Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

37301.

Express sec A in term of cot A

Answer» We have to express the trigonometric ratios sin A, sec A\xa0and tan A\xa0in terms of cot A.For sec A,By using identity {tex} \\sec ^ { 2 } A - \\tan ^ { 2 } A = 1{/tex}{tex} \\Rightarrow \\sec ^ { 2 } A = 1 + \\tan ^ { 2 } A{/tex}{tex} \\Rightarrow \\sec ^ { 2 } A = 1 + \\frac { 1 } { \\cot ^ { 2 } A } = \\frac { \\cot ^ { 2 } A + 1 } { \\cot ^ { 2 } A }{/tex}{tex} \\Rightarrow \\sec ^ { 2 } A = \\frac { 1 + \\cot ^ { 2 } A } { \\cot ^ { 2 } A }{/tex}{tex} \\Rightarrow \\sec A = \\frac { \\sqrt { 1 + \\cot ^ { 2 } A } } { \\cot A }{/tex}
37302.

Describe the politics of ur grandparents time ..... How is ....?

Answer»
37303.

Describe about the previous price of ur grandparents time ...

Answer»
37304.

Describe the previous food habits of ur grandparents ...

Answer»
37305.

Find the value of k so that tha lines 2x-3y=9 and kx-9y=18 will be parallel

Answer» K,6
37306.

Find the value of \'a\' so that the point (3,9) lies on the line represented by 2x-2y=5

Answer» Since the point (3, a) lies on the line 2x - 3y = 5, we have2\xa0{tex}\\times{/tex}\xa03 - 3\xa0{tex}\\times{/tex}\xa0a = 5{tex}\\Rightarrow{/tex}\xa06 - 3a = 5{tex}\\Rightarrow{/tex}\xa03a = 1{tex}\\Rightarrow{/tex}\xa0{tex}a = \\frac { 1 } { 3 }{/tex}
37307.

If the point A(1,2) ,B(4,3), C(6,6) are three points of a parallelogram ABCD then find fourth point

Answer» Let coordinates of D be\xa0{tex}( \\alpha , \\beta ){/tex}\xa0P is mid-point of AC and BD.{tex}\\therefore \\quad \\left( \\frac { \\alpha + 4 } { 2 } , \\frac { \\beta + 3 } { 2 } \\right){/tex}{tex}= \\left( \\frac { 1 + 6 } { 2 } , \\frac { 2 + 6 } { 2 } \\right){/tex}{tex}\\Rightarrow \\frac { \\alpha + 4 } { 2 }{/tex}{tex}= \\frac { 7 } { 2 } ; \\frac { \\beta + 3 } { 2 } = \\frac { 8 } { 2 }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\alpha + 4 = 7 ; \\beta + 3 = 8{/tex}{tex}\\Rightarrow \\quad \\alpha = 3 ; \\beta = 5{/tex}{tex}\\therefore{/tex}\xa0Coordinates of D are (3, 5).
37308.

By method of Completing square x2+4x+10=0

Answer» x2+4x+10=0x2+4x=-10Multiply by 4a=4*1=44x2+16x=-40adding b2=(-4)2=164x2+16x+16=16-40(2x)2+2*(2x)(4)+42=-24{tex}\\begin{array}{l}(2x+4)^2=4\\times-6\\\\2x+4=\\pm\\sqrt{4\\times-6}\\\\2x=-4\\pm2\\sqrt{-6}\\\\x=-2\\pm\\sqrt{-6}\\\\\\\\\\\\\\end{array}{/tex}\xa0\xa0\xa0\xa0\xa0\xa0\xa0\xa0\xa0\xa0\xa0\xa0
37309.

Find all zeroes of polynomial 4x4 - 20x3 + 5x - 6 , if two of its zeroes are 2and 3

Answer» 16-60+5×2-6-44+4=-40
37310.

What is the difference between the zeroes and the roots?PLEASE

Answer» They both are used to denote the solution of the polynomial. You can either use roots or zeroes . Both are same.
37311.

proof that triangle abc angle b 90 and ab is 8 cm and ac is 6 cm. bc 5 cm

Answer» Not possible , as AB2\xa0+ BC2\xa0\xa0= 82\xa0+ 52\xa0 => 64\xa0+ 25\xa0 => 89\xa0which is not equals to 62\xa0i.e. 36.If angle B is 90 degrees then its opposite side will be AC and also it will be the hypotenuse, and AC = 6cm\xa0.But in a right-angled triangle the hypotenuse is the most longest side.\xa0and here in the given situation the hypotenuse is smaller than one of the sides given.Thus , this condition is not possible.
37312.

