtraction and multiplication. Variables may have non-negative integer exponents. Although division by a constant is allowed, division by a variable is not allowed.
35644.

First chapter first exercise 2 questions

Answer» Check NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
35645.

( )+( )+( )=30 Taking number 1;3;5;7;9;11;13;25

Answer» What is ! This sign showa
If you know then share with us
Firstly it is not possible Because if odd numbers are added then even number left .and even numbers cannot give the required result
11+13+3! (We can use this sign)
10 10 10
35646.

12.1 q.2

Answer» Check NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
35647.

196/38220

Answer» 196/38220 = 0.00512
0.00512
35648.

Square of 8

Answer» Its simple 64
64 is the square root of 8
64
64
64
64
35649.

X/a+y/b=a+bX/a2+y/b2=2 Find the value of x and y.

Answer» Firstly question is not clear Write in proper sense
35650.

If 3=y . Y =4 and o= 3y .so what is the value of y+o.

Answer» Y+o Y=3 and o=3y=Y+o =3+ 3y=3(1+y)=3(y+1)