Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

80601.

show that a-=B anu -a.ху18) Ifx+iy= (a+ib)”, show that * + =4185= 1-i, show that (5a-7b) = 0.a+3i19) If 2+ib-3i)(2-3i)latib20) If xtiy= Vc+id'a²+b2prove that (x2+y2)2 =ber.c2+d?1+i21) If (a+ib) =, then prove that (a +b) =1;tik22) Show thatT-id})=is rea

Answer»

20) if a+3i/2+ib=1-i, show that (5a-7b)=0;; a+3i= (1-i)(2+ib) a+3i=2+b+1(b-2); equating real and imaginary parts; a=2+b 3=b-2; b=5; a=7; 5a-7b=35-35=0

80602.

21. The sides of a quadrilateral ABCD taken in order are 6 cm, 8 cm, 12 cmnd 14 cm respectively and the angle between the first two sides is aright angle. Find its area. (Given, V6 2.45.)

Answer»

page 1

80603.

the bisectors of ZB and Z C intersecte ABC, with AB = AC, the bisectorsShow that:isosceles triangle ABCher at O. Join A to O. Show that .other areOB=0CABC AD IST(ii) AO bisects ZAAD is the perpendicular bisector of BC730). Show that A ABC is an isosceleser Fje 7.30). Showde in which AB=AC.

Answer»

2 question answer:AD = AD (common)angle ADB = angle ADC (90 degree given)angle BAD = angle CAD (AD bisects angle A)So, Triangle BDA congruent to Triangle ADC by ASA congruence rule.AB = AC (CPCT)Triangle ABC is an isosceles Triangle

80604.

Show that everyptivale meShow that any positive odd integer e of the f

Answer»

Letabe any positive integer andb= 2.Applying Euclid’s algorithm, we have:a= 2q+r, for some integerq≥ 0, and 0 ≤r< 2a= 2qor 2q+ 1Ifa= 2q, thenais an even integer.Now, a positive integer can either be even or odd. Thus, any positive odd integer is of the form 2q+ 1.

80605.

\begin{aligned} \overline{c} &amp;=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k} \\|\vec{c}|=&amp; \sqrt{\left(\frac{1}{\sqrt{3}}\right)^{3}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(-\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=\sqrt{\frac{3}{3}}=\end{aligned}

Answer»

ratio to percentage

80606.

f Athen show that | 2A1 4JA4 2, then show that | 2A4|A

Answer»
80607.

( a + b ) ^ { 3 } + ( b + c ) ^ { 3 } + ( c + a ) ^ { 3 } - 3 ( a + b ) ( b + c ) ( c + a ) = 2 ( a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c )

Answer»

thank you

80608.

62(2+3x)In the given figureperpendicular to lirbetween rays OPProve that ZRCONIn the given figure lines AB and CD intersectat O. If ZAOC + Z BOE = 70° and Z BOD AR= 40°, find Z BOE and reflex 2 COE.It is given thatDraw a figure4 LINES ANObserve thenects the other leo distinct pointnsversal. It is ao distinct poirints 'P'andlines m andMRIn the given figure lines XY and MN intersectat O. If ZPOY = 90° and a: b = 2:3, find c.X

Answer»
80609.

Find the area of the following figures:(b) 8 cnm5 cm4 cm5 cm10 cm2 cm15 cm C

Answer»

a) Area= 1/2(AB)(BC) + (CD)(DE)=1/2(8)(15) + (17)(3)=60 + 51 = 111cm^2

b)Area=(1/2)(8+4)(5) +(1/2)(2+4)(5)=30+15=45cm^2

c)Area of circle=π(r)^2=3.14(10)^2=314cm^2

80610.

(0) Quadrilateral ABCDAB-4.5 cmBC 5.5 cmCD 4 cmAD 6 cm

Answer»
80611.

How many millimetres does a kilometre have ?2. 56 bottles are equally filled by 14 litres of soft drink. How many millilitres of soft drink does ending the Namhave ?L i 2 Linarams?stimes they may saythe Numbers:the situation and regmoting to the more

Answer»

1 kilometer has 10,00,000 millimeters.

the right answer is 10,00,000mm

80612.

. In the given figure, a circle of diameter 21 cm is given. Inside this circle two circles with diameters-andof the diameter of the big circle have been drawn, as shown in the given figure. Find the area of theshaded regionFig, 16.27

Answer»
80613.

Determine LP+ LQ+LR+ LS+ LT.24(a) 4 right angle(c) 2 right angle(b) 3 right angle(d) 6 right angle

Answer»

Bylinearpairaxiomwehave,∠DEP=180-∠5∠EDP=180-∠4In△PDE,sumofallangleswillbe180.⇒∠P+180-∠5+180-∠4=180⇒∠P=∠5+∠4-180Similarly∠Q=∠5+∠1-180∠R=∠1+∠2-180∠S=∠2+∠3-180∠T=∠3+∠4-180Addingabove5equations,weget,∠P+∠Q+∠R+∠S+∠T=2∠1+∠2+∠3+∠4+∠5-900InpentagonABCDE,∠1+∠2+∠3+∠4+∠5=540⇒∠P+∠Q+∠R+∠S+∠T=2540-900=1080-900⇒∠P+∠Q+∠R+∠S+∠T=180= 2 right angleAnswer

80614.

