Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

37251.

What is sample space ??

Answer» The sample space of an experiment is the set of all possible outcomes of that experiment. The sample space of con experiment\xa0is: {head, tail}
37252.

If zeroes of cubic polynomial f(x)=kx^3-8x^2+5 are a-b,a,a+b find the value of k?

Answer» k = 8/3αα = √15 / 4Step-by-step explanation:f(x) = kx³ - 8x² + 5\xa0Roots are α - β , α & α +βSum of roots = - (-8)/k Sum of roots = α - β + α + α +β = 3α=> 3α = 8/k=> k = 8/3α\xa0or we can solve as below\xa0f(x) = (x - (α - β)(x - α)(x - (α +β))= (x - α)(x² - x(α+β + α - β) + (α² - β²))= (x - α)(x² - 2xα + (α² - β²))= x³ - 2x²α + x(α² - β²) - αx² +2α²x - α³ + αβ²= x³ - 3αx² + x(3α² - β²) + αβ² - α³= kx³ - 3αkx² + xk(3α² - β²) + k(αβ² - α³)\xa0comparing withkx³ - 8x² + 5\xa0k(3α² - β²) = 0 => 3α² = β²k(αβ² - α³) = 5=>k(3α³ - α³) = 5=> k2α³ = 5\xa03αk = 8 => k = 8/3α(8/3α)2α³ = 5=> α² = 15/16=> α = √15 / 4
37253.

Show graphically that 2x+3y=6 and 4x+6y=12 has infinitely many solutions

Answer» {tex}2x + 3y = 6{/tex}{tex}\\Rightarrow y = \\frac { 6 - 2 x } { 3 }{/tex}\tx{tex}-3{/tex}{tex}3{/tex}y{tex}4{/tex}{tex}0{/tex}\t{tex}4x + 6y = 12{/tex}{tex}\\Rightarrow y = \\frac { 12 - 4 x } { 6 }{/tex}\tx-60y62\tThe graph of the system of equations are\xa0coincident lines.{tex}\\therefore{/tex}\xa0The system has infinitely many solutions.
2x + 3y = 6\tx03y20\t\xa04x + 6y = 12\tx03y20\t
37254.

5x-4y+8=07x+6y-8=0

Answer» 5 x - 4 y - 8 = 07 x + 6 y - 9 = 0Here, a1= 5, b1\xa0= -4, c1= 8a2= 7, b2= 6, c2\xa0= 9We see that\xa0{tex}\\frac { a _ { 1 } } { a _ { 2 } } \\neq \\frac { b _ { 1 } } { b _ { 2 } }{/tex}Hence, the lines representing the given pair of linear equations intersect at the point and the equations are consistent having unique solution.
37255.

Find the value of k where -2 is the Zero of polynomial 3x square + 4 x + 2 k

Answer» Let f(x)=3x2 + 4x +2kIf -2\xa0is zero of f(x) then f(-2)=0 then f(-2)=0{tex}\\Rightarrow{/tex}\xa03 × (-2)² + 4 × -2 + 2k = 0{tex}\\Rightarrow{/tex}\xa012 - 8 + 2k = 0{tex}\\Rightarrow{/tex}\xa04 + 2k = 0{tex}\\Rightarrow{/tex}\xa02k = -4{tex}\\Rightarrow{/tex}\xa0k =\xa0{tex}\\frac{{ - 4}}{2}{/tex}{tex}\\Rightarrow{/tex}\xa0k = -2
37256.

Best book of maths ,,,,??

Answer» .
Raunak bestie ek bar dediye
Rd sharma
NCERT for boards and NCERT exemplar ......board ke liye bas itna hi kati hai !!!!
RD Sharma??
R.d. Sharma?
Rd sharma
Rs agarwal..
37257.

Desk work ya Rd se questions aate ha ky

Answer» Ya
37258.

What is degree of zero

Answer» Degree of zero and any constant is 0
The degree of the zero polynomial is undefined.
37259.

Can two numbers have 18 as their HCF and 380 as LCM. Give reasons

Answer» We know that HCF of two numbers is a divisor of their LCM. Here, 18 is not a divisor of 380.But 380 = 18×21+2Here 2 is remainder so 380 is not divisible by 18.So, 18 and 380 cannot be respectively HCF and LCM of two numbers.
37260.

