Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

37151.

Express 23150 as product of its prime factors

Answer» Do with algorithm method
37152.

What is a composite, prime, and co-prime number ?

Answer» Composite Numbers -A composite number is a positive integer that has a factor other than 1 and itself. For instance, 12 is a composite number because it is a positive integer and it has factors other than 1 and itself. 2, 3, 4, 6 are its factors other than 1 and itself. All even numbers greater than 2 are composite numbers. 2 is a prime number. The smallest composite number is 4.Prime numbers:Numbers which have only two factors 1 and the number itself are called prime numbers.E.g 2 ,3 ,5, 7 ,11 ,13, 17 and so on are all prime numbers.Of the first 100 numbers 25 are prime numbers.Only 2 is an even prime number all prime numbers are odd.Co prime numbers:Numbers which do not have any common factor between them other than one are called coprime numbers.Two natural numbers( not necessarily Prime) are coprime if their HCF is 1.For e.g\xa0(1,2) , (1,3), (3,4), (3,10), (3,8), (5,6), (17,23)even two composite numbers can also be Prime. for e.g(16,25), (84,65)
37153.

/5_3 and -/5_3

Answer»
37154.

Find the value of k if a+b=1/2ab and polynomial is x^2-6x+4k-2-kx .a is alpha and b is betta.

Answer»
37155.

Find the value of k, for which the following will represent coincident lines. 2x +ky+8y=14

Answer»
37156.

Rd sharma exercise 2.1ques

Answer»
37157.

If both a and b are rational number then a and b from the following 3-√5/3+2√5=a√5- b,are

Answer» LHS = ( 3 - √5 )/(3 + 2√5 )= [(3-√5)(2√5-3)]/[(2√5+3)(2√5-3)]= [6√5 - 9 -10 + 3√5 ]/[ ( 2√5 )² - 3² ]= ( 9√5 - 19 )/( 20 - 9 )= ( 9√5 - 19 )/11= ( 9/11 )√5 - 19/11 ---( 1 )= a√5 - b ----------( 2 ) [ RHS ]from ( 1 ) and ( 2 ) ,a = 9/11 ,b = 19/11
37158.

9y+11x=26x×y=60

Answer»
37159.

If HCF of 65 and 117 is expressible in the form of 65n-117 , find n

Answer» 117 = 13 {tex}\\times{/tex}\xa03 {tex}\\times{/tex}\xa0365 = 13 {tex}\\times{/tex}\xa05HCF (117, 65) = 13LCM(117,65) = 13 {tex}\\times{/tex}\xa05 {tex}\\times{/tex}\xa03 {tex}\\times{/tex}\xa03 = 585Here is given that:{tex}HCF =65m-117 {/tex}{tex}13=65m-117{/tex}{tex}65m=130{/tex}m =\xa0{tex}\\frac { 130 } { 6 5 } ={/tex}2
37160.

Cosec^3 30× cos60×tan^45×sin^90×sec^40×cot30

Answer» We know that, cosec30°=2, cos60°=(1/2), tan45°=1=sin90°, sec45°=√2 & cot30°=√3,putting these values in the given expression, we get:-{tex}\\cos e{c^3}30^\\circ \\cos 60^\\circ {\\tan ^3}45^\\circ {\\sin ^2}90^\\circ {\\sec ^2}45^\\circ \\cot 30^\\circ {/tex}{tex} = {(2)^3} \\times {\\left( {\\frac{1}{2}} \\right)} \\times {(1)^3} \\times {(1)^2} \\times {\\left( {\\sqrt 2 } \\right)^2} \\times \\sqrt 3 {/tex}{tex} = 8 \\times \\frac{1}{2} \\times 1 \\times 1 \\times 2 \\times \\sqrt 3 {/tex}{tex} = 8\\sqrt 3 {/tex}
37161.

