Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

39951.

Cbse board 10 ka exam kb hoga

Answer» Election ki wajha se board paper feb 2019 se start hoga
My teacher told 1st week of March
But sir hamne to suna h ki up board ka feb me hoga aur cbse ka march me
Feb 2019
39952.

THE SUM OF n TERMS OF THE AP IS 4n-n^2, FIND THE COMMON DIFFERENCE.

Answer» Common difference = 1
39953.

A quadrilateral ABCD is drawn to circumscribe a circle. Prove that : AB +CD = AD+BC

Answer» We know that the tangent segments from an external point to a circle are equal\xa0{tex}\\therefore{/tex} AP = AS ........(1)BP = BQ .......(2)CR = CQ .......(3)DR = DS .......(4)Adding (1), (2), (3) and (4), we get(AP + BP) + (CR + DR) = (AS + BQ + CQ + DS){tex}\\Rightarrow{/tex}\xa0AB + CD = (AS + DS) + (BQ + CQ){tex}\\Rightarrow{/tex}\xa0AB + CD = AD + BC
Tq my dear frnd..... It helps me a lot..... ✌️?
39954.

Differences between polynomial & algebric expression

Answer» An algebraic expression, in which variable(s) does (do) not occur in the denominator, exponents of variable(s) are whole numbers and numerical coefficients of various terms are real numbers, is called a polynomial. (iii) Numerical coefficient of each term is a real number. x x are not polynomials.
39955.

How to learning the formula of Trigonometry

Answer» By writing 5-6 times in notebook
Learn it
39956.

Prove that √5 is rational number

Answer» It is not rational no.
39957.

(cosA-sinA+1)/(cosA+sinA-1)=cosecA+cotA

Answer» {tex}L H S=\\frac{\\cos A-\\sin A+1}{\\cos A+\\sin A-1}{/tex}{tex}=\\frac{\\sin A(\\cos A-\\sin A+1)}{\\sin A(\\cos A+\\sin A-1)}{/tex}{tex}=\\frac{\\sin A \\cos A-\\sin ^{2} A+\\sin A}{\\sin A(\\cos A+\\sin A-1)}{/tex}{tex}=\\frac{\\sin A \\cos A+\\sin A-\\left(1-\\cos ^{2} A\\right)}{\\sin A(\\cos A+\\sin A-1)}{/tex}{tex}=\\frac{\\sin A(\\cos A+1)-(1-\\cos A)(1+\\cos A)}{\\sin A(\\cos A+\\sin A-1)}{/tex}{tex}=\\frac{(1+\\cos A)(\\sin A+\\cos A-1)}{\\sin A(\\cos A+\\sin A-1)}{/tex}{tex}=\\frac{(1+\\cos A)(\\sin A+\\cos A-1)}{\\sin A(\\cos A+\\sin A-1)}{/tex}{tex}=\\frac{1}{\\sin A}+\\frac{\\cos A}{\\sin A}{/tex}= cos A + cot A = RHSProved
39958.

Prove 3 root 5 is a rational number

Answer» 3√5 is a irrational number not rational number.
39959.

Badic proportional theorem

Answer» If in triangle, one line is parallel to the third line then ratio of two sides are equal.. It is also known as Thales\' theorem
if a line parrallel to third side of a triangle then it will divide other two lines in same ratio/proportion.
39960.

What is the shape of square

Answer» All sides are equal
39961.

Find a & b such that numbers a , 9 , b, 25 form an AP

Answer» A2=a+d,A4=a+3d9=a+d25=a+3d-16=-2d8=d,a=1b=a+2db=1+2(8)b=1+16b=17
39962.

If two zeroes of the polynomial x⁴-6x³-26x²+138x-35 are 2±√3,find other zeroes.

Answer» -5 and 7 are other zeros of the given polynomial
I do not know the answer
39963.

Mid point theomer

Answer» “The line segment in a triangle joining the midpoint of two sides of the triangle is said to be parallel to its third side and is also half of the triangle.”
39964.

If a and 1÷a are the zeroes of 4x^2-2x+(k-4)find k

Answer» Please check your questions
39965.

Two opposite vertices of a square are(-1,2)and(3,2) find the coordinate of other two vertices.

