Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

39351.

Factor of x(x+1)-306

Answer» X=-18and 17
X= -17 and 18
39352.

a×b

Answer» ab
39353.

Solve it -1.3(8+3)

Answer» 14.3
33
14.3
14.3
14.1
39354.

1+tan2=

Answer» Sec2
39355.

X+2y=3/2 2x+y=3/2

Answer» X=1/6 and Y=2/3
X=2,y=2
39356.

Find the k value (2k-1)x+(k-1)y=2k+1

Answer» here what is the value of x&y????
39357.

decimal expansion of 1717/2×5™3

Answer» 1.717
39358.

In a a.p the sum of first n terms is 3n2+n find its 22nt term.

Answer» pls explain it
write the question properly
130
39359.

Polynomial types

Answer»
39360.

What is the HCF of smallest prime number and the composite number?

Answer» 2
Smallest prime no. is 2 and smallest composite no. is 4 thus HCF is 2 itself.
2
1
39361.

(3+√5)×(3-√5)

Answer» We use (a+b)(a-b)identity then Answer is 4
(3+√5)(3-√5)=(3)^2-(√5)^2=9-5=4As there is a identity (a+b)(a-b)=a^2-b^2
39362.

X²+7x +10

Answer» X^2+5x+2x+10=0X(x+5)+2(x+5)=0(X+2)or(x+5)=0X=-2,x=-5
39363.

If the area of two similar triangle are equal, prove that they are congruent

Answer» Given:{tex}∆ABC\\sim∆PQR{/tex}and\xa0{tex}ar∆ABC=ar∆PQR{/tex}To prove:\xa0{tex}∆ABC\\cong∆PQR{/tex}Proof:\xa0{tex}∆ABC\\sim∆PQR{/tex}\xa0Also\xa0{tex}\\operatorname { ar } ( \\Delta A B C ) = \\operatorname { ar } ( \\Delta P Q R ){/tex}\xa0(given)or,\xa0{tex}\\frac { \\operatorname { ar } ( \\Delta A B C ) } { \\operatorname { ar } ( \\Delta P Q R ) } = 1{/tex}Or\xa0{tex}\\frac{AB^2}{PQ^2}=\\frac{BC^2}{QR^2}=\\frac{CA^2}{RP^2}=1{/tex}Or\xa0{tex}\\frac{AB}{PQ}=\\frac{BC}{QR}=\\frac{CA}{RP}=1{/tex}Hence we get thatAB=PQ,BC=QR and\xa0CA=RPHence\xa0{tex}∆ABC\\cong ∆PQR{/tex}
39364.

Root x+y=7. X+ root y =11

Answer» Que is wrong. √X+Y=11X+√Y=7
39365.

Prove that both the roots of equations(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0

Answer» The given equation is; (x - a)(x - b)+(x - b)(x - c)+(x - c)(x - a) =0\xa0{tex}\\Rightarrow{/tex}\xa0(x2\xa0- ax - bx + ab) + (x2- bx - cx + bc) +(x2\xa0- cx - ax + ac) = 0{tex}\\Rightarrow{/tex}3x2\xa0- 2x(a + b + c) + (ab + bc + ca) = 0.....(1).\xa0Discriminant \'D\' of quadratic equation (1) is given by;{tex}\\therefore{/tex}\xa0D = 4(a + b + c)2\xa0- 12(ab + bc\xa0+ ca)= 4[(a + b + c)2\xa0- 3(ab + bc + ca)]= 4(a2 + b2 + c2\xa0- ab - bc\xa0- ca)= 2(2a2\xa0+ 2b2 + 2c2 -\xa02ab - 2bc\xa0- 2ca)= 2 [(a - b)2 + (b - c)2 + (c - a)2] ≥ 0[{tex}\\because{/tex}\xa0(a - b)2\xa0≥ 0, (b - c)2\xa0{tex}{/tex}\xa0≥ 0 and (c - a)2\xa0{tex}{/tex}\xa0≥ 0].This shows that both the roots of the given equation are real.For equal roots, we must have D = 0.Now, D = 0 {tex}\\Rightarrow{/tex}\xa0(a - b)2\xa0+ (b - c)2\xa0+ (c - a)2= 0{tex}\\Rightarrow{/tex}\xa0(a - b) = 0, (b - c) = 0 and (c - a) = 0 (sum of squares can be zero only if they all are equal to 0){tex}\\Rightarrow{/tex}\xa0a = b = c.Hence, the roots are equal only when a = b = c
39366.