Find the hcf using Euclid division algorithm A 804 and 4355 4848 and 5555 9684 and 20982

Answer» Take help from examples
37261.

If x2+x-12 divides p(x) = x3+x2+bx-84 exactly. Find a and b

Answer» X2+x-12 =0\xa0x2+ 4x-3x-12=0x(x+4)-3(x+4)=0(x-3) (x+4) =0so x= 3or. x=-4p(x)÷g(x)= q(x) + rp(x)÷g(x)= q(x) +0x3 + ax2 + bx -84 ÷ x2+x-12after dividing remainder will be ax2 - x2+bx+12x-84=0let x=327a-9+3b+36-84=09a + 3b= 573(3a+b)=573a+b=19________eq 1now let x= -4ax2-x2+bx+12x-84=016a-16-4b-48-84=016a-4b=1484(4a-b)=1484a-b=37_________eq 2add equation 1 and equation 2so ,3a + b +4a -b = 19+377a = 56a= 8put a=8 in equation 13a+b = 1924 +b=19or b=-5
37262.

How to understand ____???

Answer» What do you want to understand?
How to understand.............what?
37263.

3√1\\6 power -2 of 1upon six

Answer»
37264.

Find the roots of equation x+under root x-2=4

Answer»
37265.

Find the roots of equation x+root under x-2=4

Answer»
37266.

Cbse syllabus 2020

Answer» Check syllabus here : https://mycbseguide.com/cbse-syllabus.html
37267.

Cbse syllabus math 2019

Answer» Check syllabus here : https://mycbseguide.com/cbse-syllabus.html
37268.

x5 - 4x3+x2+3x+1 is devided by x3 -3x+1

Answer» Solution dena h
Ans is x2-1 and remaider is 2
37269.

Write the shape of the graph P(x)=7x+1

Answer»
37270.

All the formulas of the all chapters

Answer»
37271.

Which are the most important chapters in mathematics

Answer» Arithmetic progression, Geometry, Trigonometry, Mensuration
Trigonometry, triangles, circle
37272.

R D Sharma solution

Answer» Get RD Sharma Solution here :\xa0https://mycbseguide.com/course/cbse-class-10-mathematics/1202/
37273.

Find the value of the shape used in the table

Answer» 10 mm to km
37274.

Trigonemetry

Answer»
37275.

Trigonemetry extra qustion

Answer»
37276.

Why a2 + b2

Answer» a2 + b2 = (a+b)2 -2ab
37277.

Proof of all the albebraic Identity

Answer» No one has plenty of time to answer such a huge question??
37278.

Power of 3√6 is irrational

Answer» Suppose\xa0{tex}\\sqrt [ 3 ] { 6 }{/tex}\xa0be rational number and\xa0{tex}\\sqrt [ 3 ] { 6 } = \\frac { a } { b }{/tex}\xa0where {tex}a\\ and\\ b{/tex} are co-prime and\xa0{tex}b\\ne0{/tex}{tex}\\Rightarrow ( \\sqrt [ 3 ] { 6 } ) ^ { 3 } = \\frac { a ^ { 3 } } { b ^ { 3 } }{/tex}{tex}\\Rightarrow 6 = \\frac { a ^ { 3 } } { b ^ { 3 } } {/tex}{tex}\\Rightarrow 6 . b ^ { 3 } = a ^ { 3 }{/tex}{tex}\\Rightarrow {/tex}\xa0{tex}a^3{/tex}\xa0is divisible by {tex}6{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}a{/tex} is divisible by {tex}6{/tex}.Let {tex}a = 6c{/tex}{tex}6b^3\xa0= (6c)^3{/tex}{tex}\\Rightarrow \\quad b ^ { 3 } = 36 c ^ { 3 }{/tex}{tex}\\Rightarrow {/tex}\xa0{tex}b^3{/tex}\xa0is divisible by {tex}6{/tex}\xa0{tex}\\Rightarrow {/tex}\xa0{tex}b{/tex} is divisible by {tex}6{/tex}.{tex}\\Rightarrow {/tex}\xa0{tex}a\\ and\\ b{/tex} have a common factor i.e, {tex}6{/tex}{tex}\\Rightarrow {/tex}\xa0{tex}a\\ and\\ b{/tex} are not co-prime which is a contradiction{tex}\\therefore \\sqrt [ 3 ] { 6 }{/tex}\xa0is an irratonal.
Is irrational
37279.

