Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

39601.

AM is a median of a triangle ABC is AB+BC>2AM?

Answer» In {tex}\\triangle{/tex}ABMAB + BM > AM....[Sum of the lengths of any two sides of a triangle is greater than the length of the third side].....(1)In {tex}\\triangle{/tex}ACMCA + CM > AM....[Sum of the lenghts of any two sides of a triangle is greater than the length of the third side].....(2)Sum (1) and (2)(AB + BM) + (CA + CM) > AM + AM{tex}\\therefore{/tex}\xa0AB + (BM + CM) + CA > 2AM{tex}\\therefore{/tex}\xa0AB + BC + CA > 2AM
39602.

Tan A+CotA=2 than find the valu of Tan squarA- cot squareA

Answer» Given, tan A + cot A = 2We need to square\xa0both sides,\xa0(tan A + cot A)2 = (2)2{tex}\\Rightarrow{/tex}tan2A + cot2A + 2 tan A. cotA = 4\xa0{tex}[(a+b)^2=a^2+b^2+2ab]{/tex}{tex}\\Rightarrow{/tex}tan2A + cot2A + 2 tan A{tex}\\times \\frac { 1 } { \\tan A }{/tex}= 4{tex}\\Rightarrow{/tex}tan2A + cot2A + 2 = 4{tex}\\Rightarrow{/tex}tan2A + cot2A = 4 - 2 =\xa02Therefore the value of\xa0tan2 A + cot2 A = 2
39603.

maths ex7.1solution

Answer» Check NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
39604.

Find the value of k if 8k+4,6k-2 and 2k-7 are in ap

Answer» Difference=d,d=d,6k-2-(8k+4)=2k-7-(6k-2),6k-2-8k-4=2k-7-6k+2,-2k-6=-4k-5,2k=11,k=11/2
12k-4=8k+4+2k-712k-10k =-3+42k= 1k=1/2
39605.

CosA 0.6,show that(5sinA-3tanA)=0

Answer» Given,\xa0cos{tex}\\theta{/tex}\xa0= 0.6\xa0{tex}= \\frac { 6 } { 10 } = \\frac { 3 } { 5 }{/tex}Let us draw a triangle ABC in which\xa0{tex}\\angle{/tex}B =\xa090°.Let\xa0{tex}\\angle{/tex}A =\xa0{tex}\\theta{/tex}°.Then,\xa0{tex}\\cos \\theta = \\frac { A B } { A C } = \\frac { 3 } { 5 }{/tex}Let AB = 3k and AC = 5k, where k is positive.By Pythagoras\' theorem, we haveAC2\xa0= AB2 + BC2{tex}\\Rightarrow{/tex}BC2\xa0= AC2\xa0- AB2\xa0= (5k)2\xa0- (3k)2\xa0= 25k2\xa0- 9k2\xa0= 16k2{tex}\\Rightarrow \\quad B C = \\sqrt { 16 k ^ { 2 } } = 4 k{/tex}{tex}\\sin \\theta = \\frac { A B } { A C } = \\frac { 4 k } { 5 k } = \\frac { 4 } { 5 }{/tex}{tex}\\cos \\theta = \\frac { 3 } { 5 }{/tex}{tex}\\tan \\theta = \\frac { \\sin \\theta } { \\cos \\theta } = \\left( \\frac { 4 } { 5 } \\times \\frac { 5 } { 3 } \\right) = \\frac { 4 } { 3 }{/tex}{tex}\\Rightarrow ( 5 \\sin \\theta - 3 \\tan \\theta ) = \\left( 5 \\times \\frac { 4 } { 5 } - 3 \\times \\frac { 4 } { 3 } \\right) = 0{/tex}Hence,\xa0(5sin{tex}\\theta{/tex}\xa0- 3 tan{tex}\\theta{/tex}) = 0.
39606.

A:B=2:6 B:C=5:7 and C:D=1:9 find A:B:C:D

Answer»
39607.

Prove that:tan theta - 1 + sec theta / tan theta + 1-sec theta = 1 / sec theta - tan theta

Answer» L.H.S={tex}\\frac { \\tan \\theta + \\sec \\theta - 1 } { \\tan \\theta - \\sec \\theta + 1 }{/tex}{tex}= \\frac { ( \\tan \\theta + \\sec \\theta ) - \\left( \\sec ^ { 2 } \\theta - \\tan ^ { 2 } \\theta \\right) } { \\tan \\theta - \\sec \\theta + 1 }{/tex}\xa0{tex}[\\because sec^2\\theta-tan^2\\theta=1]{/tex}{tex}= \\frac { ( \\tan \\theta + \\sec \\theta ) - ( \\sec \\theta - \\tan \\theta ) ( \\sec \\theta + \\tan \\theta ) } { \\tan \\theta - \\sec \\theta + 1 }{/tex}{tex}= \\frac { ( \\tan \\theta + \\sec \\theta ) [ 1 - \\sec \\theta + \\tan \\theta ] } { \\tan \\theta - \\sec \\theta + 1 }{/tex}=\xa0{tex}tan\\theta+sec\\theta{/tex}= R.H.S.Hence Proved.
39608.