1/2-0.5=

Answer» =0
39367.

X2 -6x+3=0

Answer» D =b2 -4ac =36-12 =24x=-b +root D /2a x=6+2root 6/2x=2(3 +root 6)/2 x=3+root6x =-b -root D /2a x=6-2root 6/2x=3-root6
39368.

For what value of K , (-4) is a zero of P(X)=x square - x - (2k-2)?

Answer» P(X) =X²- X - (2K-2) P(-4) =(-4)² - (-4) - (2K-2 IF P(X) =0 16+4-2K+2=0 22-2K=0 22=2K 22/2=K 11=K
39369.

Any thoghest question of maths chapter triangles for class 10th

Answer» example number 13
39370.

-4,_,_,_,_,6

Answer» -2
-2
39371.

what is the syllabus for2019

Answer» Ncert me zitna chapter hai bss utna hi padhna hai
39372.

What is the formula of substitution method

Answer» No formula will be there only we substitute the value of x and y and put into other equation
39373.

5x+2x =2 (3x+1

Answer» X=1
X=2
X=2
X=1
39374.

ax square +7x +b =0 find value of a and b if x=2/3 and x=-3

Answer» a=3 and b=6
39375.

How money will add to paytam

Answer»
39376.

11term of the AP -3,-1/2, 2 ........is\xa0

Answer» The given AP is\xa0{tex} - 3,\\frac{1}{2},2,......{/tex}Here, a = -3{tex}d = - \\frac{1}{2} - ( - 3) = - \\frac{1}{2} + 3 = \\frac{5}{2}{/tex}and n = 11a11 = ?We have, an = a + (n - 1)dSo,\xa0{tex}{a_{11}} = - 3 + (11 - 1)\\left( {\\frac{5}{2}} \\right){/tex}{tex} \\Rightarrow {a_{11}} = - 3 + 25{/tex}{tex} \\Rightarrow {a_{11}} = 22{/tex}
39377.

What is rational and irrational ..

Answer» a no. of the form p/q or which could be express in the form of p/q where p and q are integers and q is not equal to 0 is known as rational no. a no. which is not of the form p/q or which could nog be expressed in the form p/q where p and q are integers and q is not equal to 0 is known as irrational no.
p/q=0 rational number p/q=/o
39378.

How many terms of the ap: 9,17,25...must be taken to give a sum of 636

Answer» According to the question,we have,\xa0a=9. Therefore, common difference d =17-9=8let the required number of terms be n.Therefore, Sn=636{tex}\\Rightarrow{/tex}{tex}\\frac{n}{2}{/tex}[2a+(n-1)d]=636{tex}\\Rightarrow{/tex}{tex}\\frac{n}{2}{/tex}[2(9)+(n-1)8]=636{tex}\\Rightarrow{/tex}n[18+8n-8]=1272{tex}\\Rightarrow{/tex}8n2+10n-1272=0{tex}\\Rightarrow{/tex}4n2+5n-636=0{tex}\\Rightarrow{/tex}4n2+53n-48n-636=0{tex}\\Rightarrow{/tex}n(4n+53)-12(4n+53)=0{tex}\\Rightarrow{/tex}(4n+53)(n-12)=0{tex}\\Rightarrow{/tex}4n+53=0 or n-12=0{tex}\\Rightarrow{/tex}n={tex}\\frac{{ - 53}}{4}{/tex}\xa0or n=12Since number of terms cannot neither be negative nor fraction, n=12hence, the required number of terms is 12.
39379.

Can give Solution of 14.1 by all three methods of mean

Answer» Fhvcnhg FL
39380.

1/2-/2-1/2-x

Answer»
39381.

How to verify the sums of intesers

Answer»
39382.

Did cbse put question only ncert book

Answer» Questions are based on information given in ncert books but the questions are asked in different ways.
39383.

How can we solve math and understand very well

Answer» By continuous practise
39384.

If alpha and beta aer the zeroes of p(x)-x2-x-1 find alpha and beta

Answer» (1+√5)/2 and (1-√5)/2
39385.