Answer» Let ABCD be a square and B (x, y) be the unknown vertex.AB = BC{tex} \\Rightarrow {/tex} AB2 = BC2\xa0{tex} \\Rightarrow {/tex}\xa0(x + 1)2 + (y - 2)2 = (x - 3)2 + (y - 2)2{tex} \\Rightarrow {/tex} x2 + 1 + 2x + y2 + 4 - 4x = x2 - 6x + 9 + y2 + 4 - 4x{tex} \\Rightarrow {/tex}\xa02x + 1 = - 6x + 9{tex} \\Rightarrow {/tex}\xa08x = 8{tex} \\Rightarrow {/tex}\xa0x = 1 ........ (i)In {tex}\\triangle{/tex}ABC, AB2 + BC2 = AC2{tex} \\Rightarrow {/tex}\xa0(x + 1)2 + (y - 2)2 + (x - 3)2 + (y - 2)2 = (3 + 1)2 + (2 - 2)2{tex} \\Rightarrow {/tex}x2 + 1 + 2x + y2 - 4x + 4 + x2 + 9 - 6x + y2 + 4 - 2y = 16 + 0{tex} \\Rightarrow {/tex}\xa02x2 + 2y2 + 2x - 4y - 6x - 4y + 1 + 4 + 9 + 4 = 16{tex} \\Rightarrow {/tex}\xa02x2 + 2y2 - 4x - 8y + 2 = 0{tex} \\Rightarrow {/tex}\xa0x2 + y2 - 2x - 4y + 1 = 0 ..... (ii)Putting the value of x in eq. (ii),1 + y2 - 2 - 4y + 1 = 0\xa0{tex} \\Rightarrow {/tex}\xa0y2 - 4y = 0\xa0{tex} \\Rightarrow {/tex}\xa0y(y - 4) = 0{tex} \\Rightarrow {/tex}\xa0y = 0 or 4Hence the other vertices are (1, 0) and (1, 4).
39966.

Theorem 6.1 prove it please it is very important for me

Answer» Hiiii
Thank you ... Animesh for being sooo kind
Book mei dekho
And sorry diagram nhi bna skta
Given:-Tri. ABC where DE parallel BCTo proov:- AD/DB AE/ECProof :- area of tri. ADE= 1/2×base×height Area(Ade) =1/2×DB×EN Similarly area(BDE) = 1/2×DB×EN therefore area(ADE) =1/2×AD×EN/1/2×DB×EN=AD/DB - - - 1NOW, In tri. ADE and tri. DECArea(ADE) =1/2×AE×DMArea(DEC) =1/2×EC×DMTherefore, area(ADE)/area(DEC)=1/2×AE×DM/1/2×EC×DM=AE/EC - - - - - 2Tri.BDE and tri.DEC are on same base DE and between the same parallel BC and DE Area(BDE)=area(DEC) - - - 3Therefore, from equation 1,2 and 3 AD/DB=AE/EChence proved
Please .....tommorow is my maths exam
39967.

If the zeroes of the polinomial (k+4)x²+13x+3k are in A.P. then find the value of k.

Answer»
39968.

If the sum of the zeroes of the polynomial f(x)=2x^3-3kx^2+4x-5 is 6, then find the value of k

Answer»
39969.

If p^ th term of an Ap is q and q^th term is p.find its (p+q)^th term

Answer» q = a + (p - 1)d ..... (i)p = a + (q - 1)d ...... (ii)q - p = (p - 1 - q + 1)d{tex}\\frac{{q - p}}{{p - q}} = d{/tex}{tex} \\Rightarrow d = - 1{/tex}Put the value of d in eq (i)q = a + (p - 1) (-1){tex} \\Rightarrow {/tex}\xa0q = a - p + 1{tex} \\Rightarrow {/tex}\xa0a = q + p - 1ap+q = a +(p + q - 1)d= (q + p - 1) + (p + q - 1) (-1)= q + p - 1 - p - q + 1= 0
39970.

3 resistance have 6ohm 12ohm 15ohm how we connected do we have 19ohm

Answer» The total resistance is 19/60 ohm not 19ohm
6 andv12 connect in parellel =4. 15 and 4 connect in series
39971.