Find HCF of 276& 1238 by prime factorization

Answer»
37162.

x-y+z=4x+y+z=22x+y-3z=0

Answer» {tex}A = \\left[ {\\begin{array}{*{20}{c}} 1&{ - 1}&1 \\\\ 2&1&{ - 3} \\\\ 1&1&1 \\end{array}} \\right]{/tex}{tex}\\left| A \\right| = \\left[ {\\begin{array}{*{20}{c}} 1&{ - 1}&1 \\\\ 2&1&{ - 3} \\\\ 1&1&1 \\end{array}} \\right]{/tex}{tex} = 10 \\ne 0{/tex}Here,A11 = 4, A12 = -5, A13 = 1A21 = 2, A22 = 0, A23 = -2A31 = 2, A32 = 5, A33 = 3{tex}adjA = \\left[ {\\begin{array}{*{20}{c}} 4&2&2 \\\\ { - 5}&0&5 \\\\ 1&{ - 2}&3 \\end{array}} \\right]{/tex}{tex}{A^{ - 1}} = \\frac{1}{{\\left| A \\right|}}\\left( {adjA} \\right){/tex}{tex}= \\frac{1}{{10}}\\left[ {\\begin{array}{*{20}{c}} 4&2&2 \\\\ { - 5}&0&5 \\\\ 1&{ - 2}&3 \\end{array}} \\right]{/tex}System of equation can be written isX = A-1B{tex} = \\frac{1}{{10}}\\left[ {\\begin{array}{*{20}{c}} 4&2&2 \\\\ { - 5}&0&5 \\\\ 1&{ - 2}&3 \\end{array}} \\right]\\left[ {\\begin{array}{*{20}{c}} 4 \\\\ 0 \\\\ 2 \\end{array}} \\right]{/tex}{tex}\\left[ {\\begin{array}{*{20}{c}} x \\\\ y \\\\ z \\end{array}} \\right] = \\left[ {\\begin{array}{*{20}{c}} 2 \\\\ { - 1} \\\\ 1 \\end{array}} \\right]{/tex}x = 2, y = -1, z = 1
37163.

(a-b+c)2

Answer»
37164.

Use Euclid\'s division leema to show square of any positive integer are either in form 4q ,4q+1

Answer» Let a = 4q + r, when r = 0, 1, 2 and 3{tex}\\therefore{/tex}Numbers are 4q, 4q + 1, 4q + 2 and 4q + 3{tex}( a ) ^ { 2 } = ( 4 q ) ^ { 2 } = 16 q ^ { 2 } = 4 ( 4 q ) ^ { 2 } = 4 m{/tex}{tex}( a ) ^ { 2 } = ( 4 q + 1 ) ^ { 2 } = 16 q ^ { 2 } + 8 q + 1 = 4 \\left( 4 q ^ { 2 } + 2 q \\right) + 1 = 4 m + 1{/tex}{tex}( a ) ^ { 2 } = ( 4 q + 2 ) ^ { 2 } = 16 q ^ { 2 } + 16 q + 4 = 4 \\left( 4 q ^ { 2 } + 4 q + 1 \\right) = 4 m{/tex}{tex}( a ) ^ { 2 } = ( 4 q + 3 ) ^ { 2 } = 16 q ^ { 2 } + 24 q + 9 = 4 \\left( 4 q ^ { 2 } + 6 q + 2 \\right) + 1 = 4 m + 1{/tex}{tex}\\therefore {/tex}\xa0the square of any +ve integer is of the form 4q or 4q + 1\xa0
37165.

Find the probability of (a+b)^2=a^2+b^2

Answer» Its 0
1
37166.

√2 and√5 between 4 rational no.

Answer» 1.616661661.818818881.99199919999
37167.

2x+y=63x-y=14Solve by elimination method

Answer» 2x+y+3x-y=14+65y=20Y=42x+y=62x+4=62x=6/4X=6/4*2X=3/4
2x+y=63x-y=14_________-X = 20By subing the value of x in 1 2×20+y=6Y=46
37168.

X-9=2/3

Answer» X=29/3=9.66(approx.)
37169.

How many is better for study??

Answer» Hours does not depends for study . Its how much you learn or understand during your study time. We have to focus on our studies.
It depends on you. That how much you can concentrate in studies. How much you can study. It depends on your choice.From my point of view.
It doesn\'t matter how long u study ..... instead it matters how effectively u study !!!!
sorry my question is that How many hour is better for study??
Sorry, not able to understand yur ques..!!
37170.

Loss

Answer» Kiska loss bhaiya??
Hlo
What loss??
...? Kiska loss...
37171.

Solve for x and y 1\\(3x+y)+1\\(3x-y)=3\\4

Answer»
37172.

