Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

66251.

\left. \begin{array} { l } { 66 \div 3 } \\ { 97 \div 3 } \\ { 630 \div 5 } \end{array} \right.

Answer»

thanks

1. 222.32.3333.126

66252.

1575 \div 21 \div 5 = \sqrt { ? } \times 6

Answer»

last step is wrong in previous answer

1575÷21÷5 = Root? × 6Let The Unknown Number Be X => 75 ÷ 5 = Root(x) × 6=> 15 = Root(×) × 6=> 15÷6 = Root(x)=> 5 ÷ 2 = Root(x) Squaring Both The Sides....

=> (5÷2)^2 = x=> 25÷4 = x

Value Of x = 25÷4=

66253.

12 x y\left(9 x^{2}-16 y^{2}\right) \div 4 x y(3 x+4 y)

Answer»
66254.

(3)\left[(-4)^{12} \div(-4)^{8}\right] \div(-4)

Answer»
66255.

PORS is a parallelogram, T is the midpoint of PO (Fig. 11.23). ST bisectsZS. Prove that(a) QR=QT(b) RT bisects<R(c)LSTR=90°0r + 52) Find a

Answer»
66256.

\frac { ( 2 ^ { 5 } ) ^ { 2 } \times 7 ^ { 3 } } { 8 ^ { 3 } \times 7 }

Answer»

thank you.

66257.

9. In the given figure, O is the centre of acircle in which chords AB and CDintersect at P such that PO bisectszBPD. Prove that AB =CD.

Answer»
66258.

In the given figure, O is the centre of a circle inwhich chords AB and CD intersect at P such thatPO bisects ZBPD. Prove that AB CD.9.8

Answer»
66259.

O is the centre of a circle inthe shords AB and CD intersect at P such thatbisects 4BPD. Prove that AB CDpo

Answer»

thank you

66260.

८५ 3-6 T कंकै 00 _ .40 Se©| =CoSOL 14030 N & xcmcAt -\ %

Answer»
66261.

SE 1.3fromA student27,36,879subtracted63,42,568 and then subtracted the differencefrom the smallest 9-digit number. What washis answer?11 produced

Answer»

96394311 is the correct answer of the given question

66262.

2. In Fig. 10.11, if TP and TQ are the two tangentsto a circle with centre O so that POQ = 110°then Z PTQ is equal to(A) 60°(B) 70°(C) 80°(D) 90°

Answer»

OPTION B 70 degree it is right answer in given question

66263.

75% ofwhat number is 15?SE 8.2per cents.(G)140

Answer»

Percentage3/40 × 100 = 7.5%

2/7 × 100 = 28. 57%

66264.

1. There are two parks A and B as shown. Ajaywalks around park A and Vijay walks aroundpark BPark APark B75 m75 ma) Who walks more distance?b) Which park has greater area?

Answer»

both park are equal both are move equal distance and both park are same area

66265.

Mr. Ajay went to market with 525, He bought fish for 150, oil for 90 andvegetables for?75. How much money was left with him?

Answer»

Money left = Total - Fish - Oil - Vegetables =525-150-90-75 =525-315=210.

66266.

SE2.75% ofwhat number is 15?9 is 25% of what number?EXERCISE 8.2Convert the given fractional numbers to per cents.40

Answer»

sendfash

66267.

\frac { 441 } { 2 ^ { 2 } \times 5 ^ { 7 } \times 7 ^ { 2 } }

Answer»

The deno is 2^3×7^2×5since it has 7 in deno and not in the form of 2^m ×5^n and the numerator ha 441=7×7×3×3when we simplify it we get 3^2 by 2^3×5hence it is a terminating decimal

66268.

4 x ^ { 4 } \div 4 x ^ { 4 } = 0

Answer»

the given expression is wrong4x⁴ ÷ 4x⁴ = 1so LHS is not equal to RHS .

66269.

500 \div 5 + 200 \div 4

Answer»

(500÷5)+(200÷4)=100+50=150

500÷5+200÷4=100+50=150

66270.

M is tリミCM2 LABrn

Answer»

tq

66271.

sec 38/cosec52 + 2/root3 *tan17*tan38*tan60*tan52*tan73-3(sin^2 32 + Sin^2 58)

Answer»

sec38/cosec52 + 2/√3*(tan17tan38 tan60tan52tan73) - 3(sin²32 + sin²58).

