Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

5051.

Equation of the line through the point (2,-1,1) and the intersection of the lines 2x-y-4=0=y+2z,x+3z-4=0=2x+5z-8 is

Answer»

`x+y+z=2,x+2y=0`
`x+y+z=2,x+2z=4`
`x+2y+z=1,x+2z=4`
`x+2y+z=1,x+2y=0`

ANSWER :B
5052.

The set of allvalues of x satisfying {x}=x[xx] " where " [xx] represents greatest integer function {xx} represents fractional part of x

Answer»

0
`-(1)/(2)`
`-1 LT x lt 1`
Both A and B

Solution :`{x}=[x]x`
`{x}=x(x-{x})=x^(2)-x{x}`
`implies {x}=(x^(2))/(1+x)`
Now `0 le {x} lt 1`
`implies (x^(2))/(1+x) ge 0`
`implies 1+x gt 0`
`implies x gt -1`
`(x^(2))/(1+x) lt 1`
`implies x^(2) lt 1 +x`
`implies x^(2) -x-1 lt 0`
`implies (1-sqrt(5))/(2) lt x lt (1+sqrt(5))/(2)`
Given equationagain can be written as
`x-[x]=x[x]`
`(x)/(1+x)=[x]=LAMBDA`
`x=(lambda)/(1-lambda)`
`(1-sqrt(5))/(2) lt (lambda)/(1-lambda) lt (1+sqrt(5))/(2)`
` implies (-1-sqrt(5))/(2) lt lambda lt (sqrt(5)-1)/(2)`
`lambda=0 implies x=0`
`lambda= -1 implies x=(-1)/(2)`
5053.

Every person in the room has shake hands with a certain number of other persons. The probability that count of the number of people who have shaken hands an odd number of times is even is .

Answer»

0
`1/2`
`2/3`
1

Answer :D
5054.

Howmanywaysarethereto arrangethelettersin thewordGARDEN withthevowelsinalphabeticalorder?

Answer»

360
240
120
480

Answer :A
5055.

Matchthe following

Answer»

`{:(I,II,III,IV),(d,a,E,C):}`
`{:(I,II,III,IV),(d,a,c,b):}`
`{:(I,II,III,IV),(d,c,a,e):}`
`{:(I,II,III,IV),(a,d,b,c):}`

Answer :A
5056.

If a,b,c are in G.P and a^(1/x) = b^(1/y) = c^(1/z), prove that x,y,z are in A.P.

Answer»


ANSWER :HENCE, `X, y` and `Z` are in A.P.
5057.

Let A = {x : x is a multiple of 3} and B = {x/x is a multiplc of 5}. Then A nn B is given by

Answer»

`{3, 6, 9, ….}`
`{5, 10, 15, 20, ….}`
`{15, 30, 45, ….}`
`{30, 60, 90, ….}`

Answer :C
5058.

If the position vector of three points are a - 2b + 3c, 2a + 3b - 4c, - 7b + 10 c, then the three points are

Answer»

collinear
non-coplanar
non-collinear
None of these

Solution : Let P, Q, R be the GIVEN points. Then, we have QR =- 2PQ HENCE, P Q and R are collinear.
5059.

A,B,C are aiming to shoot a balloon. A will succeed 4 times out of 5 attempts. The change of B to shoot the balloon is 3 out of 4 and that of C is 2 out of 3. If three aim the balloon simultaneously, then find the probability that atleast two of them hit the balloon.

Answer»


ANSWER :`(5)/(6)`
5060.

Evaluate the integerals.int sqrt(e ^(x) -4) dx on [log _(e) 4, oo].

Answer»

`TAN^(-1)((sqrt(E^(x)-4))/(2))+sqrt(e^(x)-4)+c`
`2sqrt(e^(x)-4)-4 Tan^(-1) ((sqrt(e^(x)-4))/(2))+c`
`2sqrt(e^(x)-4)-4 Cos^(-1) ((sqrt(e^(x)-4))/(2))+c`
`sqrt(e^(x)-4)-4 Tan^(-1) (sqrt(e^(x)-4))+c`

ANSWER :B
5061.

The partial fractions of (x^(2))/((x^(2)+a^(2))(x^(2)+b^(2))) are

Answer»

`(1)/(a^(2)+B^(2))[(a^(2))/(x^(2)+a^(2))-(b^(2))/(x^(2)+b^(2))]`
`(1)/(b^(2)-a^(2))[(a^(2))/(x^(2)+a^(2))-(b^(2))/(x^(2)+b^(2))]`
`(1)/(a^(2)-b^(2))[(a^(2))/(x^(2)+a^(2))-(b^(2))/(x^(2)+b^(2))]`
`(1)/(a^(2)-b^(2))[(1)/(x^(2)+a^(2))-(1)/(x^(2)+b^(2))]`

ANSWER :C
5062.