Show that sin b+c/2 =cos a/2

Answer» \xa0A, B, C, are interior angles of a\xa0{tex}\\Delta {/tex}{tex}\\because A + B + C = 180 ^ { 0 }{/tex}{tex}\\Rightarrow B + C = 180 ^ { 0 } - A \\Rightarrow \\frac { B + C } { 2 } = 90 ^ { 0 } - \\frac { A } { 2 }{/tex}{tex}\\Rightarrow \\sin \\frac { \\mathrm { B } + \\mathrm { C } } { 2 } = \\sin \\left( 90 ^ { \\circ } - \\frac { \\mathrm { A } } { 2 } \\right) \\left[ \\because \\sin \\left( 90 ^ { 0 } - \\theta \\right) = \\cos \\theta \\right]{/tex}{tex}\\Rightarrow \\sin \\frac { \\mathrm { B } + \\mathrm { C } } { 2 } = \\cos \\frac { \\mathrm { A } } { 2 } \\text { proved }{/tex}LHS = RHS
39386.

Sin+cos=√2sin then find value of sin -cos

Answer»
39387.

Find the area of the shaded region if PQ=24cm PR=7 cm and O is the centre of the circle

Answer» Give me solution of these question
84 sq.cm
39388.

Is b/a solution of a^2x^2-3a^2b^2x+2b^2

Answer»
39389.

A one root of quadratic equation2x^2+px-15=0 is -5 find the value of p solution

Answer» Given that -5 is the root of\xa0{tex}2 x^{2}+p x-15=0{/tex}Put x = -5 in\xa0{tex}2 x^{2}+p x-15=0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}2(-5)^{2}+p(-5)-15=0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}50-5 p-15=0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}35 - 5p = 0\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}5p = 35\xa0{/tex}{tex}\\therefore{/tex}\xa0{tex}p = 7{/tex}Hence the quadratic equation p {tex}(x^2 + x) + k = 0{/tex} becomes,\xa0{tex}7\\left(x^{2}+x\\right)+k=0{/tex}{tex}7 x^{2}+7 x+k=0{/tex}\xa0Here {tex}a = 7,\\ b = 7\\ and\\ c = k{/tex} Given that this quadratic equation has equal roots\xa0{tex}\\therefore{/tex}\xa0{tex}b^{2}-4 a c=0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}7^{2}-4(7)(\\mathrm{k})=0{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}49 - 28k = 0\xa0{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}49 = 28k\xa0{/tex}{tex}\\therefore{/tex}\xa0k = {tex}\\frac{49} {28}{/tex}\xa0=\xa0{tex}\\frac{7} {4}{/tex}
39390.

2/√x+3/√y=2;4/√x-9/√y

Answer» Question incomplete
39391.

If 3sinA + 5cosA =5 prove that 5sinA - 3cosA=+-3

Answer»
39392.

If x= y and x and y are some integers then prove that 1= 2.

Answer»
39393.

What do you mean by Euclid division algorithm

Answer» If a and b are positive integers such that a=bq+r,then every common divisor of a and b is a common divisor of b and r, and vice-versa
39394.

1-5-5+5442-*75-/55

Answer»
39395.

(sec theta -tan theta)^2 =1-sin theta/1+sin theta

Answer»
39396.

Sin theta = cos theta prove

Answer»
39397.

cosA-sinA+1/cosA+sinA-1=cosecA-cotA

Answer» LHSDIVIDE NUMERATOR AND DENOMINATOR BOTH BY sin A =(CosA÷sinA - sinA÷sinA +1÷sinA)/(cosA÷sinA + sinA÷sinA - 1÷sinA)=(CotA-1+cosecA)/(cotA+1-cosecA)At the place of 1 at the numerator write (cosec2A -cot2A)={CotA+cosecA-(cosec2A-cot2A)}/(cotA-cosecA+1)={CotA+cosecA-(cosecA+cotA)(cosecA-cotA)}/(cotA-cosecA+1)=(CotA+cosecA){1-(cosecA-cotA)}/(cotA-cosecA+1)={(cotA+cosecA)(1-cosecA+cotA)}/(cotA-cosecA+1)=CotA+cosecAHENCE PROVEDLHS=RHS
39398.

cosA-sinA+1---------------------. = cosecA+cotAcosA+sinA-1

Answer»
39399.

ax-by=a2-b2,x+y=a+b

Answer» x=a ,y=b
39400.

Find yX+y=14

Answer»