What is siddhacharyas rule

Answer» Is it siddhacharyas rule or shree dharacharyas rule? Confirm it fast so I can told you the right one....
37313.

7429 lcm kese nikalw

Answer» By factorisation method 23×17×19
7429 LCM
37314.

31038 upon cot 52 - 4 sec 5 upon cosec 85

Answer» Question is not clear, please resend the correct question.\xa0
37315.

If 3cot a =4 chech

Answer»
37316.

(1-sin²A)sec²A=1

Answer» (1-sin²A)sec²A=1LHS =(1-sin²A)sec²A=cos2A*1/cos2A=1=RHS
37317.

Write the degree of zero polynomial

Answer» Can\'t be defined.
37318.

Solve the equation:0.5(x-0.4)/0.35-0.6(x-2.17)=x+6.1

Answer» 1st u multiple both side by 10 then equation will be easy and when do not solve questions of u please say me
37319.

Solve x and y 152x-378y =-74,-378x+152y=-604

Answer» The given equations are{tex}152x - 378y = -74{/tex} ...(i){tex}-378x\xa0+ 152y = -604{/tex}. ... (ii)Clearly, the coefficients of x\xa0and y in one equation are interchanged in the other.Adding (i) and (ii), we get{tex}(152-378)x\xa0+ (-378 +152) y = -(74 + 604){/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(-226)x\xa0+ (-226)y = -678{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}(-226)(x + y) = -678{/tex}{tex}\\Rightarrow \\quad ( x + y ) = \\frac { - 678 } { - 226 } \\Rightarrow x + y = 3{/tex}. ...(iii)Subtracting (ii) from (i), we get{tex}(152 + 378) x + (-378 - 152)y = (-74 + 604){/tex}{tex}\\Rightarrow{/tex}530x\xa0- 530y = 530{tex}\\Rightarrow{/tex}\xa0530(x - y) = 530 {tex}\\Rightarrow{/tex}\xa0x\xa0- y = 1. ... (iv)Adding (iii) and (iv), we get 2x = 4 {tex}\\Rightarrow{/tex}\xa0x = 2.Subtracting (iv) from (iii), we get2y = 2 {tex}\\Rightarrow{/tex} y = 1.Hence, x = 2 and y = 1
37320.

Find the middle term of the A.P:6,13,20.....216

Answer» Ap:6 13 20.....216\xa0a=6. d=7. an=216an=a+(n-1)d216=6+(n-1)7On solving\xa0n=31\xa0So middle term is 16th term\xa0a16=a+15d =6+15×7 =6+105=111
37321.

Solve the following pair of linear equations by the substitution and cross multiplication method

Answer» Bhai pair hi nhi h
37322.

If 3cos`0 - 4sin`0 = 2cos`0 + sin`0 , then find value of tan`0

Answer» 3cos\'0-4sin\'0=2cos\'0+sin\'03cos\'0-2cos\'0=5sin\'0cos\'0=5sin\'0cos\'0÷sin\'0=5cot\'0=51÷tan\'0=5tan\'0=1÷5
37323.

Show that square of an odd positive integer can be of the form 6q+1 or 6q+3 for some integer \'q\'

Answer» We know that any positive integer can be of the form 6m, 6m + 1, 6m + 2, 6m + 3, 6m + 4 or 6m + 5 for some integer m.So, an odd positive integer x is of the form 6m +1 or 6m + 3.CASE I When x = 6m + 1: In this case,x2 = (6m + 1)2 = 36m2 + 12m + 1 = 6 (6m2 + 2m) + 1 = 6q + 1, where q = 6m2 + mCASE II When x = 6m + 3: In this case,x2 = (6m + 3)2 = 36m2 + 36m + 9 = (36m2 + 36m + 6) + 3= 6 (6m2 + 6m + 1) + 3 = 6q + 3, where q = 6m2 + 6m + 3.
37324.