⇒sec(90 - 52)/cosec52 + 2/√3*{tan(90 - 73)tan73 tan(90 - 52) tan52 tan60} - 3{sin²(90 - 58) + sin²58}.

we know :-sec(90 - Ф) = cosecФsin(90 - Ф) = cosФtan(90 - Ф) = cotФtan60 = √3let us apply here,

⇒cosec52/cosec52 + 2/√3 * (cot73 *tan73* cot52*tan52*√3) - 3(cos²58 + sin²58)

[ sin²A + cos²A ]

⇒1 + 2(1/tan73 * tan73 * 1/tan52 * tan52) - 3(1)

⇒1 + 2 - 3

⇒3 - 3 = 0

66272.

Evaluate eycos 58° . sin 22° \/' cos 38° cosec 52°sin 32° © ८०568" +[3 (tan 18° tan 35° tan 60° tan 72° tan 55°)

Answer»
66273.

\frac { \cos 58 } { \sin 32 } + \frac { \sin 22 } { \cos 68 } - \frac { \cos 38 \csc 52 } { \tan 18 \tan 35 \tan 60 \tan 72 \tan 55 }

Answer»

cos58°= sin32° as cos(90-theta) = sin thetatan(90-theta)= cot thetasintheta= 1/cosec theta

66274.

' 32) Find je' sin xdx . ‘( .R इक

Answer»

Like my answer if you find it useful

66275.

9. In the given figure, O is the centre of a circle inwhich chords AB and CD intersect at P such thatPO bisects ZBPD. Prove that AB CD

Answer»
66276.

9. In the given figure, O is the centre of a circle inwhich chords AB and CD intersect at P such thatPO bisects LBPD. Prove that AB- CD

Answer»
66277.

Ajay scored 75% in an exam. If his score was180, find the maximum marks of the exam.

Answer»

let the maximum marks be xthen 75x/100=180;x=3600/15=720/3=240

66278.

‘g uls puy s ZE =gQuel+Qo93s JI

Answer»

secΘ +tanΘ = 2/3

1/cosΘ + sinΘ/cosΘ = 2/3

sinΘ + 1 = 2/3 cosΘ

sinΘ = 2/3 cosΘ – 1

Θ = -0.39479 ± 1.176n

Or Θ = -22.6198 degrees, which is in Quadrant 4

66279.

6, Ajay scored 75% in an exam. If his score was180, find the maximum marks of the exam 751

Answer»

Marks Ajay scored= 180% he scored= 75%let total be xso,75% of x= 18075/100*x = 1803/4 * x = 180x = 240.

66280.

13. In an examination, 4examination, a student se 40% andfails by 10 marks if he scored 50%, he woupass by iS marks. Find the minimum marksrequired to pass the exama): 250b) 100c) 110d) 12529. IF Ais 2002 alter than nhw what percnt is 8

Answer»

answerrrrr issss (d) 125

66281.

ple 2: Two tangents TP and TQ are drawnto a circle with centre O from an external point TProve that PTQ 2 2 OPQ

Answer»

Like if you find it useful

66282.

\left. \begin{array} { l } { 3 \times 2 \div 2 } \\ { ( 21 \div 7 ) - 2 } \\ { 81 \div 3 \text { of } ( 2 \times 7 ) \times 5 \text { of } 6 } \end{array} \right.

Answer»
66283.

3 + [ 8 - 5 \div \{ 4 - 2 \div ( 2 + \frac { 8 } { 13 } ) \} ]

Answer»
66284.

6+8 \div 2-3 \times 2+10 \text { of } 2 \div 4

Answer»
66285.

2 \div 2 + 2

Answer»

2÷2+2=1+2=3follow VBODMAS

66286.

54.The rn ultiplicative inverse ofs-19. If n--4. find 'm'm+n(1) 15(2) 23(3)-15(4) -23To io

Answer»

Multiplicative inverse of 1/(m+n)

is m+n i.e. -19

m + n = -19

when n = -4

m = -19 + 4 m = -15

(3) option is correct

66287.

ix.Find the value of 5:9::x:72Eind the mean proportional's of 2 and 32

Answer»
66288.

gelo)Find the domain and range of the function f (x) =" 2-sin 32

Answer»

#Hey there!!__________

◆Given function is :

f(x) = \frac{1}{2 - sin3 x} \\

●For DOMAIN :-----------------------

Function f(x) is not defined when

=> 2 - sin3x = 0

so , sin3x = 2 ---------(1)

but we know that range of sinx € [ -1, 1 ]

so maximum value of sin3x = 1

therefore sin3x ≠ 2 ( not possible)

=> 2 - sin3x ≠ 0 ------(2)

so from equation (2) we can se tha function is defined for all values of x

=> Domain € R

#FOR RANGE :----------------------we \: know \: that \: \\ - 1 \leqslant \sin(3x) \leqslant 1 \\

now multiplying by -1 we get,

=> 1 ≥ - sin3x ≥ -1

adding 2 we get,

=> 2+1 ≥ 2 - sin3x ≥ 2-1

=> 3 ≥ 2-sin3x ≥ 1

now taking inverse we get,

\frac{1}{3} \leqslant \frac{1}{2 - \sin(3x) } \leqslant 1

so Range € [ ⅓ , 1 ]

_____________________________

◆HOPE IT WILL HELP YOU

like my answer and also make as expert

66289.