Find (dy)/(dx) of the functions given in Exercises 12 to 15. x^(y)=1.

Answer»
5063.

If the areabounded by y=x, y=sinx and x=(pi)/(2) is ((pi^(2))/(k)-1) sq. units then the value of k is equal to

Answer»

2
3
6
8

Answer :D
5064.

Integrate the following functions : int(sinx)/(sqrt((3+4cosx)^(2)))dx

Answer»


ANSWER :`(1)/(4(x+4cosx))+C`
5065.

ABC is a triangular park with all sides equal. If a pillar at A subtends an angle of 45^(@) at C, the angle of elevation of the pillar at D, the middle point of BC is

Answer»

`tan^(-1) (sqrt(3)//2)`
`tan^(-1) (2//sqrt(3))`
`COT^(-1) sqrt(3)`
`tan^(-1) sqrt(3)`

ANSWER :B
5066.

If f(x)={([x]+[-x],x!=2),(lamda, x=2):}is continuous at x=2 then lamda= (where [.] denotes greatest integer)

Answer»

`-1`
0
1
2

Solution :`lamda=lim_(xto2)[X]+[-x]`
`[x]-[x]-1`
`=-1`
5067.

If alpha, beta , gamma are the roots of x^(3) + 2x^(2) - 5x + 3 = 0 then the equation whose roots alpha - (1)/(beta gamma), beta - (1)/(gamma alpha), gamma - (1)/(alpha beta ) is

Answer»

`9X^(3) + 8X^(2) + 80x + 64 = 0`
`9x^(3) + 8x^(2) + 80x - 64 = 0 `
`9x^(3) + 8x^(2) - 80x + 64 = 0`
`9x^(2) - 8x^(2) + 80x - 64 = 0`

ANSWER :3
5068.

An electron orbiting around the nucleus of an atom

Answer»

has a magnetic dipole moment
exerts an electric force on the nucleusequal to that on it by the nucleus
does produce a magnetic INDUCTION at the nucleus
has a net energy inverselyproportional to its distance from the nucleus.

Solution :`(mv^(2))/(R)=(kZe^(2))/(r^(2))rArr(mv^(2))/(2)=(kZe^(2))/(2R),M.E.=(mv^(2))/(2)-(Ze^(2))/(r)=(-Ze^(2))/(2r)prop(1)/(r)`
5069.

Evalute the following integrals int (2x + 3)/(x^(2) + x + 1) dx

Answer»


Answer :LOG `|X^(2) + x + 1| + (4)/(SQRT(3)) TAN^(-1) ((2x + 1)/(sqrt(3)) ) +c `
5070.

Ifzsatisfiesthe conditionarg(z + i)=(pi)/(4) . Then theminimumvalue of|z +1 - i| +|z - 2 +3 i| is _______.

Answer»


Solution :Locus given by equation `arg(z+i) =(pi)/(3)` is a ray EF as SHOW in the FOLLOWINGFIGURE.

COMPLEX number z moves on ray Ef.
Now,for any position of complex number P(z) on the ray EF, `|z-(-1+i)|+|z-(2-3i)|=PA+ PB`
Clearly, PA+PB is minimum when POINTP isa point C, where point A,C and B are COLLINER.
So, `(PA +PB)_("min") = AB = 5`
5071.

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(2))/(2n)

Answer»

`UNDERSET(0)OVERSET(1)intx^(n-1)(1-x)^(n)dx`
`underset(1)overset(2)intx^(n)(x-1)^(n-1)dx`
`underset(1)overset(2)int(1+x)^(n)dx`
`underset(0)overset(1)int(1-x)^(n)x^(n-1)dx`

SOLUTION :Let,
`S = (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"...."+(.^(n)C_(n))/(2n)`
`= .^(n)C_(0)underset(0)overset(1)intx^(n-1)+.^(n)C_(1)underset(0)overset(1)intx^(n)dx+"....."+.^(n)C_(n)underset(0)overset(1)intx^(2n-1)dx`
`=underset(0)overset(1)int[.^(n)C_(0)x^(n-1)+.^(n)C_(1)x^(n)+"..."+.^(n)C_(n)x^(2n-1)]dx`
`= underset(0)overset(1)intx^(n-1)(1+x)^(n)dx`
`= underset(1)overset(2)intx^(n)(x-1)^(n-1)dx`
5072.

Find lambda and mu if (2hati+6hatj+27hatk)xx(hati+lambda hatj+mu hatk)=vec(0).

Answer»


ANSWER :`MU=(27)/(2),lambda=3`
5073.

Which point on the coordinate plane shown here is indicated by the following coordinates?