Divide 39 into two parts such that their product is 324.A question from quadratic equation.

Answer» {tex}\\large Solution:{/tex}\t\xa0{tex}\\large Let \\space \'a\'\\space\\space and\\space \'b\'\\space be\\space the\\space two\\space numbers.{/tex}{tex}\\large Thus,\\begin{cases} \\ \\\\ \\ \\\\ \\ \\end{cases}{/tex}\xa0{tex}\\Large a+b=39 \\dots (i)\\\\\\Large a\\times b=324\\dots(ii){/tex}{tex}\\large Putting \\space b=39-a\\space in\\space the\\space eq.\\space(ii)\\space,we\\space get{/tex}{tex}\\Large \\implies a\\times b=324\\\\\\Large \\implies a\\times (39-a)=324\\\\\\Large \\implies39a-a^2=324\\\\\\Large \\therefore a^2-39a+324=0\\\\ \\space\\\\\\Large \\therefore a=12,\\space 27.{/tex}\xa0{tex}\\huge a{/tex}{tex}\\huge b{/tex}{tex}\\huge a+b{/tex}{tex}\\huge a\\times b{/tex}{tex}\\huge 12{/tex}{tex}\\huge 27{/tex}{tex}\\huge 39{/tex}\xa0{tex}\\huge 324{/tex}\xa0{tex}\\huge 27{/tex}\xa0{tex}\\huge 12{/tex}\xa0{tex}\\huge 39{/tex}\xa0{tex}\\huge 324{/tex}\xa0\t
37325.

Show that cube of any positive integer is of form of 4 m 4m+1 4m+8

Answer» Let a be the positive integer and b = 4.Then, by Euclid’s algorithm, a = 4q + r for some integer q ≥ 0 and r = 0, 1, 2, 3 because 0 ≤ r < 4.So, a = 4q or 4q + 1 or 4q + 2 or 4q + 3.{tex}(4q)^3\\;=\\;64q^3\\;=\\;4(16q^3){/tex}= 4m, where m is some integer.{tex}(4q+1)^3\\;=\\;64q^3+48q^2+12q+1=4(\\;16q^3+12q^2+3q)+1{/tex}= 4m + 1, where m is some integer.{tex}(4q+2)^3\\;=\\;64q^3+96q^2+48q+8=4(\\;16q^3+24q^2+12q+2){/tex}= 4m, where m is some integer.{tex}(4q+3)^3\\;=\\;64q^3+144q^2+108q+27{/tex}=4×(16q3+36q2+27q+6)+3= 4m + 3, where m is some integer.Hence, The cube of any positive integer is of the form 4m, 4m + 1 or 4m + 3 for some integer m.
Thank you so much
37326.

If the points (2,1) and(1,-2) are equidistant from the point (x,y),show that x+3y=0

Answer»
37327.

1/7x+1/6y=3, 1/2x-1/3y=5

Answer» 6X+7Y=126......(eq. 1)3X-2Y=30..........(eq. 2)For making l.h.s. sameMultiply eq (2) with 2,We will get 6X-4Y=60Mark it as 3 Solve 1 and 3 We will getX=14Y=6
Take lcm and solve
37328.

12(6)

Answer» 72 is the answer
37329.

If one zero of the polynomial (a^2)x^2 +13x+6a is reciprocal of the other , find the value of a

Answer» 6
37330.

Find the value of k for which the roots are real and equal1) kx(x-2root5)+10=0

Answer»
37331.

1st term syllabus of class 10 maths

Answer» 1,2,3&4th chapter
No thanks
PolynomialsLinear eqAPTrianglesStatisticsQuadratic eqns
37332.

Find the value of K for which the roots are real and equal1) (2K+1)x^2+2(K+3)x+(K+5)=0

Answer» We have, {tex}(2k+1)x^2+2(k+3)x+(k+5)=0{/tex}Here, a=(2k+1),b=2(k+3), c=(k+5){tex}\\therefore D=b^2-4ac=4(k+3)^2-4(2k+1)(k+5){/tex}{tex}=4k^2+36+24k-8k^2-40k-4k-20=-4k^2-20k+16{/tex}{tex}=-4(k^2+5k-4){/tex}For the equation having equal roots,{tex}D=0 \\implies k^2+5k-4=0{/tex}{tex}k = {-5 \\pm \\sqrt{5^2-4(1)(-4)} \\over 2(1)}={-5 \\pm \\sqrt{41} \\over 2}{/tex}
37333.

