Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

4401.

Length

Answer»
4402.

How to consruct 105° angle

Answer» Very silmple1)Draw angle of 90 degree .2)Then,draw angle of 120dgre.3)take 90 as a center draw an arc and take 120 as a center cut the arc.
4403.

3 tan,Q=4, evaluate 3 sinQ+2sinQ/3sinQ-2cosQ

Answer» 10/3
4404.

If the sum of first p terms of AP is ap^2+bp find its common difference

Answer» We are given that sum\xa0of first p terms of this APSp= ap2 + bpLet the first term= x and common difference = d{tex}{\\mathrm S}_1=\\mathrm a(1)^2+\\mathrm b(1)=\\mathrm a+\\mathrm b{/tex}So first term x = a+bNow S2 = a(2)2 + b(2)S2 = 4a + 2b,{tex}\\mathrm{So}\\;{\\mathrm s}_2={\\mathrm a}_1+{\\mathrm a}_2=\\mathrm x+\\mathrm x+\\mathrm d=4\\mathrm a+2\\mathrm b{/tex}2x + d = 4a+2b2(a+b)+d = 4a+2b2a+2b+d=4a+2bd=4a+2b-2a-2bd = 2aTherefore, the common difference of the given AP is 2a.
4405.

Plz tell my exam is there tomorrow

Answer» Because Isme diameter pucha h nd multiply Ho raha h
4406.

Why in example 10 in NCERT page number 250, 2divide by1800 has done not 1800 divide by 2

Answer»
4407.

What is euclid division lama?

Answer» a=bq+r
For any 2 given +ve integers a and b, there exist unique whole numbers q and r
Sorry
GiveN positive integer a and b there exists unique integer q and r satisfying a=bq+r,,,0 <_r Given positive integer A and B there exists unique integer Q and R satisfying A=BQ+R where 0 <_R
4408.

Check whether 15n end with the digit 0 for any natural number n

Answer» Any number can end with 0 only if this is divisible by 10 hence it is divisible by 2 and 5 bothBut prime factors of (15)n are 3n{tex}\\times{/tex}\xa05n\xa0It is clear that 15n is not divisible with 2Hence by the Fundamental Theorem of Arithmetic, there is no natural number n for which (15)n ends with the digit zero.
4409.

In triangle ABC, AD perpendicular BC. If AD2 = BD× DC. Prove that ABC is a right triangle.

Answer» But ABC is not a right triangle.
We know that if perpendicular is drawn from vertex of right angle of triangle.. The two triangle which formed is similar to each other and to whole triangle
4410.

I need questions of arihant for maths class 10 cbse

Answer» Buy it for 100 rupees
U can get it on this app ncert exemplar
Ncert exemplar
4411.

SinA+sinB=?

Answer» By the way it\'s of std 11th!!
sina+_sinb=2sin1/2(a+_b)cos1/2(a+_b)
4412.

For what value of k , x=a is a solution of equation x² - (a+b) + k = 0

Answer» Please share the procedure .
I think K=-ab
K=ab
4413.

Do we have to study the optionals exercise too??

Answer» Why not
Yes that\'s helps uh better to deal with value based questions 4marker ones
4414.

Find the roots of x2-x-p(p+1)

Answer» {tex}x^2 + x - p(p+1) = 0{/tex}{tex}x^2 + (p+1)x - px - p(p+1) = 0{/tex}{tex}x(x+ p + 1) -p(x + p + 1) = 0{/tex}(x + p + 1)(x - p) = 0\xa0x = - p - 1, p
4415.

Do CBSE Board repeats previous questions ??

Answer» Follow NCERT most questions come from it
No very few question will repeat but in different type
4416.

If tan A = 3\\4 and A+B=90°, then what is the value of cot B?