Solved ExamplesFactorise 3xy +6x23xy = 3 xxxyG24 =2 x 3 x x x x x y x y: 3xy + 62-3 xxxy 2 x 3 x x x x x yx yThe common factors are 3, x and y.. By taking out common factors, we have3 xxxyx (1 +2 xxx y)1.: 3xy+ 6x2- 3xy(1 + 2x)

Answer»
80615.

\left| \begin{array} { c c c } { x - 2 } &amp; { 2 x - 3 } &amp; { 3 x - 4 } \\ { x - 4 } &amp; { 2 x - 9 } &amp; { 3 x - 16 } \\ { x - 8 } &amp; { 2 x - 27 } &amp; { 3 x - 64 } \end{array} \right| = 0

Answer»

subtract first row from second row and third row|x-2 2x-3 3x-4||-2 -6 -12 | =0|-6 -24 -60|(x-2)(360-288)-(2x-3)(120-72)+(3x-4)(48-36)=072x-144-96x+144+36x-48=012x-48=012x=48x=4

thnq very much sir

80616.

Show that only one out of n, n+2, n+4 is divisible by 3

Answer»

We applied Euclid Division algorithm on n and 3.a = bq +r

on putting a = n and b = 3n = 3q +r , 0<r<3i.e n = 3q -------- (1),

n = 3q +1 --------- (2),

n = 3q +2 -----------(3)

n = 3q is divisible by 3

or n +2 = 3q +1+2 = 3q +3 also divisible by 3or n +4 = 3q + 2 +4 = 3q + 6 is also divisible by 3

Hence n, n+2 , n+4 are divisible by 3.

80617.

45.His office is in the first[A] level[C] stage[B] grounddj floor

Answer»

Answer:D) FloorHis office is in the first floor

80618.

34. Solve the following differential equationsdjcos(x+y) +sin(x +y)

Answer»

thanks

80619.

EXERCISE 4.1Construct the following quadrilaterals.1. Quadrilateral ABCD.AB 4.5 cmBC-5.5 cmCD 4 cmAD = 6 cmAC=7 cm

Answer»
80620.

\left. \begin{array} { l } { PL = 4 cm } \\ { LA = 6.5 cm } \\ { \angle P = 90 ^ { \circ } } \\ { \angle A = 110 ^ { \circ } } \\ { \angle N = 85 ^ { \circ } } \end{array} \right.

Answer»
80621.

EXERCISE 4.1lowing quadrilateralsa)QundrilateralL Constructthe folJU# 3.5 cmUM 4 cmMP 5 cmPJ4.5 cmPU 6.5 cmo Qundrilateral ABCDAB 45cmBC 5.5 cmCD-4cmAD-6 cmAC 7 cm(iv) Rhombus BESTParalelogram MOREBE 4.5 om0Rz6cmRE-4.5 cmEO: 7.5 cmET- 6 cm

Answer»
80622.

3. In the given figure, if LA =&lt;B = 90, OB = 4.5 cm, OA =6 cm and AP = 4 cm, then find QB.

Answer»
80623.

\left. \begin{array} { l } { \operatorname { log } _ { a } ( 1 + 2 + 3 ) = \operatorname { log } _ { a } 1 + \operatorname { log } _ { a } 2 + \operatorname { log } _ { a } 3 } \\ { \operatorname { log } \frac { 35 } { 78 } = \operatorname { log } 7 + \operatorname { log } 5 - \operatorname { log } 2 - \operatorname { log } 3 - \operatorname { log } 13 } \\ { 7 \operatorname { log } \frac { 16 } { 15 } + 5 \operatorname { log } \frac { 25 } { 24 } + 3 \operatorname { log } \frac { 81 } { 80 } = \operatorname { log } 2 } \end{array} \right.

Answer»
80624.

-log(12, 10) %2B log(81, 10)/4 %2B log(9, 10) %2B 2*log(6, 10)

Answer»

As log(mn)= logm- lognand logx^n= nlogx

80625.

\left. \begin{array} { l } { \operatorname { log } ( x + 3 ) + \operatorname { log } ( x - 3 ) = \operatorname { log } 16 } \\ { \operatorname { log } ( 3 x + 2 ) - \operatorname { log } ( 3 x - 2 ) = \operatorname { log } 5 } \\ { 2 \operatorname { log } _ { 10 } x = 1 + \operatorname { log } _ { 10 } ( x + ( \frac { 11 } { 10 } ) ) } \end{array} \right.

Answer»

plz solve this

80626.

If the sum of first m terms of an A.P is n and the sum of first n terms is m, then show thatthe sum of its first (m+ n) terms is -(m + n).24.

Answer»
80627.

If the sum of first m terms of an A P is same as the sum of its first n terms (m+n), show that the sum ofits first (m + n) terms is zero.9.

Answer»
80628.

If the sum of first m terms of an A.P. is the same as that of its first n terms,show that the sum of its first (m+n) terms is zero.

