Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

40001.

State and prove phythagoras theorem

Answer» It is given in book
40002.

Sin(A-B) =1/2,Cos(A+B)=1/2. Find the value of A and B.

Answer» A=45B=15
40003.

If the sum of first 7 terms of an ap is 49 and that of 17 terms is 289 find the sum of n terms

Answer» 49=7/2[2a+6d]14=2a+6d7=a+3d_________134=2a+16d17=a+8d__________2a+3d=7a+8d=17______________on sub-5d=-10d=2a=1Sn=n/2{2+(n-1)2}Sn=n×n
40004.

How to do cross multiplication method

Answer» First shift the terms of RHS to LHS then sign will change , then use the formula
Its very easy see pg 60 of your ncert
40005.

Teri ma\'am kids chuf

Answer» What the hell???
40006.

Find the centre of a circle passing through(6,-6),(3,-7),(3,3)

Answer» Let\xa0A → (6, –6), B\xa0→ (3, –7) and C\xa0→ (3, 3).Let the centre of the circle be I(x, y)Then, IA = IB = IC [By definition of a circle]{tex}\\Rightarrow{/tex} IA2 = IB2 = IC2{tex}\\Rightarrow{/tex} (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2Taking first two, we get(x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2{tex}\\Rightarrow{/tex} x2 - 12x + 36 + y2 + 12y + 36 = x2 - 6x + 9 + y2 + 14y + 49{tex}\\Rightarrow{/tex} 6x + 2y = 14{tex}\\Rightarrow{/tex} 3x + y = 7 ......(1) ....[Dividing throughout by 2]Taking last two, we get(x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2{tex}\\Rightarrow{/tex} (y + 7)2 = (y - 3)2{tex}\\Rightarrow{/tex} (y + 7) = {tex}\\pm{/tex}(y-3)taking +e sign, we gety + 7 = y - 3{tex}\\Rightarrow{/tex} 7 = -3which is impossibleTaking -ve sign, we gety + 7 = -(y - 3){tex}\\Rightarrow{/tex} y + 7 = -y + 3{tex}\\Rightarrow{/tex} 2y = -4{tex}\\Rightarrow y = \\frac{{ - 4}}{2} = - 2{/tex}Putting y = -2 in equation (1), we get{tex}\\Rightarrow{/tex} 3x - 2 = 7{tex}\\Rightarrow{/tex} 3x = 9{tex}\\Rightarrow{/tex} x = 3Thus, I {tex}\\rightarrow{/tex} (3, -2)Hence, the centre of the circle is (3, -2).
40007.

X square + bx + c equal to zero

Answer» What we have to find
40008.

What is the externalSection formula

Answer» X=m1x2-m2x1÷m2-m1 similar for y put x to y
40009.

How much exam paper taken math

Answer»
40010.

Prove that cotA-cosA/cotA+cosA = cosecA-1/cosecA+1

Answer» cotA -cosA)/(cotA + cosA) = (cosecA-1)/(cosecA+1) (cotA -cosA)/(cotA + cosA)((cosA/sinA)-cosA)/((cosA/sinA)-cosA) cotA=cosA/sinAtaking cosA common from numretor nd denominatr nd cancelling it we get ((1/sinA)-1)/((1/sinA)+1) since 1/sinA=cosecA therfore (cosecA-1)/(cosecA+1)
40011.

@ is called....

Answer» @ is called at or at the rate.
At the rate
At the rate
At the rate
40012.

how to make prsentation on fraction

Answer» It is not possible
How is it possible
no not class 10 i am from class 6
40013.

If (1.7)^x=(0.17)^y=10^4 then find the value of:Xy/(y-x)

Answer»
40014.

2ab=cd

Answer»
40015.

How many number can be divisible by 7

Answer» Infinite but if you are asking the ques of ncert then ans will be a= 105. an=994 d=7
105 to 904
Infinite
Infinite
40016.