Answer» tan A =\xa0{tex}\\frac 34{/tex}cot A={tex}\\frac{4}{3}{/tex}A + B = 90o\xa0{tex}\\Rightarrow{/tex}\xa0A=90o-B{tex}\\Rightarrow{/tex}\xa0cot A=cot(90o-B){tex}\\Rightarrow{/tex}\xa0cot A=tan B{tex}\\Rightarrow{/tex}\xa0cotA = tanB =\xa0{tex}\\frac{4}{3}{/tex}{tex}\\Rightarrow{/tex}\xa0cot B =\xa0{tex}\\frac 34{/tex}
4417.

Cos38.cosec52/ cot18.cot35.cot60cot55cot72 + sin

Answer»
4418.

Median formula in math

Answer» M=l+ n/2-cf/f×h
Read
4419.

Perimeter of quadrant formula

Answer» πr+2r
4420.

find the vertex D ,if a[1,2] b[4,3] c[6,6]

Answer» Let coordinates of D be\xa0{tex}( \\alpha , \\beta ){/tex}\xa0P is mid-point of AC and BD.{tex}\\therefore \\quad \\left( \\frac { \\alpha + 4 } { 2 } , \\frac { \\beta + 3 } { 2 } \\right){/tex}{tex}= \\left( \\frac { 1 + 6 } { 2 } , \\frac { 2 + 6 } { 2 } \\right){/tex}{tex}\\Rightarrow \\frac { \\alpha + 4 } { 2 }{/tex}{tex}= \\frac { 7 } { 2 } ; \\frac { \\beta + 3 } { 2 } = \\frac { 8 } { 2 }{/tex}{tex}\\Rightarrow{/tex}\xa0{tex}\\alpha + 4 = 7 ; \\beta + 3 = 8{/tex}{tex}\\Rightarrow \\quad \\alpha = 3 ; \\beta = 5{/tex}{tex}\\therefore{/tex}\xa0Coordinates of D are (3, 5).
4421.

Write 0.32 is fraction form

Answer» 32/100
4422.

New 1060

Answer» Kyaa
4423.

Prove that the product of three consecutive integers is divisible by 6

Answer» Easy but quite long so refer Ncert
4424.

Find the 20th term from the last term of the Ap:3,8,13,.....,253

Answer» 158
First find term no. Of 253 then use this formula a+( last term no. - required term no.) D
Ye ncert me 5.2 ka 17 question hai
4425.

5 marks

Answer»
4426.

What is the meaning of parallel line

Answer» Lines which never meet or intersect each other are parallel line
Pair of lines which do not intersect
It doesn\'t intersects over a long distance and also equal distance between them
4427.

(1+m2)x2+2mcx+(c2-a2)=0

Answer» Mc
4428.

Dear algebra plz stop asking about ur \'x\'She has left uAnd don\'t ask \'y\'!!!

Answer» ???
Nice
Nice
?
4429.

If the point p(1,2) lies on the line segment joining the points A(2,4) and b(4,8), then find AP/AB

Answer»
4430.

Which is very bad prepared? For exam

Answer» mee
4431.

Whose MATHS is complete?

Answer» Meee???
Me
Mr
nhi hui tumhri ho jaye to batana
Haan ho gai almost.
mera bhi nhi hua yrrrr
I completed RS AGARWAL
meri bhi nhi hui
Which NCERT or RS agarwal
And suraj and ilma and smart infera??
Not completed what about yours ruhi??
4432.

Find in square metres the area of reactangle whose length is 13m and breath is 225 cm.

Answer» 97.50m^2
4433.

SinA-B=sinacosb-cosa sinb

Answer»
4434.

Hi is there any body online

Answer» Hi
Hiiii
Yes I m
Hii
hii
4435.

Solve for x:x2+9x+20=0

Answer» Square
This is 2 x or squars
4436.

Explain 6n can not end with digit 0

Answer» No it is not a wrong question as n is not multiplied it is the power of 6
6 is expressible in the form 2n3n and for a digit to end with zero it should be of the form 2n5n.
See ncertbook example
when n=5 ..6*5=30 ..so it ends with zero.. wrong question
4437.

What is a prime no

Answer» Prime numbers are those numbers who have only 2 factors. For example :- 2,3,5. 2= 2×1, 3= 3×1, 5= 5×1.
4438.