Find the value of K the following pair of equation 2x +ky =1 3x - 5y = 7 has a unique solution

Answer» Mr. Topper came?
Mqny values of k are there
1,2
37280.

Prove √2 be irrational...?

Answer» Given √2 is irrational number.Let √2 = a / b wher a,b are integers b ≠ 0we also suppose that a / b is written in the simplest formNow √2 = a / b ⇒ 2 = a2 / b2\xa0⇒ 2b2 = a2∴ 2b2 is divisible by 2⇒ a2 is divisible by 2 ⇒ a is divisible by 2 ∴ let a = 2ca2 = 4c2 ⇒ 2b2 = 4c2 ⇒\xa0b2 = 2c2∴ 2c2 is divisible by 2∴ b2 is divisible by 2∴ b is divisible by 2∴a are b are divisible by 2 .this contradicts our supposition that a/b is written in the simplest formHence our supposition is wrong∴ √2 is irrational number.
37281.

There are two places in the the million period

Answer» Here is the international place value chart
37282.

Find the percentage By bar graph

Answer»
37283.

Find the largest number which divides 70 and 125 leaving remainders 5 and 8 respectively.

Answer» Do 70-5 and 125-8. U will get 65 and 117. Then find their HCF
37284.

If HCF of 480 and 685 is expressed in the form 480x-475 ,find the value of x.

Answer» 685=480+205480=205*2+70205=70*2+6570=65+565=5*132+0hcf=5SO 480X-475=5480X=480X=1\xa0
37285.

Anyone tell how to do study of maths in 10 std

Answer» First thoroughly finished NCERT with examples
.
Thoroughly finished the concept of ncert book and go to reference book like oswaal
First of all your all concepts must be cleared of each chapter and then do your ncert questions first
Thanks bro
Practice ncert first and then go for reference book ,if you do ncert thoroughly 80 % and above is sure , but for 100% reference book sums practice is required ,for maths is the mantra of success
37286.

If the numbers x-2,4x-1and 5x+2are in Ap. find value of x

Answer» Yes x=1
We have x-2,4x-1,5x+2 are in ap so, there common difference will be same.4x-1-(x-2)=5x+2-(4x-1) ,4x-1-x+2 = 5x+2-4x+1 ,3x+1 = x + 3 ,2x = 2 ,x = 2/2= 1Hence, the value of \'x\' is 1
37287.

How many hours maths do in a day.

Answer» 3 or 4 hrs daily
24 hrs
I think for board class it must be practice for 2 hours daily If it ur favourite subject it is enjoyful it isnot it is interesting it relax ur mind ?
37288.

The.area.of.rect.gets

Answer»
37289.

If The HCF of657 and 963 is expressiple in from of 657×963 find y

Answer» Given numbers are 657 and 963 .Here, 657 < 963\xa0By using Euclid\'s Division algorithm, we get963 = (657 × 1) + 306Here , remainder = 306 .So, On taking 657 as new dividend and 306 as the new divisor and then apply Euclid\'s Division lemma, we get657 = (306 × 2) + 45Here, remainder = 45\xa0So, On taking 306\xa0as new dividend and 45\xa0as the new divisor and then apply Euclid\'s Division lemma, we get306 = (45 × 6) + 36Here, remainder = 36So, On taking 45\xa0as new dividend and 36\xa0as the new divisor and then apply Euclid\'s Division lemma, we get45 = (36 × 1) + 9Here, remainder = 9So, On taking 36\xa0as new dividend and 9\xa0as the new divisor and then apply Euclid\'s Division lemma, we get36 = (9 × 4) + 0Here , remainder = 0 and last divisor is 9.\xa0Hence, HCF of 657 and 963 = 9.∴ 9 = 657x + 963(-15)⇒ 9 = 657x - 14445⇒ 657x = 9 + 14445⇒ 657x = 14454⇒x = 14454/657⇒ x =22
37290.