Prove that √1+sin/1-sin+√1-sin/1+sin

Answer» LHS = {tex}\\sqrt { \\frac { 1 + \\sin \\theta } { 1 - \\sin \\theta } } + \\sqrt { \\frac { 1 - \\sin \\theta } { 1 + \\sin \\theta } }{/tex}{tex}= \\sqrt { \\frac { ( 1 + \\sin \\theta ) } { ( 1 - \\sin \\theta ) } \\times \\frac { ( 1 + \\sin \\theta ) } { ( 1 + \\sin \\theta ) } }{/tex}+\xa0{tex}\\sqrt { \\frac { ( 1 - \\sin \\theta ) } { ( 1 + \\sin \\theta ) } \\times \\frac { ( 1 - \\sin \\theta ) } { ( 1 - \\sin \\theta ) } }{/tex}{tex}= \\sqrt { \\frac { ( 1 + \\sin \\theta ) ^ { 2 } } { 1 - \\sin ^ { 2 } \\theta } } + \\sqrt { \\frac { ( 1 - \\sin \\theta ) ^ { 2 } } { 1 - \\sin ^ { 2 } \\theta } }{/tex}{tex}= \\sqrt { \\frac { ( 1 + \\sin \\theta ) ^ { 2 } } { \\cos ^ { 2 } \\theta } } + \\sqrt { \\frac { ( 1 - \\sin \\theta ) ^ { 2 } } { \\cos ^ { 2 } \\theta } }{/tex}\xa0{tex}[\\because sin^2\\theta+cos^2\\theta=1]{/tex}{tex}= \\frac { 1 + \\sin \\theta } { \\cos \\theta } + \\frac { 1 - \\sin \\theta } { \\cos \\theta }{/tex}\xa0{tex}= \\frac { 1 + \\sin \\theta + 1 - \\sin \\theta } { \\cos \\theta }{/tex}{tex}= \\frac { 2 } { \\cos \\theta }{/tex}=\xa0{tex}2sec\\theta{/tex}= RHS
39972.

3x+5=11

Answer» 3x + 5 = 113x = 11 - 53x = 6x = 6/3 = 2
39973.

Which term of the AP:3,8,13,18,....is78?

Answer» an=a+(n-1)d78=3+(n-1)578-3=(n-1)575/5=(n-1)15=n-115+1=n16=n
The given A. P. is 3, 8, 13, 18, .....Here, a = 3 d = 8 - 3 = 5Let the nth term f=of the A. P. be 78Then, an = = a + (n - 1)d78 = 3 + (n - 1) 578 = 3 + 5n - 578= 5n - 25n = 78 + 2 = 80n = 80/5 = 16Hence, 16th term of the A .P. is 78.
Hello,\xa0solution:\xa0as we know that nth term of an AP isTn\xa0= a+(n-1)dHere in given APa= 3d= 578 = 3+(n-1)578-3 = (n-1)575/5=n-115 = n-1n = 16\xa0Sixteenth term is 78.\xa0hHop it helps you\xa0
39974.

Is board is now preparing two papers of each subject one for topers and other for average?

Answer» I think no Board has no time to prepare two papers of each subject
39975.

If p =sec x +tan x then show that sinx=(p)2 -1/(p)2+1

Answer»
39976.

Find the value of the middle term of the A.P. 7,13,19,........,247.

Answer» An = a + (n - 1)d241 = 7 + (n - 1)6241 - 7 = (n - 1)6234 = (n - 1)6234/6 = n - 139 = n - 1n = 40Now middle term =n/2=20An = 7 + (20 - 1)6= 7 + 19 × 6=7 + 114=121
Middle teri
39977.

1+sec x-tan x/1+sec x+tan x =sec x-tan x prove it

Answer»
39978.

Is x³+x² is a polynomial ?Is this is quadratic equation ?

Answer» But guy\'s focus on the common if we take common then it is a quadratic equation
Yes it is a polynomial but not a quadratic equation because highest power of variable is 3.
But if we take commen thenX²(x+1) will come which is a quadratic equation
Yes x3 + x2 is a polynimail. It is not a quadratic equation because degree is 3.
What ???
tumai bau ki
39979.

