Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

3551.

Aare shrushti maine pucha tu online naahi hai???

Answer»
3552.

RIMSHA gud ni8 dear ab kal wait krunga aapka

Answer»
3553.

RIMSHA........

Answer»
3554.

Can 2 no.s have 16 as their hcf and 380 as their lcm? Give reason

Answer» LCM completely
No bcz HCF divides LVM cmetely
3555.

write both answer -5^2 and (-5)^2

Answer» Its 25 !!
3556.

In an equilateral traingle altitude is drawn. Prove ad2=3bd2

Answer» Wrong question
3557.

What is the LCM of 1_3 +1_2+1_4

Answer» What??
3558.

Solve for x: 1/2a+b+2x=1/2a+1/b+1/2x , x not equal to 0

Answer» {tex}\\frac{1}{2a + b + 2x}{/tex}\xa0=\xa0{tex}\\frac{1}{2a}{/tex}\xa0+\xa0{tex}\\frac{1}{b}{/tex}\xa0+\xa0{tex}\\frac{1}{2x}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac{1}{2a + b + 2x}{/tex}\xa0-\xa0{tex}\\frac{1}{2x}{/tex}\xa0=\xa0{tex}\\frac{1}{2a}{/tex}\xa0+\xa0{tex}\\frac{1}{b}{/tex}\xa0{tex}\\Rightarrow{/tex}{tex}\\frac { 2 x - 2 a - b - 2 x } { ( 2 a + b + 2 x ) ( 2 x ) }{/tex}\xa0=\xa0{tex}\\frac{b + 2a}{2a \\times b}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}\\frac { - ( 2 a + b ) } { ( 2 a + b + 2 x ) 2 x }{/tex}\xa0=\xa0{tex}\\frac{b + 2a}{2ab}{/tex}{tex}\\Rightarrow{/tex}{tex}\\frac { - 1 } { 4 a x + 2 b x + 4 x ^ { 2 } }{/tex}\xa0=\xa0{tex}\\frac{1}{2ab}{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}4x^2 + 2bx + 4ax = -2ab{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}4x^2 + 2bx + 4ax + 2ab = 0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}2x(2x + b) + 2a(2x + b) = 0{/tex}{tex}\\Rightarrow{/tex}\xa0(2x + b)(2x + 2a) = 0{tex}\\Rightarrow{/tex}\xa0x = -{tex}\\frac{b}{2}{/tex} or x = -a
3559.

If sin=3/4 then find 4+4cot squareA

Answer»
3560.

7/75 is terminating or non terminating number

Answer» Non terminating repeating number
Non terminating
3561.

TanA-sinA÷tanA+sinA=secA-1÷secA+1

Answer»
3562.

The ordinate of a point A on y axis is 5 and B has a coordinates (-3,1). Find the length Ab

Answer» Root 65
Point A (5,0) bcz of y axis ...now find. LENGTH AB BY distance formula
Length of Ab will be 5
3563.

7/75 is terminating or non terminating

Answer» Non terminting
3564.

If the ratio of the roots of the equation tx^2 +nx +n is p:q then prove that √p\\q +√q\\p +√n\\t =0.

Answer» Roots of given equation {tex}lx^2 + nx + n = 0{/tex} are\xa0{tex}\\frac { - n + \\sqrt { n ^ { 2 } - 4 n l } } { 2 l }{/tex}\xa0and\xa0{tex}\\frac { - n - \\sqrt { n ^ { 2 } - 4 n l } } { 2 l }{/tex}{tex}\\therefore{/tex}\xa0{tex}\\frac{p}{q}{/tex}\xa0=\xa0{tex}\\frac { - n + \\sqrt { n ^ { 2 } - 4 n l } } { - n - \\sqrt { n ^ { 2 } - 4 n l } }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\sqrt {\\frac{p}{q}} {/tex}\xa0+\xa0{tex}\\sqrt {\\frac{q}{p}} {/tex}\xa0+\xa0{tex}\\sqrt {\\frac{n}{l}} {/tex}={tex}\\sqrt { \\frac { - n + \\sqrt { n ^ { 2 } - 4 n l } } { - n - \\sqrt { n ^ { 2 } - 4 n l } } }{/tex}\xa0+\xa0{tex}\\sqrt { \\frac { - n - \\sqrt { n ^ { 2 } - 4 n l } } { - n + \\sqrt { n ^ { 2 } - 4 n l } } } + \\sqrt { \\frac { n } { l } }{/tex}={tex}\\frac { - n + \\sqrt { n ^ { 2 } - 4 n l } - n - \\sqrt { n ^ { 2 } - 4 n l } } { \\left( \\sqrt { - n - \\sqrt { n ^ { 2 } - 4 n l } } \\right) \\left( \\sqrt { - n + \\sqrt { n ^ { 2 } - 4 n l } } \\right) } + \\sqrt { \\frac { n } { l } }{/tex}={tex}\\frac { - 2 n } { \\sqrt { n ^ { 2 } - n ^ { 2 } + 4 n l } } + \\sqrt { \\frac { n } { l } }{/tex}={tex}\\frac { - 2 n } { 2 \\sqrt { n l } } + \\sqrt { \\frac { n } { l } }{/tex}\xa0=\xa0{tex}\\frac { - \\sqrt { n } } { \\sqrt { l } } + \\sqrt { \\frac { n } { l } }{/tex}\xa0{tex}= 0{/tex}Hence proved.
3565.