Ax⅝ +4000-aby⅜ find roots

Answer»
4439.

A circle inscribed in a triangle ABC in which AB=a BC=b and CA= c. Find the radius of a circle.

Answer»
4440.

The graph of y is equal to p(x) where p(x) is polynomial find numbers of zeros of p(x)

Answer» Ya right
Depend ob graph... jha pr contact me vo uska zero hai
4441.

Solutions of evergreen model test paper of 100% sucess

Answer»
4442.

Find the value of k for which one root of quadratic equation kx2 -14x+8=0 is six times the other

Answer» Let one root = {tex}\\alpha{/tex}Other root = 6{tex}\\alpha{/tex}{tex}\\therefore{/tex}Sum of roots =\xa0{tex}\\alpha{/tex}\xa0+ 6{tex}\\alpha{/tex}\xa0=\xa0{tex}\\frac{14}{k}{/tex}or,\xa0{tex}7 \\alpha = \\frac { 14 } { k } \\text { or } \\alpha = \\frac { 2 } { k }{/tex} ...........(i)Product of roots\xa0{tex}\\alpha ( 6 \\alpha ) = \\frac { 8 } { k }{/tex}or,\xa0{tex}6 \\alpha ^ { 2 } = \\frac { 8 } { k }{/tex}..........(ii)Solving (i) and (ii),{tex}6 \\left( \\frac { 2 } { k } \\right) ^ { 2 } = \\frac { 8 } { k }{/tex}{tex}6 \\times \\frac { 4 } { k ^ { 2 } } = \\frac { 8 } { k }{/tex}or,\xa0{tex}\\frac { 3 } { k ^ { 2 } } = \\frac { 1 } { k }{/tex}or, 3k = k2or, 3k - k2\xa0= 0k[3-k] = 0{tex}\\therefore{/tex}\xa0k = 0 or k = 3k = 0 is not possibleHence, k = 3
4443.

2018 question paper of cbse

Answer» On net and also in sample paper
Do you have
4444.

Sin6 theta+cos6 theta= 1-3sin2 theta cos2 theta

Answer»
4445.

In an equilateral triangle with side \'a\' prove that its area = root 3/4a square

Answer» According to the question, we have to prove that in an equilateral triangle with side a, area =\xa0{tex}\\frac { \\sqrt { 3 } } { 4 } a ^ { 2 }{/tex}Let\xa0{tex}\\triangle{/tex}ABC be an equilateral triangle with side a.Then, AB = AC = BC = a.Draw AD{tex}\\perp{/tex}BC.In\xa0{tex}\\triangle{/tex}ADB and\xa0{tex}\\triangle{/tex}ADC, we haveAB = AC ({tex}\\Delta ABC{/tex}\xa0equilateral triangle){tex}\\angle{/tex}ADB=\xa0{tex}\\angle{/tex}ADC = 90° (AD is altitude)\xa0AD\xa0=\xa0AD\xa0(Common){tex}\\therefore \\Delta A D B \\cong \\triangle A D C{/tex}\xa0[ RHS Congurency rule]\xa0{tex}\\therefore{/tex}\xa0BD = DC =\xa0{tex}\\frac { a } { 2 }{/tex}From right\xa0{tex}\\triangle{/tex}ADB, we haveAB2\xa0= AD2\xa0+ BD2\xa0(By Pythagoras theorem){tex}\\Rightarrow{/tex}\xa0AD =\xa0{tex}\\sqrt { A B ^ { 2 } - BD ^ { 2 } }{/tex}{tex}\\Rightarrow A D = \\sqrt { a ^ { 2 } - \\left( \\frac { a } { 2 } \\right) ^ { 2 } }{/tex}{tex}\\Rightarrow A D = \\sqrt { a ^ { 2 } - \\frac { a ^ { 2 } } { 4 } }{/tex}{tex}\\Rightarrow A D = \\sqrt { \\frac { 3 a ^ { 2 } } { 4 } }{/tex}So, the altitude is, AD =\xa0{tex}\\frac { \\sqrt { 3 } a } { 2 }{/tex}Area of {tex}\\triangle{/tex}ABC =\xa0{tex}\\frac { 1 } { 2 } \\times B C \\times A D{/tex}{tex}= \\frac { 1 } { 2 } \\times a \\times \\frac { \\sqrt { 3 } a } { 2 }{/tex}{tex}= \\frac { \\sqrt { 3 } a ^ { 2 } } { 4 }{/tex}Hence proved.
4446.