Can two numbers have 16 as their HCF and 380 as their LCM? Give reason

Answer» No...bcz 380 is not completely divisible by 16...so two numbers cant have 16 as HCF and 380 as LCM...
37291.

Kya koi online hai?

Answer» Hiii
Hello
Hey
Yess me... Hlo hlo ??
37292.

Find The zeros of quadratic polynomial √3x

Answer»
37293.

a^2b^2x^2-(4b^4-3a^4)x-12a^2b^2=0

Answer» The given quadratic equation isa2b2x2 - (4b4 - 3a4)x - 12a2b2 = 0.Comparing with Ax2 + Bx + C = 0, we getA = a2b2, B = -(4b4 - 3a4), C = -12a2b2Using the quadratic formula, {tex}x = \\frac { - B \\pm \\sqrt { B ^ { 2 } - 4 A C } } { 2 A }{/tex}we get{tex}= \\frac { \\left\\{ \\left( 4 b ^ { 4 } - 3 a ^ { 4 } \\right) \\right\\} \\pm \\sqrt { \\left( - \\left( 4 b ^ { 4 } - 3 a ^ { 4 } \\right) \\right\\} ^ { 2 } - 4 \\left( a ^ { 2 } b ^ { 2 } \\right) \\left( - 12 a ^ { 2 } b ^ { 2 } \\right) } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\sqrt { 16 b ^ { 8 } + 9 a ^ { 8 } - 24 a ^ { 4 } b ^ { 4 } + 48 a ^ { 4 } b ^ { 4 } } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\sqrt { 16 b ^ { 8 } + 9 a ^ { 8 } + 24 a ^ { 4 } b ^ { 4 } } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\sqrt { \\left( 4 b ^ { 4 } + 3 a ^ { 4 } \\right) ^ { 2 } } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } \\pm \\left( 4 b ^ { 4 } + 3 a ^ { 4 } \\right) } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}\\frac { 4 b ^ { 4 } - 3 a ^ { 4 } + 4 b ^ { 4 } + 3 a ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } } , \\frac { 4 b ^ { 4 } - 3 a ^ { 4 } - 4 b ^ { 4 } - 3 a ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } }{/tex}{tex}= \\frac { 8 b ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } } , \\frac { - 6 a ^ { 4 } } { 2 a ^ { 2 } b ^ { 2 } } = \\frac { 4 b ^ { 2 } } { a ^ { 2 } } , - \\frac { 3 a ^ { 2 } } { b ^ { 2 } }{/tex}{tex}\\therefore{/tex} the solutions of equation are {tex}\\frac { 4 b ^ { 2 } } { a ^ { 2 } } \\text { and } \\frac { - 3 a ^ { 2 } } { b ^ { 2 } }{/tex}.
37294.

What is algebraic algorithms

Answer»
37295.

if the product of two numbers are 540 and their HCF is 30 what is their LCM

Answer» HCF * LCM = product of two numbers ,30* LCM = 540,LCM = 540/30,LCM = 18
37296.

Why the value of sin90 always =1

Answer» √4/4=2/2=1
37297.

Y=2x+3 in graph method

Answer»
37298.

Find the sum of the following A.P\'s4. 1/15, 1/12,1/10.......to 11 terms

Answer» A.P\'s :\xa01/15, 1/12,1/10.......to 11 termsHere a=1/15d=1/12-1/15=5/60-4/60=1/60sum upto11th term S11=11/2*(2/15+10*1/60)=11/2*(8/60+10/60)=11/2*18/60=33/20
37299.

If -4 is a zero of the polynomial x^2-x-(2+2k) then find the value of k .

Answer» P(-4)=-4×-4-(-4)-(2+2k) =16+4-(2+2k) =20-2-2k =18-2k=18-2k=0=-2k=-18=2k=18K=18/2K=9 Okkkkkkkkk
37300.

Find 6 rational number between 0 and 1

Answer» 0=0/7 and 1=7/7 so rational no. between 0 and 1 are\xa01/7,2/7,3/7,4/7,5/7,6/7