585445884*78888

Answer» 4.6184655e+13
3566.

What is the general form of every position odd integer in terms of some integer p?

Answer» 2p+1
A+bn
3567.

Cot theta + Tan theta = x Sec theta - Cos theta = yThen find (Xsquare Y)-(X Ysquare)=?

Answer»
3568.

If √3sinx find the value of sinx.tanx(1+cotx)/sinx+cosx

Answer»
3569.

Who was pythagorus ?

Answer» Pythagoras was\xa0a Greek\xa0mathematician,\xa0philosopher, and mystic. He wrote nothing himself, so his ideas survive through the writings of others, including\xa0Aristotle. Many people are familiar with him as the\xa0mathematician\xa0who formulated the Pythagorean theorem in geometry that relates the lengths of the sides in a right triangle.
3570.

2√45÷2√5

Answer» 3
3
9
15
3
15
3571.

Find the HCF of 1365 and1560 by prime factorization method hence find their LCM

Answer»
3572.

2y-x=8,5y-x =14,-x+y/2=1/2 are vertices of triangle. Determine graphically the vertices of triangle

Answer» {tex}2y - x = 8{/tex}{tex}5y - x = 14{/tex}{tex}y - 2x = 1{/tex}Now, {tex}2y - x = 8{/tex}{tex}x = 2y - 8{/tex}When {tex}y = 2{/tex} then {tex}x = - 4{/tex}When {tex}y = 5{/tex} then {tex}x = 2{/tex}Thus, we have the following table giving points on the line {tex}2y - x = 8{/tex}\tx-42y25\tNow, {tex}5y - x = 14{/tex}{tex}x = 5y - 14{/tex}When {tex}y = 2{/tex}, then {tex}x = 1{/tex}When {tex}y = 3{/tex} , then {tex}x = 1{/tex}Thus, we have the following table giving points on the line {tex}5y - x = 14{/tex}\tx-41y23\tWe have,{tex}y - 2x = 1{/tex}{tex}x = \\frac{{y - 1}}{2}{/tex}When {tex}y = -1{/tex}, then {tex}x = 1{/tex}When\xa0{tex} y = 3{/tex} , then {tex}x = 1{/tex}Thus, we have the following table giving points on the line {tex}y - 2x = 1{/tex}\tx-11y-13\tFrom the graph of the lines represent by the given equation, we observe that the lines taken in pairs intersect at points A(-4, 2) B(1, 3) and C(2, 5).Hence the vertices of the triangle are A(-4, 2) B(1, 3) and C(2, 5)
3573.

The sum of three numbers in AP is -3 and their product is 8.find the numbers

Answer» -4, -1, 2...
3574.

Exterior angle bisector theorm

Answer»
3575.

If points (1,2),(-5,6)and(a,-2) are colliner.Find\'a\'.

Answer» a=7
Use the formula of area of triangle and equate the equation with zero...you will get the answer
3576.

6(ax+by) =3a+2b , 6(bx-ay)=3a-2b

Answer» 6(ax + by) = 3a + 2b6ax + 6by = 3a + 2b.........(i)6(bx - ay) = 3b - 2a6bx - 6ay = 3b - 2a.........(ii)Multiplying (i) by a and (2) by b,So, 6a2x + 6aby = 3a2 + 2ab .......... (iii)And 6b2x - 6aby = 3b2 - 2ab ......... (iv)Add (iii) and (iv), we get6a2x + 6aby + 6b2x - 6aby = 3a2 + 2ab + 3b2 - 2ab⇒ 6a2x + 6b2x = 3a2\xa0+ 3b2⇒6 (a2x + b2x) = 3(a2\xa0+ b2)⇒{tex}x = \\frac { 3 \\left( a ^ { 2 } + b ^ { 2 } \\right) } { 6 \\left( a ^ { 2 } + b ^ { 2 } \\right) } = \\frac { 3 } { 6 } = \\frac { 1 } { 2 }{/tex}Substituting\xa0{tex}x = \\frac 12{/tex}\xa0in (i),we get{tex}6 a \\times \\frac { 1 } { 2 } + 6 b y = 3 a + 2 b{/tex}⇒ 3a + 6by = 3a + 2b⇒ 6by =3a + 2b -3a⇒ 6by = 2b⇒ {tex}y = \\frac { 2 b } { 6 b } = \\frac { 1 } { 3 }{/tex}Hence, the solution is\xa0{tex}x = \\frac { 1 } { 2 } , y = \\frac { 1 } { 3 }{/tex}
3577.

I\'m new here..who wanna frd

Answer»
3578.

(TanA+CosecB)²-(CotB-SecA) ²=2TanA CotB(CosecB+SecA)

Answer» So easy ??
3579.