Can i take 90 percent without practicing rd sharma in maths

Answer» Yes but hard work is needed
39609.

What is the answer of excercise 3.7

Answer» It is given in this app
39610.

Find the root of the following quadratic equation by factorisation:1. 2 X square + x - 6 = 0

Answer» Split the middle term in 4x-3x
39611.

integration under root 3 X square + 4 x + 1 DX

Answer»
39612.

If nth term of an AP is 5-11n . find common difference

Answer» -11 is the right answer.
an= 5-11na¹=5-11(1)=-6a²=5-11(2)=-17d=a²-a¹= -17-(-6)=-11Common difference is -11
23
39613.

Show that n square -1 is divisible by 8

Answer» Let n = 4q + 1 (an odd integer){tex}\\therefore \\quad n ^ { 2 } - 1 = ( 4 q + 1 ) ^ { 2 } - 1{/tex}{tex}= 16 q ^ { 2 } + 1 + 8 q - 1 \\quad \\text { Using Identity } ( a + b ) ^ { 2 } = a ^ { 2 } + 2 a b + b ^ { 2 }{/tex}{tex}= 16{q^2} + 8q{/tex}{tex}= 8 \\left( 2 q ^ { 2 } + q \\right){/tex}= 8m, which is divisible by 8.
39614.

Last 5 cbse exam paper

Answer» Search on google
You can use Google
39615.

how can we calculate ph value of any solution ?

Answer» By ph paper or ph solution
39616.

For an AP show that Tp+2q equal 2Tp+q

Answer» Let the first term be a and the common difference be d.we know,\xa0{tex}a_n= a+(n-1)d{/tex}{tex}a_p=a+(p-1)d{/tex}{tex}a_{p+2q}=a+(p+2q-1)d{/tex}\xa0{tex}\\therefore a_p+a_{p+2q}=a + (p - 1)d + a + (p + 2 q -1)d{/tex}{tex}= a + pd - d + a + pd + 2qd - d{/tex}{tex}= 2a + 2pd + 2qd - 2d{/tex}{tex}= 2[a + (p + q - 1) d]{/tex} ............(i){tex}2a_{p+q}=2[a + (p + q - 1 ) d ]{/tex}\xa0..........(ii)From (i) and (ii), we getap + ap + 2q\xa0= 2ap+q
39617.

If two points P(x,y) is equidistant from the points A(a+b,a-b) and B(a-b,a+b).Prove that bx=ay

Answer» |PQ| = |PR{tex}\\begin{aligned} \\sqrt { [ x - ( a + b ) ] ^ { 2 } + [ y - ( b - a ) ] ^ { 2 } } = \\sqrt { [ x - ( a - b ) ] ^ { 2 } + [ y - ( b + a ) ] ^ { 2 } } \\end{aligned}{/tex}Squaring, we get[x - (a + b)]2 + [y - (b\xa0- a)]2\xa0= [x - (a - b)]2 + [y - (a + b)]2or, [x - (a + b)]2 - [x - a + b]2\xa0= (y - a - b)2 - (y - b + a)2or, (x - a - b + x - a + b) ( x - a - b - x + a - b)= (y - a - b + y - b + a)(y - a - b - y + b - a)or, (2x - 2a) (- 2b) = (2y - 2b) (- 2a)or, (x - a)b = (y - b)aor, bx = ay.Hence Proved.
39618.

3d+1=5

Answer» 4/3
39619.

What is the degree of zero

Answer» Not defined but may be in a negative form like -1
There may be degree of zero but till now it is not discovered
There is no degree of o
May be 0
39620.

Find the value of A if 2sin 2A=√3

Answer»
39621.

2+2×98÷36

Answer» 10.88888889
5.5
67/9
39622.

√2

Answer» What is this..... what we do
39623.

For what value of K will the consecutive terms 2k+1,3k+3,and 5k-1 form and A.P

Answer» K = 6
39624.

Find the distance between the following pairs ofpoints

Answer» Where r the pair of points
39625.

What is mid point formula

Answer» X2+x1÷2 , y2+y1÷2
39626.

3(r-7)=4(r-8)

Answer»
39627.

Syllabus class 10 ,2018-19

Answer» Check syllabus here :\xa0https://mycbseguide.com/cbse-syllabus.html
39628.

Theorem 6.3: If in two triangles, corresponding

Answer»
39629.

If567+654/64

Answer»
39630.

2x+6y

Answer» What is 2x+6y
39631.

Cota+coseca-1/cota-coseca+1= 1+cosa/sina

Answer»
39632.