Find the value of k in 2x + 3y=7 and (k-1)x + (k+2)y=3k

Answer» {tex}2x + 3y = 7{/tex}{tex}(k - 1) x + (k + 2)y = 3k{/tex}These are of the form{tex}a_1x + b_1y + c_1\xa0= 0 ,\\ a_2x + b_2y + c_2\xa0= 0{/tex}where,{tex}a_1= 2\xa0,\\ b_1= 3,\\ c_1\xa0= -7,{/tex}{tex}a_2=k - 1\xa0\\ ,b_2= k + 2 ,\\ c_2\xa0= -3k {/tex} for infinitely many solutions, we must have{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { c _ { 1 } } { c _ { 2 } }{/tex}This hold only when{tex}\\frac { 2 } { k - 1 } = \\frac { 3 } { k + 2 } = \\frac { - 7 } { - 3 k }{/tex}{tex}\\frac { 2 } { k - 1 } = \\frac { 3 } { k + 2 } = \\frac { 7 } { 3 k }{/tex}Now the following cases arises:Case I:{tex}\\frac { 2 } { k - 1 } = \\frac { 3 } { k + 2 }{/tex}{tex}\\Rightarrow{/tex}2(k + 2) = 3(k -1){tex}\\Rightarrow{/tex}2k + 4= 3k - 3{tex}\\Rightarrow{/tex}\xa0k = 7Case II:{tex}\\frac { 3 } { k + 2 } = \\frac { 7 } { 3 k }{/tex}{tex}\\Rightarrow{/tex}7(k + 2) = 9k{tex}\\Rightarrow{/tex}7k + 14= 9k{tex}\\Rightarrow{/tex}\xa0k = 7Case III:{tex}\\frac { 2 } { k - 1 } = \\frac { 7 } { 3 k }{/tex}{tex}\\Rightarrow{/tex}\xa07k - 7 = 6k{tex}\\Rightarrow{/tex}\xa0k = 7For k = 7, there are infinitely many solutions of the given system\xa0of equations.
37173.

4/3 {sin square 59 -cot ^31}- 2/3 sin 90+3 tan^56 tan^2 34=x/3

Answer» 21/3. Ha xnxn
37174.

Find largest no. which when divides 705 & 1053 leaving remainder 9 in each case

Answer»
37175.

Cot-1 (√1+sinx+√1-sinx/√1+sinx-√1-sinx)

Answer»
37176.

Show that 3 under root 6 is an irrational

Answer» Let 3 under root 6 be a rational no.3 under root 6 = P/Q where p and q are co-prime numbers and Q is not equal to 03 under root 6= PQUnder root6=P/3QRoot 6 is irrational no So p/3q is also irrational no So there is contradiction3 under root 6 is irrational number
37177.

9x^-3x-2=0

Answer» We have,9x2 - 3x - 2 = 0{tex}\\Rightarrow{/tex}\xa09x2 - 6x + 3x - 2 = 0{tex}\\Rightarrow{/tex}\xa03x(3x - 2) + 1(3x - 2) = 0{tex}\\Rightarrow{/tex}\xa0(3x - 2)(3x + 1) = 0{tex}\\Rightarrow{/tex}\xa03x - 2 = 0 or, 3x + 1 = 0\xa0{tex}\\Rightarrow \\quad x = \\frac { 2 } { 3 } \\text { or, } x = - \\frac { 1 } { 3 }{/tex}Thus,\xa0{tex}x = \\frac { 2 } { 3 } \\text { and } x = - \\frac { 1 } { 3 }{/tex} are the required roots of the given equation.
37178.

3√5x×x+25x-10√5=0

Answer»
37179.

What is cumulative frequency

Answer» It is just adding of numbers
37180.

How to find class mark in statistics

Answer» Upper limit +lower limit ,and ➗ by 2
lower limit subtrated by upper limit, then divided by 2
37181.

Trigo trigonometric ratio of complementary angle

Answer» Trigonometric Ratios Of Complementary AnglesWe know complementary angles are pair of angles whose sum is 90°Like 40°, 50°, 60°, 30°, 20°, 70°, 15°, 75° ; etc,Formulae:sin (90° – θ) = cos θ, cot (90° – θ) = tanθcos (90° – θ) = sin θ, sec (90° – θ) = cosec θtan (90° – θ) = cot θ, cosec (90° – θ) = sec θ
37182.

Given that HCF(306,657)is 9,find lcm

Answer» HCF × LCM= product of two no.s9× LCM= 306×657LCM= 22338
HCF(a & b)×LCM (a & b)=a×b9 × LCM(a & b) =306 × 6579 × LCM(a & b ) =201042LCM(a & b ) = 201042 ________ 9LCM(a & b)= 22338
2238
37183.