In an ap if sn=n(4n+1),find first term,common difference and a10

Answer»
40017.

if x plus 1by x is 7then xcube plus 1by x cube is equal to

Answer» x+1/x=7 ( taking cube on both sides) then (x+1/x )cube=7cube ,xcube+1/xcube+3 (x+1/x)=343 then we get xcube +1/x cube= 343-21so we get xcube +1/xcube=322
217/36
40018.

Q.E how to solve x2-3x+2=0

Answer» x2 - 3x + 2 = 0x2 - 2x - 1x + 2= 0x(x - 2) - 1( x - 2) = 0(x -1) ( x -2) = 0x - 1 = 0 or x - 2 = 0x = 1 or x = 2
40019.

Sin-cos+1/sin+cos-1 =1/sec-tan prove

Answer» We have to prove that,{tex}\\frac{{\\sin \\theta - \\cos \\theta + 1}}{{\\sin \\theta + \\cos \\theta - 1}} = \\frac{1}{{\\sec \\theta - \\tan \\theta }}{/tex} using identity\xa0{tex}sec^2\\theta=1+tan^2\\theta{/tex}LHS = {tex}\\frac{{\\sin \\theta - \\cos \\theta + 1}}{{\\sin \\theta + \\cos \\theta - 1}} {/tex}{tex} = \\frac{{\\tan \\theta - 1 + \\sec \\theta }}{{\\tan \\theta + 1 - \\sec \\theta }}{/tex} [ dividing the numerator and denominator by {tex}\\cos{\\theta}{/tex}.]{tex} = \\frac{{(\\tan \\theta + \\sec \\theta)-1 }}{{(\\tan \\theta - \\sec \\theta )+1}}{/tex}{tex}=\\frac{\\{{(\\tan\\theta+\\sec\\theta)-1\\}}(tan\\theta-\\sec\\theta)}{\\{{(\\tan\\theta-\\sec\\theta)+1\\}}(\\tan\\theta-\\sec\\theta)}{/tex} [ Multiplying and dividing by {tex}(\\tan{\\theta}-\\sec{\\theta}){/tex}]{tex}=\\frac{{(\\tan^2\\theta-\\sec^2\\theta)-}(tan\\theta-\\sec\\theta)}{\\{{(\\tan\\theta-\\sec\\theta)+1\\}}(\\tan\\theta-\\sec\\theta)}{/tex} [{tex}\\because (a-b)(a+b)=a^2-b^2{/tex}]{tex} = \\frac{{-1-\\tan \\theta + \\sec \\theta }}{{(\\tan \\theta - \\sec \\theta+1)(\\tan{\\theta}-\\sec{\\theta}) }}{/tex}[{tex}\\because \\tan^2\\theta-\\sec^2\\theta=-1{/tex}]{tex}=\\frac{-(\\tan\\theta-\\sec\\theta+1)}{(\\tan\\theta-\\sec\\theta+1)(\\tan\\theta-\\sec\\theta)}{/tex}{tex}=\\frac{-1}{\\tan{\\theta}-\\sec{\\theta}}{/tex}{tex} = \\frac{1}{{\\sec \\theta - \\tan \\theta }}{/tex}=RHSHence Proved.
40020.

If alpha and beta are the zeroes of the polynomial x^2-4x+1Find the value of α+1/α

Answer»
40021.

Sample papers of 2019 latest

Answer» Buy apc sample paper
40022.

188

Answer»
40023.

x°2-x-p(p+1)

Answer» x2 - x - p (p + 1)= x2 - x - p2 - p
40024.

How to learn statistic in few minutes?

Answer» Gather all the formulas of statistics and their meaning. Also do the examples of each formula
Get those formulas memorised.
40025.

If Sn denotes the sum of the first n terms of an AP, prove that S30=3(S20-S10).