Show.Cosec^2 theta - tan^2 (90-theta) = ssin^2 theta + sin (90-theta)

Answer» So easy ??
3580.

How to find "A" in assumed - mean method

Answer»
3581.

Samruddhi?

Answer»
3582.

Facebook pe kon kon h?

Answer» Dear once trust on me
M hu na lokendra nathawat
3583.

Have anyone given NTSE exam

Answer»
3584.

14.1 3rd question

Answer» Refer this app
3585.

Yaha par koi DIXITA VERMA hai

Answer» So easy ?? and bye
3586.

Date sheet aa gyi kya...

Answer» No but it will come probably this week
3587.

Kya koi bataega ki board exams ki date kya h

Answer» It will be start after holi
3588.

2sin68/cos22 - 2cot15/5tan75 - 3tan45tan20tan40tan50tan70/5

Answer»
3589.

RIMSHA........????????

Answer» Absent
3590.

The surface area of sphere is 616 cm^2.find its radius

Answer» 7cm
3591.

If sec theta. Sin theta=0 find theta

Answer» =0
0
3592.

What is the datesheet for 10th boards

Answer» Not yet announced
3593.

Is this site is cbse affiliate d

Answer»
3594.

tanA/1-cotA+cot A/1-tanA =1+secAcosecA prove this question

Answer» We have,{tex}\\mathrm { LHS } = \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan A } { 1 - \\frac { 1 } { \\tan A } } + \\frac { \\frac { 1 } { \\tan A } } { 1 - \\tan A }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan A } { \\frac { \\tan A -1 } { \\tan A } } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } + \\frac { 1 } { \\tan A ( 1 - \\tan A ) }{/tex}{tex}\\Rightarrow \\quad \\text { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A - 1 } - \\frac { 1 } { \\tan A ( \\tan A - 1 ) }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 3 } A - 1 } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[Taking LCM]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { ( \\tan A - 1 ) \\left( \\tan ^ { 2 } A + \\tan A + 1 \\right) } { \\tan A ( \\tan A - 1 ) }{/tex}\xa0[{tex}\\because{/tex}\xa0a3\xa0- b3\xa0= ( a - b )(a2\xa0+ ab + b2)]{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A + \\tan A + 1 } { \\tan A }{/tex}{tex}\\Rightarrow \\quad \\mathrm { LHS } = \\frac { \\tan ^ { 2 } A } { \\tan A } + \\frac { \\tan A } { \\tan A } + \\frac { 1 } { \\tan A }{/tex}{tex}\\Rightarrow{/tex}\xa0LHS = tanA + 1 + cotA [ since (1/tanA) =cotA ].= (1 + tanA + cotA){tex}\\therefore \\quad \\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA ...........(1)Now, 1 + tanA + cotA = 1 +\xa0{tex}\\frac { \\sin A } { \\cos A } + \\frac { \\cos A } { \\sin A }{/tex}\xa0= 1 +\xa0{tex}\\frac { \\sin ^ { 2 } A + \\cos ^ { 2 } A } { \\sin A \\cos A }{/tex} = 1 +\xa0{tex}\\frac { 1 } { \\sin A \\cos A }{/tex}\xa0[{tex}\\because{/tex}Sin2A + Cos2 A = 1 ]\xa0= 1 + cosecAsecASo, 1 + tanA + cotA = 1+ cosecAsecA.......(2)From (1) and (2), we obtain{tex}\\frac { \\tan A } { 1 - \\cot A } + \\frac { \\cot A } { 1 - \\tan A }{/tex}\xa0= 1 + tanA + cotA = 1 + cosecAsecA
3595.

A horse is tied to a pole with 28 m long string . Find the area where the horse can graze

Answer» 3.14*28^2
Ncert easiest question
3596.

Explain why 7×11×13+13 & 7×6×5×4×3×2×1+5 are composite numbers.

Answer» Numbers are of two types - prime and composite.Prime numbers can be divided by 1 and only itself, whereas composite numbers have factors other than 1 and itself.It can be observed that7 × 11 × 13 + 13 = 13 × (7 × 11 + 1)= 13 × (77 + 1)= 13 × 78= 13 ×13 × 6The given expression has 6 and 13 as its factors.Therefore, it is a composite number.7 × 6 × 5 × 4 × 3 × 2 × 1 + 5= 5 ×(7 × 6 × 4 × 3 × 2 × 1 + 1)= 5 × (1008 + 1)= 5 ×10091009 cannot be factorized furtherTherefore, the given expression has 5 and 1009 as its factors.Hence, it is a composite number.
3597.

If A+B=90 and sec A =5/3, then find the value of cosec B

Answer» Given A+B=90° i.e,A=90°-Band secA=5/3sec(90°-B) =5/3 (because A=90°-B) CosecB=5/3(because sec(90°-A)=cosecAHence proved
A +B=90 A=90-B --------1 SecA = 5/3Sec 90-B =5/3 ( from 1)Cosec B = 5/3 Hence solved
Same
3598.

Hey! Frnds I\'m new here

Answer»
3599.

Hlo jiiii

Answer»
3600.

RIMSHA plzzz yrrr

Answer»