Show that any square of an odd positive integer is of the form 5q ,5q+1,5q+4 for some integer q

Answer» Any integer can be written in the form 5m , 5m+1, 5m+2 (where m is any integer)(5m)² = 25m² = 5 × 5m² = 5q (where q = 5m²)(5m+1)² = (5m)² + 2 ×5m × 1 + 1² [by using identity- (a+b)²= (a²+ 2ab +b² )] = 25m² + 10 m + 1 = 5 (5m²+ 2m) +1 = 5q +1 ( where q= 5m²+2m)(5m+2)²= (5m)² + 2× 5m × 2 +2² [by using identity- (a+b)²= (a²+ 2ab +b² )] = 25m² + 20 m +4 = 5 (5m²+4m ) + 4 = 5q+4 (where q= 5m²+4m)Hence proved
39633.

Another name of an

Answer»
39634.

Find the value of k if x2+2x+k is a factor of 2x4+14x2+5x+6Also find all the zeroes of polynomial

Answer» If g(x) = x2 + 2x + k is a factor of f(x) = 2x4 + x3 - 14x2 + 5x + 6, then remainder is zero when f(x) is divided by g(x).Let quotient = Q and remainder = RLet us now divide f(x) by g(x).R = x(7k + 21) + (2k2 + 8k + 6) -------(1) and Q = 2x2 - 3x - 2(k + 4).------------(2)Now, R = 0.{tex}\\Rightarrow{/tex}\xa0x (7k + 21) + 2 (k2 + 4k + 3) = 0\xa0{tex}\\Rightarrow{/tex}\xa07x (k + 3) + 2 (k+1)(k+3) = 0{tex}\\Rightarrow{/tex}\xa0(k+3) [7x + 2(k+1)] = 0{tex}\\Rightarrow{/tex}\xa0k + 3 = 0{tex}\\Rightarrow{/tex}\xa0k = -3Thus, polynomial f(x) can be written as,2x4 + x3 - 14x2 + 5x + 6 = (x2 + 2x + k) [2x2 - 3x - 2(k + 4)] = (x2 + 2x - 3) (2x2 - 3x - 2)Zeros of\xa0x2 + 2x - 3 are,x2 + 2x - 3 = 0{tex}\\Rightarrow{/tex}\xa0(x + 3) (x - 1) = 0{tex}\\Rightarrow{/tex}\xa0x = -3 or x = 1Zeros of\xa0(2x2 - 3x - 2) are,2x2 - 3x - 2 = 0{tex}\\Rightarrow{/tex}\xa02x2 - 4x + x - 2 = 0{tex}\\Rightarrow{/tex}\xa02x(x - 2) + 1(x - 2) = 0{tex}\\Rightarrow{/tex}\xa0(x - 2)(2x + 1) = 0x = 2 or x = -{tex}\\frac12{/tex}Thus, the zeros of f(x) are: -3 ,1, 2 and\xa0-{tex}\\frac12{/tex}
39635.

Chapter 14 formual

Answer»
39636.

if the diagonals of a quadrilateral divide each other proportinally then it is a trapezium

Answer» No
39637.

Ex4 all formula

Answer»
39638.

A thef

Answer»
39639.

Find the middle term of the AP 6;13;20:::; 216

Answer» 107.5
31
39640.

3+8

Answer» 2q
11
39641.

Chapter 8 all formula

Answer»
39642.

If sin theta=cos theta find the value of theta

Answer» 45degree
39643.

{2-3(2-3)Δ}Δ

Answer»
39644.

Blueprint board exam 10class 2018-2019

Answer»
39645.

secA=13/5 ,show that 2sinA-3cosA/4sinA-9cosA=3

Answer» Given that SecA=13/5. Then we know that Sec=hypotenius/Base, I.e,13/5Then we find perpendicular =12Thus, 2 sinA - 3cosA /4sinA -9cosA =3 {(2 ✖ 12/13 - 3 ✖ 5/13)/(4 ✖ 12/13 - 9 ✖ 5/13)} = 3or. {24 -15/48-45}=3 or. { 9/3}= 3Or. 3=3 Hence LHS=RHS
39646.

Find the value of k for which 2x2 +kx+3 =0 has two equal and real roots.

Answer» Since the eqaution has two equal roots, then b^2 - 4ac = 0== k^2 - 4×2×3=0 == k^2 - 24 == k^2=24 == k=+-√24 == k= +-2√6
39647.

What is BPT therom?

Answer» If a line is drawn parallel to one side of a triangle then it Intersects the other two sides of the triangle in the same ratio
basic proportional theorem
Basic proportionality theouram
39648.

Is (a+b)2 formlue

Answer» a2+2ab+b2
a2+b2+2ab
a2+b2+2ab
Yes a plus b whole sq. is a formulae
39649.

Rs agrawal ka questions and answers chahiye

Answer» Target nhi hai kya
R.D. nhi hai kya?
39650.

Prof That Exterional angel of triangle sum of opposite angel

Answer»