Find the largest no. which divides 615 and 963 leaving remainder 6 in each case.

Answer» Since 6 is the remainder in each case Therefore, 615 - 6=609And,963 - 6=957Now required no.=hcf of 609 and 957 957=609×1+348 609=348×1+261 348=261×1+87 261=87×3+0Therefore, required no.=87
To find the largest number which divides 615 and 963 leaving remainder 6 in each case i.e. HCF.Consider HCF be x.In order to make 615 and 963 completely divisible by x, we need to deduct the remainder 6\xa0from both the cases.609 = 3 x 3 x 29957= 3 x 11 x 29⇒ x = 3 x 29 = 87∴\xa0largest number which divides 615 and 963 leaving remainder 6 in each case is 87.
39980.

As we all want good percentage in 10th. So if we chose maths B We can\'t opt PCM

Answer» What is PCM plz explain
Hi??
Yes i am
39981.

Solution of lesson 6

Answer» Check NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
39982.

Solution of lesson 6 and 7

Answer» Check NCERT solutions here :\xa0https://mycbseguide.com/ncert-solutions.html
39983.

Find the middle term of Ap 7,13,19,.247.

Answer» And a11 is 76
n is 21. When n is odd,=(n+1/2) th term.21+1/2=11. 11 is the right answer
an=247, a=7, d=6, n=?Thenan=a+(n-1)d247=7+(n-1)6(247-7)/6=n-1240/6=n-1n-1=40n=40+1=41Thenn+1/241+1/2=42/2=21Middle term is 21a21=a+20d =7+20(6) =7+120=127Ans:- 127
Middle term of Ap is
39984.

If secx=x+1/4x then prove that secx +tanx =2 or 1/2x

Answer»
39985.

Compleating squring.

Answer» Ravi aap kha se ho
39986.

Completing square how to do

Answer»
39987.

Sin2O+cos2O

Answer» Sin20+Cos20 =Sin20+Cos(90-70)=Sin20+Sin70=Sin90=1
= Sin 20+cos (90-70)= sin 20 + sin 70= sin 90= 1
39988.

Show that there is no positive integer n for which √(n+1)+√(n-1) is rational number.

Answer» Let us assume that there is a positive integer n for {tex}\\sqrt{n-1}+\\sqrt{n+1}{/tex}which is rational and equal to {tex}\\frac pq{/tex}, where p and q are positive integers and (q\xa0{tex}\\neq{/tex}\xa00).{tex}\\sqrt { n - 1 } + \\sqrt { n + 1 } = \\frac { p } { q }{/tex}......(i)or,\xa0{tex}\\frac { q } { p } = \\frac { 1 } { \\sqrt { n - 1 } + \\sqrt { n + 1 } }{/tex}on multiplication of numerator and denominator by\xa0{tex}\\sqrt{n-1}-\\sqrt{n+1}{/tex}\xa0we get{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( \\sqrt { n - 1 } + \\sqrt { n + 1 } ) ( \\sqrt { n - 1 } - \\sqrt { n + 1 } ) }{/tex}{tex}= \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { ( n - 1 ) - ( n + 1 ) } = \\frac { \\sqrt { n - 1 } - \\sqrt { n + 1 } } { - 2 }{/tex}or,\xa0{tex}\\sqrt { n + 1 } - \\sqrt { n - 1 } = \\frac { 2 q } { p }{/tex} ........(ii)On adding (i) and (ii), we get{tex}2 \\sqrt { n + 1 } = \\frac { p } { q } + \\frac { 2 q } { p } = \\frac { p ^ { 2 } + 2 q ^ { 2 } } { p q }{/tex}{tex}\\sqrt{n+1}\\;=\\frac{p^2+2q^2}{2pq}{/tex}...............(iii)From (i) and (ii),{tex}\\style{font-family:Arial}{\\sqrt{n-1}\\;=\\frac{p^2-2q^2}{2pq}}{/tex}........(iv)In RHS of (iii) and (iv)\xa0{tex}\\frac{p^2+2q^2}{2pq}\\;and\\;\\frac{\\displaystyle p^2-2q^2}{\\displaystyle2pq}\\;are\\;rational\\;number\\;because\\;p\\;and\\;q\\;are\\;positive\\;integers{/tex}But it is possible only when (n + 1) and (n - 1) both are perfect squares.Now n+1-(n-1)=n+1-n+1=2Hence they differ by 2 and two perfect squares never differ by 2.So both (n + 1) and (n -1 ) cannot be perfect squares. Hence there is no positive integer n for which\xa0{tex}\\style{font-family:Arial}{\\sqrt{n-1\\;}+\\sqrt{n+1}}{/tex} is rational
39989.