Answer» Sn=n/2(2a+(n-1)d)S30=30/2(2a+29d)S30=30a+435d... (1)S20=20/2(2a+19d)S20=20a+190d....(2)S10=10/2(2a+9d)S10=10a+45d....(3)3(S20-S10)=3(20a+190d-10a-45d) =3(10a+145d) =30a+435d=S30 (from 1) So, S30=3(S20-S10) Hence proved.
40026.

What is the formula of sin

Answer» Perpendicular /hypotenuse
SinA=tanA.cosA
P/H
Perpendicular/hypotenuse
40027.

Math ka sllyebus

Answer» Chapter 1st to chapter 9th
40028.

Find three consecutive terms which are in AP whose sum is 24 and product is 440

Answer» (a+d) +a+(a+d) =24 and(a-d)(a) (a+d) =440
(a-d)+a+(a+d) =24 and (a-d)(a)(a+d)=440
40029.

2(2)

Answer» 4
4
40030.

Find the value of tan A, where A is an acute angle and cosec A= 2/√3

Answer» Under root 3
40031.

Prove that ac +Ab + bc greater 2ap + pq

Answer»
40032.

Sin (A+B)=?

Answer» Let A =B=30 Sin(A+B) =sin(30 +30)=sin60=√3/2
40033.

AP 3,8,13-----253

Answer» What we have to find here
40034.

How to find the zeroes of cubic polynomialActually I want exact procedure ...pls help

Answer» Acccha ....zyada gyan mat baato jitna poocha h utna batao agar pta h to
Itna bhi nahi aaata hamare esh ki kab pragati hogi gawaaar
40035.

What is tangent and circumferance in circle?

Answer» Tangent is line draw outside of circle and get in contact with circle on a certain one point...Circumferance of circle is 2πr
40036.

1÷(x-1)(x-2)+1÷(x-2)(x-3)+1÷(x-3)(x-4)=1/6 solve the value of x

Answer» We have,{tex}\\frac{1}{{(x - 1)(x - 2)}} + \\frac{1}{{(x - 2)(x - 3)}}{/tex}{tex}+ \\frac{1}{{(x - 3)(x - 4)}} = \\frac{1}{6}{/tex}{tex}\\Rightarrow{/tex}{tex} (x - 3)(x - 4) + (x - 1)(x - 4) + (x - 1)(x - 2) = {/tex}{tex}\\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}[{tex}\\because{/tex} Multiplying both sides by (x -1)(x - 2)(x - 3)(x - 4)]{tex}\\Rightarrow{/tex}\xa0{tex}x^2 - 4x - 3x + 12 + x^2 - 4x - x + 4 + x^2 - 2x - x + 2 ={/tex}{tex}\\frac{1}{6}{/tex}{tex}[(x - 1)(x - 2)(x - 3)(x - 4)]{/tex}{tex}\\Rightarrow{/tex}{tex}3x^2 - 15x + 18 ={/tex}{tex}\\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}3(x^2 - 5x + 6) =\u200b\u200b\u200b\u200b\u200b\u200b\u200b{/tex}{tex}\\frac{1}{6}{/tex}{tex}(x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}18[x^2 - 3x - 2x + 6] = (x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}18[x(x - 3) - 2(x - 3)] = (x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex}{tex}18(x - 3)(x - 2) = (x - 1)(x - 2)(x - 3)(x - 4){/tex}{tex}\\Rightarrow{/tex} 18 = (x - 1)(x - 4){tex}\\Rightarrow{/tex} 18 = x2 - 4x - 1x + 4{tex}\\Rightarrow{/tex} x2 - 5x + 4 - 18 = 0{tex}\\Rightarrow{/tex} x2 - 5x - 14 = 0In order to factorize x2 - 5x - 14, we have to find two numbers \'a\' and \'b\' such that.a + b = - 5 and ab = -14Clearly, -7 + 2 = -5 and (-7)(2) = -14{tex}\\therefore{/tex}\xa0a = -7 and b = 2Now,x2 - 5x - 14 = 0{tex}\\Rightarrow{/tex} x2 - 7x + 2x - 14 = 0{tex}\\Rightarrow{/tex} x(x - 7) + 2(x - 7) = 0{tex}\\Rightarrow{/tex} (x - 7)(x + 2) = 0{tex}\\Rightarrow{/tex} x - 7 = 0 or x + 2 = 0{tex}\\Rightarrow{/tex} x = 7 or x = -2
40037.