How can we get 40 mark in math exam

Answer» Study and study
4447.

In figure xp/py=xq/qz=3if the area of triangle xyz is32cm, then find area of qadrilateral pyzq

Answer» Given {tex}\\frac{{XP}}{{PY}} = \\frac{{XQ}}{{QZ}}{/tex}\xa0\u200b{tex}\\Rightarrow {/tex}\u200b PQ {tex}\\parallel{/tex} YZ .....(i) [By converse of B.P.T]In \u200b{tex}\\triangle {/tex}\u200b XPQ and \u200b{tex}\\triangle {/tex}\u200b XYZ we have[ \u200b{tex}\\angle{/tex}\u200b XPQ = \u200b{tex}\\angle{/tex}\u200b Y [From (i) corresponding angles]\u200b{tex}\\angle{/tex}\u200b X = \u200b{tex}\\angle{/tex}\u200bX [common]\u200b{tex}\\therefore {/tex}\u200b\u200b{tex}\\triangle {/tex}\u200b XPQ \u200b{tex}\\cong{/tex}\u200b{tex}\\triangle {/tex}XYZ [By AA similarity]\u200b{tex}\\therefore {/tex}\u200b{tex}\\frac{{ar\\left( {\\triangle XYZ} \\right)}}{{ar\\left( {\\triangle XPQ} \\right)}}=\\frac{{X{Y^2}}}{{X{P^2}}}{/tex}{tex}\\frac { P Y } { X P } = \\frac { 1 } { 3 }{/tex}We have\xa0{tex}\\Rightarrow \\frac { P Y } { X P } + 1 = \\frac { 1 } { 3 } + 1{/tex}{tex}\\Rightarrow \\frac { P Y + X P } { X P } = \\frac { 4 } { 3 }{/tex}\xa0\u200b\u200b\u200b{tex}\\Rightarrow {/tex}\u200b{tex}\\frac{{XY}}{{XP}} = \\frac{4}{3}{/tex}Substituting in (i), we get{tex}\\frac{{ar\\left( {\\triangle XYZ} \\right)}}{{ar\\left( {\\triangle XPQ} \\right)}} = {\\left( {\\frac{4}{3}} \\right)^2} = \\frac{{16}}{9}{/tex}\u200b{tex}\\Rightarrow {/tex}\u200b{tex}\\frac{{32}}{{ar\\left( {XPQ} \\right)}} = \\frac{{16}}{9}{/tex}{tex}ar\\left( {XPQ} \\right) = \\frac{{32 \\times 9}}{{16}} = 18c{m^2}{/tex}Area of quadrilateral PYZQ = 32 - 18 = 14 cm2
4448.

Pt and pa

Answer»
4449.

Value of sec 60

Answer» Value is 2
2
4450.

If 9th term of an A.P is zero prove that it\'s 29th term is double the 19th term

Answer» We have,a9\xa0= 0{tex}\\Rightarrow{/tex}\xa0a + (9 - 1)d = 0{tex}\\Rightarrow{/tex}\xa0a + 8d = 0{tex}\\Rightarrow{/tex}\xa0a = -8dTo prove: a29 = 2a19Proof:LHS = a29= a + (29 - 1)d= a + 28d= -8d + 28d= 20dRHS = 2a19= 2 a + (19 - 1)d]= 2[ -8d + 18d]= 2\xa0{tex}\\times{/tex}10d= 20d{tex}\\therefore{/tex} LHS = RHSHence, 29th\xa0term is double the 19th term.