Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

41001.

Find the perimeter of triangle with vertices (0,4)(0,0) and (3,0

Answer» First find length of each sides of ∆Let A( 4 , 0) B(0, 0) and C (0 , 3)use distance formula,AB =√(4²+0) =4BC= √(0+3²) = 3CA =√(4²+3²) =5Now , perimeter of ∆ = 3 + 4 + 5= 12 unit
41002.

Got Departed from the school or not?

Answer»
41003.

Lcm of18

Answer» Gs
41004.

in 2019 board exam which types questions will come in 10 cbse board exam please say me any....... ??

Answer»
41005.

Triangles chapter kise pasand hai?

Answer» I hate it
Samjha do mujhe plz
Mujhe
Anyone online answer plz?
41006.

Rationsl number between √ 2 and √3

Answer» 1.2
41007.

Sb pagal ho gye hai sb kya ye homework help ke liye hai baat krne ke liye nhi plz concentrate ok

Answer» Ok sorry aradhana
Yes u r right
Sahi bol rahe ho ap padhai ke liye hai ye
41008.

Prove the following identity:SecA+TanA/CosecA+CotA=1+SinA/CosA

Answer»
41009.

What is known as centriod

Answer» Centroid is centre of a triangle where all it medians intersect each other.
Center of any figure
41010.

Write the 4th term of an ap if its nth term is 3n+2

Answer» n =4Therefore,3(4) + 2 = 14Hence the 4th term of an A.P. is 14
3(4)+2=14
14
41011.

For what value of a the point (a,1) (1,-1) & (11,4) are collinear

Answer» Use the formula area of triangle with vertices
41012.

CosA - sinA +1/cosA + sinA -1= cosecA + cotA

Answer»
41013.

Triangle ABC~ tri DEF if AB=4 cm ,BC=3.5cm , CA=2.5cm,DF=7.5cm, then find the perimeter of tri DEF

Answer»
41014.

Where B square minus 4 AC implies

Answer» Discriminant of the quadratic equation
41015.

Prove n3(cube)-n is divsble by 3 for any positive integer n

Answer»
41016.

1+secA/secA = sin^2A/1-cosA

Answer»
41017.

2+2-4

Answer» 0
41018.

What about the solution of 12th class ncert exampler

Answer»
41019.

What perimeter

Answer» Perimeter is the meaurement of length of boundary of a 2d figure
Perimeter means distance around a figure or curve. We can only measure perimeter of a closed figure/2 dimensional shape or curve as movement around a closed figure or curve is possible.Perimeter of a square = sum of all sides = 4 x sidePerimeter of Rectangle = L + L + B + B
41020.

Tow triangle are similar so prove that they are congrueant

Answer» Same type of question is present in ncert please check it.......
41021.

(sin50+threta)-cos(40-threta)+tan1tan10tan20tan70tan80tan90

Answer»
41022.

what is distance formula in chapter 7

Answer» Distance formula - √(x2 - x1)+(y2 - y1)
Root mein (x2 - X1) ka whole square + (Y2 - Y1) ka whole square
41023.

Find the area of rectangular field whose side is measures 35m and diagonal 37m

Answer» Sorry pls
Shradhanand llpps solution batao
770m sq.
Shayad 420m^2
41024.

if sec theata + tan theata =p then find valu of cosec theata

Answer»
41025.

If x=-1/2 is the solution of a quadratic equation 3x2+2kx-3=0 find the value of k

Answer» -9/4
41026.

34 divide 2

Answer» 17
2/34 =0.0588235294.
2√34(2√34(17 34 0
41027.

A ladder of length 4m makes an angle

Answer» Complete ur que
41028.

Yar method of completing squares kaise karte hai agar ata hai toh btauu muje nhi ata☹️☹️??

Answer» Hy durga
41029.

In triangle ,if AD is the median ,then showthat (AB)2+(AC)2=2(AD2+BD2)

Answer»
41030.

Find a quadratic polynomial whose zeroes are -3 and -1

Answer» x2+4x -3 is the quadratic equation
41031.

22+22+56+56+56

Answer» 212
212
41032.

AB+CD=BC+DA

Answer» Bhai question toh sahi dal
41033.

Q. Sin90 + Cos 90 =0

Answer» sin 90 = 1 and cos 90 = 0Sin 90 + Cos 90= 1 + 0= 1
Why
41034.

If sum of first term n is 3n/2+13n/2 .find 25th term

Answer» Miss puja kya app answer de sakengi
The question which i asked has came in our test
The question which u are saying i have solved inxamidea this is another
Please check your question................i think it should be 3n square/2 +13n/2
Please answer this question
41035.

Cos thitha . Tan thitha =sin thitha prove this

Answer» Lhs = cos theta ×sinTheta/cos theta (since tan theta =sin theta /cos theta ) =now cancel cos theta and cos theta =sin thetha Therefore lhs =rhs Proved
Cos theta.tan theta=sin theta. Cos theta.sin theta/cos theta{tan theta=sin/cos} so sin=sin
41036.

Square root of 800

Answer» Its 20 root 2.....
20√2
41037.

2x +3x

Answer» x(2+3)x(5)5x
5x
5x
41038.

Wt r decimal numbers?

Answer»
41039.

What is prime and composite number

Answer» Prime number means the number which only divisible by the number and one.Composite number means the number will divisible by one or more numbers.Have a nice day,
Prime numbers are those numbers which are divisible by one and themselves only
They are numbers
41040.