Answer»
80629.

() the total atfiounlt savcu Dj50. If the sum of first m terms of an A.P. is n and sum of first n terms of the same A.P. ism.Show that sum of first (m + n) terms of it is(m+ n).

Answer»

Let a be the first term and d be c.d. of the A P .ThenSm=nn= m/2{2a+ (m-1)d} 2n= 2am+ m( m-1)d. ........(1)andSn= mm= n/2{2a+(n-1)d}2m= 2an+ n(n-1)d. ...........(2)Subtracting eq.(2)- (1), we get2a(m-1)+{m(m-1)- n(n-1)}d = 2n-2m2a(m-n) +{(m^2-n^2)-(m-n)}d = -2(m-n)2a +(m+n-1) d = -2. [On dividing both sides by ( m-n)]………(3) Now,Sm+n=m+n/2{2a +(m+n-1)d}Sm+n=m+n/2(-2) ………[using (3)]Sm+n=-(m+n)

80630.

Ifthe surm of first 9 terms ofan А.Р. is 81 and that of first 1 7 terms is 289, find the sum of first n terms..

Answer»
80631.

Quadrilateral ABCDAB 4.5 cmBC= 5.5 cmCD 4 cmAD 6cmAC 7 cm

Answer»
80632.

EXERCISE 4.1T. Construct the following quadrilaterals.(i)Quadrilateral ABCD.AB 4.5 emBC-5,5 cmCD 4 emAD-6cmAC 7 cm

Answer»
80633.

(ii) In rectangle ABCD, AB6cm, and AD 4cm, then what is the area of APAB(Fig. 12.52)?4 cmLAvbFig. 12.52

Answer»
80634.

TWO MARK QUESTIONSI. In the figure ABCD is a rectanglein which CD- 6cm. AD 8cm. Find the area of parallelogram CDEFD 6em C8 cm

Answer»
80635.

Write the following decimals in the place value table.(a) 19.4 (b) 0.3 (c) 10.6 (d) 205.9Write each of the following as decimals:(a) Seven-tenths(c) Fourteen point six.(b) Two tens and nine(d) One hundred andt

Answer»
80636.

\log _{10} 15\left(1+\log _{15} 30\right)+\frac{1}{2} \log _{10} 16\left(1+\log _{4} 7\right)-\log _{10} 6\left(\log _{6} 3+1+\log _{6} 7\right)

Answer»
80637.

log(4, 10) %2B log(2, 10) %2B log(3, 10)=log(x, 10)

Answer»
80638.

(5,12,13) is Pythagorean triplet.? If yes then state the reason.

Answer»

5²+12²=25+144=169=13²

Hence, (5,12,13) is a Pythagorean triplet.

80639.

find the sum of9. If the sum of first 7 terms of an APis 49 and that of 17 terms is 289,first n terms.

Answer»
80640.

If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum offirst n terms

Answer»
80641.

(c)Subtract\begin{array}{l}{4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \text { from }} \\ {18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q}\end{array}

Answer»
80642.

Ifthe sum of first 9 terms of an A.P. is 81 and that of first 17 terms is 289, find the sum of first n terms.

Answer»
80643.

(b) 112(d) 130(a) 103(c) 12076. 4, 200, 369, 513, 634, ?(a) 788( 734(b) 715(d) 755nh and answer the

Answer»

734 is the right answer.

80644.

nce A, B, C by suitable numerals.Replace A, B, C by1.5A+87CB32. 4 CB6+ 369 A8173

Answer»
80645.

name the place value of five in each of the followinga 512

Answer»

Place value of 5 in 512 ishundredth

80646.

Write the place value of 7 in following numbersa. 372,156,932b. 712,156,200 c. 152,373,129 d. 4,037,152

Answer»

Place value of 7 is:a) 70000000b) 700000000c) 70000d) 7000

PLEASE HIT THE LIKE BUTTON

tq

80647.

in which PO-25m PR-17m15Fig. 10.13s. In Fig 10.14 4B-scm, BC-6cmCDFig. 10.14DC

Answer»

Kindly post one question per post to experience the instant solution feature of scholr at its best.

80648.

ite the following decimals in the place value table.0.29 (b) 2.08 (c) 19.60 (d) 148.32 (e) 200.812

Answer»
80649.

\begin{array}{l}{\int \frac{k^{\sqrt{x}}}{\sqrt{x}} d x=} \\ {\text { (A) } k^{\sqrt{x}} \log e^{k}+e \quad \text { (B) } 2 k^{\sqrt{x}} \log e^{k}+c} \\ {\text { (C) } 2 k^{\sqrt{x}} \log 10^{k}+c}\end{array}

Answer»
80650.

\begin{array}{l}{\int \frac{k^{\sqrt{x}}}{\sqrt{x}} d x=} \\ {\text { (A) } k^{\sqrt{x}} \log e^{k}+e} \\ {\text { (C) } 2 k^{\sqrt{x}} \log 10^{k}+c \quad \text { (D) } 2 k^{\sqrt{x}} / \log e^{k}+c}\end{array}

Answer»

answer nhi aa raha h