If x-p is a factor of both x2-ax+b and x2-cx+d then prove p=d-b÷c-a( note that the x2 is x square)

Answer»
37334.

Solve x:root 2x +5 +x = 132

Answer»
37335.

Sim15°cos75°+cos15°sin75°Tan5°tan30°tan55°tan85°

Answer»
37336.

All formula of chapter 2

Answer»
37337.

2/X+3/y =135/X-4/y=-2

Answer» Putting {tex}\\frac 1x{/tex}= u and {tex}\\frac 1y{/tex}\xa0= v, the given equations become{tex}2u+ 3v\xa0= 13{/tex} .... (i){tex}5u - 4v = -2{/tex} .......(ii){tex}\\text{Multiplying (i) by 4 and (ii) by 3 and adding the results, we get}{/tex}{tex}8u\xa0+ 15u\xa0= 52 - 6{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}23u = 46{/tex}{tex}\\Rightarrow \\quad u = \\frac { 46 } { 23 } = 2{/tex}{tex}\\text{Putting u\xa0= 2 in (i), we get}{/tex}(2 {tex}\\times {/tex}\xa02) + 3v\xa0= 13 {tex}\\Rightarrow{/tex}\xa03v\xa0= 13 - 4 = 9 {tex}\\Rightarrow{/tex}\xa0v\xa0= 3.Now,u\xa0= 2{tex}\\Rightarrow \\frac { 1 } { x } = 2 \\Rightarrow 2 x = 1 \\Rightarrow x = \\frac { 1 } { 2 }{/tex}And, v\xa0= 3 {tex}\\Rightarrow \\frac { 1 } { y } = 3 \\Rightarrow 3 y = 1 \\Rightarrow y = \\frac { 1 } { 3 }{/tex}Hence,\xa0{tex}x = \\frac { 1 } { 2 } \\text { and } y = \\frac { 1 } { 3 }{/tex}
37338.

Find the quadratic polynomial whose zeroes are 3+ √5 and 3_√5

Answer» This also seems like you didn\'t learn chapter 4 in a better way.{tex}\\large{Question: \\space Zeroes=3+\\sqrt5 \\space and \\space 3-\\sqrt 5,\\space find\\space the \\space quadratic\\space equation?}{/tex}{tex}\\large Solution:{/tex}\t{tex}\\large {For\\space any\\space quadratic\\space equation,\\space x^2+x\\times(\\alpha+\\beta)+(\\alpha\\times\\beta)=0\\space }{/tex}{tex}\\large {Here,\\space let\\space\\space\\alpha=3+\\sqrt5 \\space\\space\\space\\space,\\space\\space\\space\\space\\beta=3-\\sqrt5.\\space }{/tex}{tex}\\large {Thus,\\space\\space\\space\\alpha+\\beta=3+\\sqrt5 +3-\\sqrt5 = 6\\space\\space\\space\\space,\\space\\space and\\space\\space\\alpha\\times\\beta=(3+\\sqrt5)(3-\\sqrt5)=3^2-\\sqrt5 ^2=9-5=4.\\space }{/tex}{tex}\\large {\\therefore\\space x^2+x\\times(\\alpha+\\beta)+(\\alpha\\times\\beta)=0\\space }\\\\\\large {\\implies\\space x^2+x\\times(6)+(4)=0\\space }\\\\\\large {\\implies\\boxed{\\space x^2+6x+4=0}\\space }\\\\{/tex}\tNow after seeing this, don\'t you think this is a very very simple thing to do.
37339.

Can 72 and 20 be the L.C.M and H.C.F of two numbers? Write down the reason.