2x +3y = 7: (a-b)x + (a+b)y = 3a + b - 2

Answer» 2x + 3y - 7 = 0{tex}a _ { 1 } = 2 , b _ { 1 } = 3 , c _ { 1 } = - 7{/tex}\xa0a(x + y) - b(x - y) = 3a + b - 2ax +ay -b x + by = 3a + b - 2(a - b)x + (a + b)y - (3a + b - 2) = 0{tex}a _ { 2 } = a - b , b _ { 2 } = a + b , c _ { 2 } = - ( 3 a + b - 2 ){/tex}\xa0for infinite many solutions{tex}\\frac { a _ { 1 } } { a _ { 2 } } = \\frac { b _ { 1 } } { b _ { 2 } } = \\frac { c _ { 1 } } { c _ { 2 } }{/tex}\xa0or,\xa0{tex}\\frac { 2 } { a - b } = \\frac { 3 } { a + b } = \\frac { - 7 } {- ( 3 a + b - 2 ) }{/tex}\xa0{tex}\\frac { 2 } { a - b } = \\frac { 7 } { 3 a + b - 2 }{/tex}\xa02(3a + b -2 ) = 7(a-b)6a + 2b - 4 = 7a - 7b7a- 7b - 6a - 2b + 4 = 0a - 9b = - 4 ....(i){tex}\\frac { 3 } { a + b } = \\frac { 7 } { 3 a + b - 2 }{/tex}\xa03(3a + b - 2) = 7(a + b )9a + 3b - 6 = 7a + 7b9a + 3b - 7a - 7b = 62a - 4 b = 6a - 2 b = 3 .......(ii)Subtracting eqn. (i) from (ii){tex} \\Rightarrow {/tex}\xa0b = 1On putting the value of b in eqn. (i),we geta = 5Hence, a = 5, b = 1.
37184.

4x^2 -4x - 3 find the zeros

Answer» 4x2 - 4x - 3= 4x2 - 6x + 2x - 3= 2x ( 2x - 3) + 1 (2x - 3)= (2x - 3) ( 2x + 1)2x - 3 = 0 or 2x + 1 = 02x = 3 or 2x = -1x = 3/2 or x = -1/2
First put the values and check it
6 and -2 are the zeros .
3/2 and -1/2
37185.

Class 10 math 2019 solved question paper set 2

Answer» Check the papers here :\xa0https://mycbseguide.com/cbse-question-papers.html
37186.

If secA+tanA=p then show that psquarep-1÷psquare+1=simA

Answer» secA + tanA = p....................(1)We know that,sec²A - tan²A=1or, (secA + tanA)(secA-tanA)=1or, p(secA-tanA)=1or, secA-tanA=1/p .............(2)Adding (1) and (2) we get,2secA=p+1/por, secA=(p²+1)/2p∴, cosA=1/secA=2p/(p²+1)∴, sinA=√(1-cos²A)=√{1-4p²/(p²+1)²=√{(p²+1)²-4p²}/(p²+1)²=√(p⁴+2p²+1-4p²)/(p²+1)=√(p²-1)²/(p²+1)=(p²-1)/(p²+1) (Proved)
37187.

Show that there is no positive integer \'n\'dor which√n-1 +√n+1 is a rational

Answer» I don\'t thik so it is a question
I dont no
37188.

I want 100 differen type of questions of chapter 1 with solutions

Answer» My suggestion is to clear up all the examples along with exercise questions of both NCERT and RD SHARMA for better clearance all ur doubts.
If u solve it by urself it is easy to understand
If u didn\'t get 100 questions solve all questions to of both book u will definitely got ur answer
Solve all examples of ncert as well as r.s agarwal questions
37189.

Proof of sin0=0

Answer» Draw a circle of radius one unit.Through the centre draw the y- axis and the x-axis.Mark the coordinates of the points where the axes intersect the circle.Starting on the x-axis at 0 degrees ,The coordinates are (1,0).Move anticlockwise along the circle to the point (0,1) which corresponds to 90 degrees.Continue to the point (-1,0) which is 180 degrees.Again move to the point (0,-1) which is 270 degrees.And finally back to (1,0) which is 360 degrees.For 0 degrees, the x-co-ordinate represents the cosine of 0,and is equal to 1. And the y -co-ordinate which is zero is the sine of 0.
37190.