Eind the value of\left(\frac{243}{32}\right)^{\frac{3}{5}} \times\left(\frac{2}{3}\right)^{-3} \times\left[\left(\frac{125}{27}\right)^{\frac{2}{3}}\right.

Answer»
66290.

io Chords Ab and CD cut at Pinside the eirele : If All7,AP 4, CP 2, then CD

Answer»

please like my answer if you find it useful

66291.

et G o 4 e

Answer»
66292.

URTwo tangents TP and TQ are drawn to a circle with centre O.from an external point T. Prove that PTQ = 2|OPQ

Answer»

We know that, the lengths of tangents drawn from an external point to a circle are equal.∴ TP = TQIn ΔTPQ,TP = TQ⇒ ∠TQP = ∠TPQ ...(1) (In a triangle, equal sides have equal angles opposite to them)∠TQP + ∠TPQ + ∠PTQ = 180º (Angle sum property)∴ 2 ∠TPQ + ∠PTQ = 180º (Using(1))⇒ ∠PTQ = 180º – 2 ∠TPQ ...(1)We know that, a tangent to a circle is perpendicular to the radius through the point of contact.OP ⊥ PT,∴ ∠OPT = 90º⇒ ∠OPQ + ∠TPQ = 90º⇒ ∠OPQ = 90º – ∠TPQ⇒ 2∠OPQ = 2(90º – ∠TPQ) = 180º – 2 ∠TPQ ...(2)From (1) and (2), we get∠PTQ = 2∠OPQ

66293.

UrTwo tangents TP and Tthat < PTQ=2 < OPQ.Q are drawn to a circle with centre O from an external point. T. Prove

Answer»

We know that, the lengths of tangents drawn from an external point to a circle are equal.∴ TP = TQIn ΔTPQ,TP = TQ⇒ ∠TQP = ∠TPQ ...(1) (In a triangle, equal sides have equal angles opposite to them)∠TQP + ∠TPQ + ∠PTQ = 180º (Angle sum property)∴ 2 ∠TPQ + ∠PTQ = 180º (Using(1))⇒ ∠PTQ = 180º – 2 ∠TPQ ...(1)We know that, a tangent to a circle is perpendicular to the radius through the point of contact.OP ⊥ PT,∴ ∠OPT = 90º⇒ ∠OPQ + ∠TPQ = 90º⇒ ∠OPQ = 90º – ∠TPQ⇒ 2∠OPQ = 2(90º – ∠TPQ) = 180º – 2 ∠TPQ ...(2)From (1) and (2), we get∠PTQ = 2∠OPQ

66294.

Example 2 :Two tangents TP and TQ are drawnto a circle with centre O from an external point TProve that ZPTQ 2 ZOPQ

Answer»
66295.

2 \frac{1}{2}+3 \frac{1}{8} \div 1 \frac{1}{4}+1 \frac{1}{4}

Answer»

yes sir

Sir please give me my therd and fourth questions answer

thanks

66296.

1 \div [ 1 + 1 \div \{ 1 + 1 \div ( 1 + \frac { 1 } { 3 } ) \} ] =

Answer»
66297.

3 \frac { 1 } { 5 } \div ( 2 - \frac { 1 } { 3 } ) + ( \frac { 2 } { 7 } \div 1 \frac { 1 } { 7 } )

Answer»

firstly solve the brackets2-1/3 = 6-1/3 = 5/3 2/7 ÷ 8/7 = 1/4 now , 16/5 * 3/5 + 1/4 48/25 + 1/4 =217/100

66298.

1 \div 1 =

Answer»

1÷1 is always equals to 0

66299.

1 \frac { 1 } { 4 } \times \frac { 1 } { 2 } \div 1 \frac { 1 } { 3 }

Answer»
66300.

15 - [ 4 \div 2 + \{ 3 \div \frac { 1 } { 4 } ( 1 + \frac { 1 } { 3 } ) \}

Answer»