Sin4x/3 + cos4x/4 = 1/7 find the value of equal to sin8x/27 + cos8x/64

Answer»
39990.

If A,B,C are interior angle of traingle ABC then prove that sec² B+C\\2 -1=cot² A\\2

Answer»
39991.

Find the probability of getting a head when a coin is tossed twice?

Answer» 1/2
1\\2
39992.

If A,B,C are interior traingle of. ABC. Prove it secw

Answer»
39993.

Find the sum of last ten terms of the A.P.: 8,10,12,14,...,126.

Answer» 144
39994.

What is equlid divission lema

Answer» Given two positive integers a and b, then there exists two more integers q and r satisfying a=bq+r.
39995.

Which form we fill for maths paper options

Answer»
39996.

Formulas of chapter 5

Answer» Common diference formula is a2 - a1 = a3 - a2For any term or any thing formula is an = a + (n-1) dAnd for sum of the AP formula is Sn = n/2 (2a + (n-1) d )To find last term formula is Sn = n/2 (a + l )
39997.

If tan A = 1 and cot B = 1, find the value of tan(A+B)

Answer» TanA =1 => tanA = tan45° (tan45°= 1)=> A = 45° ........... (1)Now CotB =1 => cotB= cot45° (cot45°= 1) => B = 45° .............(2)Adding equation 1 and 2 A+B = 45°+45° =90°
39998.

Prove that: sec^6A=1+tan^6A + 3 tan^2A × sec^2A.

Answer»
39999.

To prove(1+CotA+TanA)(SinA-CosA)/(Sec³A-Cosec³A)=Sin²A*Cos²APlz answer it it\'s urgent.

Answer» L.H.S\xa0= (1 + cotA + tanA) (sinA - cosA)= sinA - cosA + cotA sinA - cotA cosA + sinA tanA - tanA cosA{tex}= \\sin A - \\cos A + \\frac{{\\cos A}}{{\\sin A}} \\times \\sin A - \\cot A\\cos A + \\sin A\\;\\tan A - \\frac{{\\sin A}}{{\\cos A}} \\times \\cos A{/tex}= sinA - cosA + cosA - cotA cosA + sinA tanA - sinA= sinA tanA - cotA cosA........(1)Now taking ;{tex}\\quad \\frac{{\\sec A}}{{\\cos e{c^2}A}} - \\frac{{\\cos ecA}}{{{{\\sec }^2}A}}{/tex}{tex} = \\frac{{\\frac{1}{{\\cos A}}}}{{\\frac{1}{{{{\\sin }^2}A}}}} - \\frac{{\\frac{1}{{\\sin A}}}}{{\\frac{1}{{{{\\cos }^2}A}}}}{/tex}{tex} = \\frac{{{{\\sin }^2}A}}{{\\cos A}} - \\frac{{{{\\cos }^2}A}}{{\\sin A}}{/tex}{tex} = \\sin A \\times \\frac{{\\sin A}}{{\\cos A}} - \\cos A \\times \\frac{{\\cos A}}{{\\sin A}}{/tex}{tex} = \\sin A \\times \\tan A - \\cos A \\times \\cot A{/tex}.......(2)From (1) & (2),(1 + cotA + tanA) (sinA - cosA) =\xa0{tex}\\frac { \\sec A } { cosec ^ { 2 } A } - \\frac { cosec A } { \\sec ^ { 2 } A }{/tex}\xa0= sinA.tanA - cosA.cotA\xa0Hence, Proved.
40000.

For board exam if practice NCERT text book completely is it enough

Answer» Do it thoroughly. It may help u to score atlest 90%
Hello
No