Answer» Question : Can 72 and 20 be the L.C.M and H.C.F of two numbers? Write down the reason.This is a very pathetic question to ask. It really shows that you are not studying well.Solution:\xa0{tex}\\large{\\implies \\boxed{LCM\\times HCF=a\\times b}}{/tex}{tex}\\large{\\implies{72\\times20=a\\times b}}{/tex}{tex}\\large{\\implies{1440=a\\times b}}{/tex}Now, 1440 can be multiple of any two numbers.{tex}\\large{\\implies{\\space\\space1\\times1440=1440 }}\\\\\\large{\\implies{\\space\\space2\\times720\\space\\space=1440 }}\\\\\\large{\\implies{\\space\\space3\\times480\\space\\space=1440 }}\\\\\\large{\\implies{\\space\\space4\\times360\\space\\space=1440}}\\\\\\large{\\implies{\\space\\space5\\times288\\space\\space=1440}}\\\\\\large{\\implies{\\space\\space6\\times240\\space\\space=1440}}\\\\\\large{\\implies{\\space\\space8\\times180\\space\\space=1440}}\\\\\\large{\\implies{\\space\\space9\\times160\\space\\space=1440 }}\\\\\\large{\\implies{10\\times144\\space\\space=1440 }}\\\\\\large{\\implies{12\\times120\\space\\space=1440 }}\\\\\\large{\\implies{15\\times96\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{16\\times90\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{18\\times80\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{20\\times72\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{24\\times60\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{30\\times48\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{32\\times45\\space\\space\\space\\space=1440 }}\\\\\\large{\\implies{36\\times40\\space\\space\\space\\space=1440 }}\\\\{/tex}
37340.

What is quardatic equation

Answer» Quadratic equeation is those equation when the power of equation is two
QUADRATIC EQUATIONSThe polynomial of degree two is called quadratic polynomial and equation corresponding to a quadratic polynomial P(x) is called a quadratic equation in variable x.Thus, P(x) = ax2\xa0+ bx + c =0, a ≠ 0, a, b, c ∈ R is known as the standard form of quadratic equation.There are two types of quadratic equation.(i)\xa0Complete quadratic equation :\xa0The equation ax2\xa0+ bx + c 0 where a ≠ 0, b ≠ 0,c ≠ 0(ii)\xa0Pure quadratic equation :\xa0An equation in the form of ax2\xa0= 0, a ≠ 0, b = 0, c = 0
A equation whose maximum power is 2 called quadratice equation
37341.

Find the largest number that will divide 398 436 and 542 leaving remainders 7 11 and 15 respectively

Answer» The required number = HCF ( 398-7),(436-11),(542-15)= HCF (391),(425),(527)= 17.
37342.

Form the cubic polynomial whose zeros are minus 3 minus 1 and 2

Answer» x^3 -(-3)x^2 + (-1)x - 2= x^3 + 3x^2 - x - 2
37343.

If the product of the zeros of the polynomial ax²-6x-6 is 4 find the value of a

Answer» What is value of a
Product of zeroes =4
37344.

3x÷2 -5y÷3 = -2

Answer»
37345.

Draw the graph of if(x)=x^2-2x-8 2)f(x)=2x^2

Answer»
37346.

If if the LCM of 65 and 117 is expressible in the form 65 M - 117 then find the value of m

Answer» h. c. f. of 65 & 117 =65=5*13117=3*3*13h. c. f. = 13.A. T. Q. ,H. C. F=65m-11713=65m-11713+117=65m130=65m130/65=m2=m. ,m=2L. C. M=65=5*13117=3*3*13L. C. M= 3*3*5*13585(ans).it will help
37347.

Has the rational number 441/2^2 x5^7 x7^2 a terminating or a non-terminating decimal representation

Answer» 441 / ( 2^2 * 5^7 * 7^2 )= ( 3^2 * 7^2 ) / ( 2^2 * 5^7 * 7^2 )= 3^2 / ( 2^2 * 5^7 )Since the denominator of this rational number is in the form of 2^ m * 5^n,so it will have terminating decimal representation.
37348.

sin 45\'+cos45

Answer» 1
1
37349.

Difference between zeroes and roots of quadratice equatoin

Answer» There are no difference between zeroes and roots Zeroes is the other name of roots.
Both are the same
roots are related with equation eg 2x+3y=0 . zeros are related with factorization eg 2x+3y+3
Zero is for a function and root is for an equation. The zero of the function f(x)=x+1 is -1. The root of the equation x+1=0 is -1.
37350.

If two zeros of a polynomial X^3-3x^2+2 are 1+√3 and 1-√3, then find the third zero

Answer» use solved example of chapter 2 for reference