Sec(6) theetha=tan(6)thetha+ 3tan(2)thetha(sec(2)thetha+1

Answer» \xa0We have to prove that :-\xa0{tex} \\Rightarrow {\\sec ^6}\\theta = {\\tan ^6}\\theta +3{\\tan ^2}\\theta {\\sec ^2}\\theta + 1{/tex}{tex} \\Rightarrow {\\sec ^6}\\theta - {\\tan ^6}\\theta = 3{\\tan ^2}\\theta {\\sec ^2}\\theta + 1{/tex}Now, LHS\xa0{tex} = {\\sec ^6}\\theta - {\\tan ^6}\\theta {/tex}{tex} = {\\left( {{{\\sec }^2}\\theta } \\right)^3} - {({\\tan ^2}\\theta )^3}{/tex}{tex}= \\left( {{{\\sec }^2}\\theta - {{\\tan }^2}\\theta } \\right)\\left[ {{{({{\\sec }^2}\\theta )}^2} + {{\\sec }^2}\\theta {{\\tan }^2}\\theta + {{({{\\tan }^2}\\theta )}^2}} \\right]{/tex}{Since, a3\xa0- b3\xa0= (a - b )(a2\xa0- ab + b2\xa0)}{tex} = 1\\left[ {{{\\sec }^4}\\theta + {{\\sec }^2}\\theta {{\\tan }^2}\\theta + {{\\tan }^4}\\theta } \\right]{/tex}\xa0{tex}\\left[ {\\because {{\\sec }^2}\\theta - {{\\tan }^2}\\theta = 1} \\right]{/tex}{tex} = {\\sec ^4}\\theta + {\\tan ^4}\\theta + {\\sec ^2}\\theta {\\tan ^2}\\theta {/tex}{tex} = {({\\sec ^2}\\theta )^2} + {({\\tan ^2}\\theta )^2} + {\\sec ^2}\\theta {\\tan ^2}\\theta {/tex}Adding and subtracting\xa0{tex}2{\\sec ^2}\\theta {\\tan ^2}\\theta {/tex}{tex} = {({\\sec ^2}\\theta )^2} + {({\\tan ^2}\\theta )^2} - 2{\\sec ^2}\\theta {\\tan ^2}\\theta + 2{\\sec ^2}\\theta {\\tan^2}\\theta+ {\\sec ^2}\\theta {\\tan ^2}\\theta {/tex}{tex} = {({\\sec ^2}\\theta - {\\tan ^2}\\theta )^2} + 3{\\sec ^2}\\theta {\\tan ^2}\\theta {/tex}\xa0{tex}\\left[ {\\because {{(a - b)}^2} = {a^2} + {b^2} - 2ab} \\right]{/tex}{tex} = 1 + 3{\\sec ^2}\\theta {\\tan ^2}\\theta {/tex}\xa0{tex}\\left[ {\\because {{\\sec }^2}\\theta - {{\\tan }^2}\\theta = 1} \\right]{/tex}= RHSHence proved
37191.

X-2y+3=o

Answer» It can be represented only graphically There are many solutions for the questionEx:- (X,Y)= (1,2)
37192.

How to do direct method in statistics

Answer» Mean=fixi/fi
37193.

(2+/2) 3

Answer» 6+3√2
37194.

f(x)=12x4+324x,g(x)=36x³+90x²-54x find hcf and lcm

Answer»
37195.

X+y=3 and 3y-y=2 solve this question by elimination methode

Answer» The equation is wrong
Thnx
The variable should be x in second equation
37196.

If 3 is zero of polynomial X ^ 2 x+k find the value of k

Answer» Second method X=3 Put the value of x in equation and get your abswer
I have two method to solve this question 1. If x = 3 So, x-3=0 X^2 + x +k=0 divided by x - 3 =0
X^2+x+k=0 Put x=3(3)^2+3+k=0 9+3+k=0 12+k=0 K=-12
37197.