Prove that (cosec theta +cot theta) square =sec theta +1/sec theta-1

Answer» {(1/sin)+(cos/sin)}² ={(1+cos)/sin}² =(1+cos)²/sin²=(1+cos)²/(1-cos²)=(1+cos)(1+cos)/(1-cos)(1+cos)=(1+cos)/(1-cos)=(1+1/sec)/(1-1/sec)=(sec+1)/(sec-1)
41041.

If SinA+2cosA=1 then prove : 2sinA-cosA=2

Answer»
41042.

Important question in chapter 8(trigonometry)

Answer» In trignometry ther is no important question.All are important
Exercise 8.4 all questions
41043.

Finding next three terms 1. √2,√6,√9,√12...

Answer»
41044.

Rupali pandav sorry

Answer»
41045.

Find the roots of the equation 5x-6x-2=0 by the method of completing the square

Answer» 5x2 - 6x - 2 = 0Multiplying the above equation by 1/5{tex} \\Rightarrow {x^2} - \\frac{6}{5}x - \\frac{2}{5} = 0{/tex}{tex}\\Rightarrow x ^ { 2 } - \\frac { 6 } { 5 } x + \\left( \\frac { 3 } { 5 } \\right) ^ { 2 } - \\left( \\frac { 3 } { 5 } \\right) ^ { 2 } - \\frac { 2 } { 5 } = 0{/tex}{tex}\\Rightarrow \\left( x - \\frac { 3 } { 5 } \\right) ^ { 2 } = \\frac { 9 } { 25 } + \\frac { 2 } { 5 }{/tex}{tex}\\Rightarrow \\left( x - \\frac { 3 } { 5 } \\right) ^ { 2 } = \\frac { 9 + 10 } { 25 }{/tex}{tex}\\Rightarrow \\left( x - \\frac { 3 } { 5 } \\right) ^ { 2 } = \\frac { 19 } { 25 }{/tex}{tex}\\Rightarrow x - \\frac { 3 } { 5 } = \\pm \\frac { \\sqrt { 19 } } { 5 }{/tex}{tex}\\Rightarrow x = \\frac { 3 } { 5 } \\pm \\frac { \\sqrt { 19 } } { 5 }{/tex}{tex}\\Rightarrow x = \\frac { 3 + \\sqrt { 19 } } { 5 } \\text { or } x = \\frac { 3 - \\sqrt { 19 } } { 5 }{/tex}
41046.

Find 25th term of the A.P , -5 , -5/2 , 0 ,5/2.

Answer» n=25a=-5d=a2-a1d=-5/2-(-5)d=-5/2+5=-5+10/2=5/2an=a+(n-1)da25=-5+(25-1)5/2 =-5+12*5 =-5+60a25=55
Please answer me?
41047.

Find roots of quadratic equation: x - 1/x=3 , x is not equal to 0

Answer» Hlo mehak Aapne mujhe pehchana ki nahi
x2-1=3xx2-3x-1=0{tex}x = {3\\pm \\sqrt{9+4} \\over 2}={3\\pm\\sqrt{13}\\over 2}{/tex}
X-1/3=3x(x)-1/x=3x2-1/x=3x2-1=3xx2-3x-1=0comparing equation with ax2+bx+c=0a=1,b=-3,c=-1 answer
Please answer me
41048.

If x=a, y=b is the solution of the pair of equation x-y=2 and x +y=4 find the value of a and b

Answer» x=a=3y=b=1
Given= x=a and y=bThe equation are x-y=2. equation-1x+y=4. equation-2 Adding equation 1 form equation 2x+y=4x-y=22x=6x=6/2x=3Substitute the value of x in eq 2x+y=43+y=4y=4-3y=1
x = a , y = bx - y = 2a - b = 2....... (i)x + y = 4a + b = 4 ....... (ii)Add (i) and (ii)2a = 6a = 6/2 = 3But a = 3 in (ii)3 + b = 4b= 4 - 3b = 1So, a = 3 and b = 1
41049.

Show that for odd positive integer to be a perfect square ,it should be of the form 8k+1

Answer» Since, any odd positive integer n is of the form 4m\xa0+ 1 or 4m + 3.if n = 4m + 1n2 = (4m + 1)2= 16m2 + 8m + 1= 8(2m2 + m) + 1So n2 = 8q + 1 ........... (i)) (where q = 2m2 + m is a positive integer)If n = (4m + 3)n2 = (4m + 3)2= 16m2 + 24m + 9= 8(2m2 + 3m + 1) + 1So n2 = 8q + 1 ...... (ii) (where q = 2m2 + 3m + 1 is a positive integer)From (i) and (ii) we conclude that the square of an odd positive integer is of the form 8q + 1, for some integer q.
41050.

Q. If the points (p, q); (m, n) and (p-m, q-n) are collinear. Show that pn=qm.

Answer» Given points are collinear. Therefore[p {tex}\\times{/tex}\xa0n + m(q - n) + (p - m) q] - [m {tex}\\times{/tex}\xa0q + (p - m) n + p (q - n)] = 0{tex}\\Rightarrow{/tex}\xa0(pn + qm - mn + pq - mq) - (mq + pn - mn + pq - pn) = 0{tex}\\Rightarrow{/tex}\xa0(pn + p q - mn) - (mq - mn + pq) = 0{tex}\\Rightarrow{/tex}\xa0pn - mq = 0{tex}\\Rightarrow{/tex}\xa0pn = qm