Sin - 2sin power 3 / 2cos power 3 - cos

Answer» Sin/cos
40038.

If A,BandC are interior angles of triangle ABC,then show thatSin(B+C by 2)=cosAby2

Answer» \xa0A, B, C, are interior angles of a\xa0{tex}\\Delta {/tex}{tex}\\because A + B + C = 180 ^ { 0 }{/tex}{tex}\\Rightarrow B + C = 180 ^ { 0 } - A \\Rightarrow \\frac { B + C } { 2 } = 90 ^ { 0 } - \\frac { A } { 2 }{/tex}{tex}\\Rightarrow \\sin \\frac { \\mathrm { B } + \\mathrm { C } } { 2 } = \\sin \\left( 90 ^ { \\circ } - \\frac { \\mathrm { A } } { 2 } \\right) \\left[ \\because \\sin \\left( 90 ^ { 0 } - \\theta \\right) = \\cos \\theta \\right]{/tex}{tex}\\Rightarrow \\sin \\frac { \\mathrm { B } + \\mathrm { C } } { 2 } = \\cos \\frac { \\mathrm { A } } { 2 } \\text { proved }{/tex}LHS = RHS
40039.

If Sin(A-B) =0, Cos(A+B) =0, 0 degree

Answer» Sin(A-B) =0 Sin(A-B) =Sin0A-B=0A=BCos(A+B)=0Cos(A+B)=Cos90A+B=902A=90A=B=45Sin(A+B)=Sin(45+45)Sin90=1Cos(A-B)=Cos(45-45)Cos0=1
40040.

Tan(90-a)cot

Answer»
40041.

The first term of ap is 5 the last term is 45 and the sum is 400 find number of terms

Answer» S = N / 2 ( A + L ) .....400= N / 2 ( 5 + 45 ) = 400 = N/ 2 ( 50 ) 400 = 25n .....N = 16
16
40042.

1_2

Answer» I have taken arihant math sample paper
40043.

What will the value for 7/cot square theta - 7/cos squate theta

Answer» 7
40044.

Math important chapter for class10 board

Answer» All are imp. But most imp is the frog and nightangle ,patol babu and both drama
all are important
40045.

How to prove root5 irrational

Answer» Let √5 be a rational number then it can be written in the form of a/b where b≠0 , a and b are co prime numbers ... So √5= a/b , now squaring on both sides gives 5=a²/b². 5b² = a² . Now we can say that a² is divisible by 5 then a is also divisible by 5. Let a =5c , squaring on both sides gives a²=25 c². Putting value of a² ... 5b² =25 c²... b²=5c².. so we can say that b² is divisible by 5 then b is also divisible by 5. So our assumption is wrong , so due to contradiction √5 is an irrational number as it a common factor other than a and b . Hence proved.
40046.

Cross multipleplication

Answer»
40047.

Find the value of k sothat the lines 2x-3y=9 and kx- 9 y=18 will be parallel

Answer» K=6
Condition for parallel lines or no solution ---> a1/a2 = b1/b2 ≠ c1/c2..... So 2/k = 1/3 ≠1/2. So from here by solving them we get , k=6 and k≠4.
40048.

If the perimeter of a sector of a circle of radius 6.5cm is 29cm what is its area??

Answer» Maths ke ques. Ispe nhi hote
40049.

6+5

Answer» 11
11
40050.

(sin A+cosecA)square +(cos A+secA)square =7+tan square A +cot square A.

Answer» this can be donevby applying a²+b²then then sin²a+cos²a become 1 and other can be done by its recuprocal