Find cubic polynomial whose zeroes are 2,1,1

Answer» Let\xa0{tex}\\alpha,\\mathrm\\beta\\;\\mathrm{and}\\;\\mathrm\\gamma{/tex}\xa0be the zeroes of the given polynomial.\xa0Then, we have\xa0{tex}\\alpha{/tex}\xa0= 2,\xa0{tex}\\beta{/tex}\xa0= 1\xa0and\xa0{tex}\\gamma{/tex}\xa0= 1\xa0Hence{tex}\\alpha + \\beta + \\gamma{/tex}\xa0= 2\xa0+ 1\xa0+\xa01\xa0= 4 ...............(1){tex}\\alpha \\beta + \\beta \\gamma + \\gamma \\alpha{/tex}\xa0= 2(1) + 1(1) + 1(2)\xa0= 2\xa0+ 1\xa0+ 2\xa0= 5 ................(2){tex}\\alpha \\beta \\gamma{/tex}\xa0= 2(1)(1) = 2 .............(3)Now, a cubic polynomial whose zeros are {tex}\\alpha , \\beta{/tex}\xa0and\xa0{tex}\\mathrm\\gamma{/tex}\xa0is equal top(x) = x3\xa0-\xa0{tex}( \\alpha + \\beta + \\gamma ) x ^ { 2 } + ( \\alpha \\beta + \\beta y + \\gamma \\alpha ) x - \\alpha \\beta \\gamma{/tex}On substituting values from (1),(2) and (3) we get{tex}\\mathrm p(\\mathrm x)=\\mathrm x^3-(4)\\mathrm x^2+(5)\\mathrm x-(2){/tex}= x3\xa0- 4x2\xa0+\xa05x - 2
37198.

In the given figure if pos similar roq prove that ps is parallel to qr

Answer» Given: In figure, {tex}\\triangle {/tex} POS {tex} \\sim {/tex}{tex}\\triangle {/tex}ROQTo prove: PS {tex}\\parallel{/tex}QRProof: {tex}\\triangle {/tex} POS {tex} \\sim {/tex}{tex}\\triangle {/tex}ROQ ........[Given]{tex}\\therefore {/tex}{tex}\\angle{/tex} PSO ={tex}\\angle{/tex} RQO .........[ {tex}\\because {/tex} corresponding angle of two similar triangles are equal]But these form a pair of alternate angles{tex}\\therefore {/tex} PS {tex}\\parallel{/tex}QR
37199.

So that the square of any positive integer cannot be of the form 5q+2 or 5q+3 dor any integer q ?

Answer» Let n be any positive integer. Applying Euclids division lemma with divisor = 5, we get{tex}\\style{font-family:Arial}{\\begin{array}{l}n=5q+1,5q+2,5q+3\\;and\\;5q+4\\;\\\\\\end{array}}{/tex}Now (5q)2 = 25q2 = 5m, where m = 5q2, which is an integer;{tex}\\style{font-family:Arial}{\\begin{array}{l}(5q\\;+\\;1)^{\\;2}\\;=\\;25q^2\\;+\\;10q\\;+\\;1\\;=\\;5(5q^2\\;+\\;2q)\\;+\\;1\\;=\\;5m\\;+\\;1\\\\where\\;m\\;=\\;5q^2\\;+\\;2q,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;2)^2\\;=\\;25q^2\\;+\\;20q\\;+\\;4\\;=\\;5(5q^2\\;+\\;4q)\\;+\\;4\\;=\\;5m\\;+\\;4,\\\\\\;where\\;m\\;=\\;5q^2\\;+\\;4q,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;3)^{\\;2}\\;=\\;25q^2\\;+\\;30q\\;+\\;9\\;=\\;5(5q^2\\;+\\;6q+\\;1)\\;+\\;4\\;=\\;5m\\;+\\;4,\\\\\\;where\\;m\\;=\\;5q^2\\;+\\;6q\\;+\\;1,\\;which\\;is\\;an\\;integer;\\\\\\;(5q\\;+\\;4)^2\\;=\\;25q^2\\;+\\;40q\\;+\\;16\\;=\\;5(5q^2\\;+\\;8q\\;+\\;3)\\;+\\;1\\;=\\;5m\\;+\\;1,\\;\\\\where\\;m\\;=\\;5q^2\\;+\\;8q\\;+\\;3,\\;which\\;is\\;an\\;integer\\\\\\end{array}}{/tex}Thus, the square of any positive integer is of the form 5m, 5m + 1 or 5m + 4 for some integer m.It follows that the square of any positive integer cannot be of the form 5m + 2 or 5m + 3 for some integer m.
37200.

2x square +x-528=0

Answer» 2x2 + x - 528= 02x2 + 33x - 32x - 528 = 0x(2x + 33)- 16(2x+33)= 0(x - 16)(2x + 33)Zeros are x = 16 and x= -33/2