Answer»

`(2, -1)`
`(-1.5, -3)`
`(-1, 2)`
`(3, 2)`

ANSWER :B::C
5074.

There are 10 stations on a railway. A train has to stop at three of these stations. The probability that no two of them are consecutive is

Answer»

`(2)/(5)`
`(7)/(15)`
`(1)/(15)`
`(1)/(3)`

ANSWER :B
5075.

If f is integrable on [a, b] then int_(a)^(b) [f(x)-f_("ave") ] dx is equal to

Answer»

`F(b) -f(a)`
`(1)/(2) (f(b)-(a) )`
`f(a) - f(b)`
`0`

Answer :D
5076.

int (1)/(" tan x tan" (60^(@) - x) tan (60^(@) + x) )dx =

Answer»

`(1)/(3) `log | sin 3X | + C
3 log | sin 3x| + C
`(1)/(2) ` log| sin 3x | + C
`(1)/(3)` log |COS 3x | +C

Answer :A
5077.

Let a, b c be given positive numbers, then values of x,y and z in R^(+) which satisfies equations x+y+z=a+b+x and 4xyz=-(a^(2)x+b^(2) +c^(2)z)= abc are respectively.

Answer»

`(b+c)/(2), (a+c)/(2),(a+b)/(2)`
`a/2, b/2, c/2`
`(a+b)/(2), (a+c)/(2), (b+c)/(2)`
NONE of these

ANSWER :A
5078.

Let f (x) = {{:( x "," , x lt 1), ( 2-x |"," , 1 lt x le 2"then" f (x) is), ( -2 + 3x -x ^(2)",", x gt 2 ):}

Answer»

differentiable at `x =1`
differentiable at `x =2`
differentiable at `x=1 and x =2`
NONE of these

Answer :B
5079.

The sum of infinite terms of the geometric progression (sqrt(2) + 1)/(sqrt(2) - 1),1/(2 - sqrt(2)),1/2....... Is

Answer»

`SQRT(2)(sqrt(2) + 1)^(2)`
`(sqrt(2) + 1)^(2)`
`5sqrt(2)`
`3sqrt(2) + sqrt(5)`

ANSWER :A
5080.

If P(AnnB)=7//10andP(B)=17//20, where P stands for probability then P(A|B) is equal to

Answer»

1)`7//8`
2)`17//20`
3)`14//17`
4)`1//8`

Answer :C
5081.

If thereis amultiplerootoforder3 fortheequationx^4- 2x ^3 + 2x -a=0then theotherrootis

Answer»

`-1`
`0`
1
2

Answer :A
5082.

If a_(n) = ( log_(e ) 3)^(n) sum_(k!(n-k)!)^(k^(2))then a_(1) + a_(2) +a_(3) +"...."oo is equal to

Answer»

`3 log_(E ) 9`
`9 log_(e ) 3`
`9 log_(e ) 3 ( log_(e )3+1)`
`( log_(e ) 9)^(2)`

Answer :C
5083.

If the equation of the circle passing throught the points (3,4), (3,2), (1,4) is x^(2)+y^(2)+2ax+2by+c=0 then the ascending order of a,b,c is

Answer»

a,B,C
b,c,a
a,c,b
b,a,c

Answer :A
5084.

If y=sin[sin(log3x)],"find "dy/dx.

Answer»


ANSWER :`1/xcos[SIN(LOG3X)]COS(log3x),XGT0`
5085.

Let f:[-1,1] to R_(f) be a function defined by f(x)=(x)/(x+2). Show that f is invertible.

Answer»


ANSWER :`
5086.

For any non-zero real value of m, the equation of the parabola to which the line mx - y + 10 + m^(2) = 0 is a tangent, is

Answer»

`X^(2) = y - 10`
`y^(2)= 4(x-2)`
`x^(2) = -4(y-10)`
`x^(2) = -4Y`

Answer :C
5087.

Find the shortest distance and the equation of the shortest distance between the following two lines : vec(r) = (-hati + hatj + 9 hatk) + lambda (2 hati + hatj - 3 hatk) and vec(r) = (3 hati - 15 hatj + 9 hatk) + mu (2 hati - 7 hatj + 5 hatk).

Answer»


Answer :`4 SQRT(3) ; VEC(r) = ( 3 HATI + 3 hatj - 3 hatk) - mu (4 hati + 4 hatj + 4 hatk)`
5088.

Find the second order derivatives of the following functions: e^(ax)

Answer»


ANSWER :`a^(2) E^(AX)`
5089.

The points (5,-4,2),(4,-3,1),(7,-6,4),(8,-7,5) are vertices of a:

Answer»

Rhombus
Square
Parallelogram
Rectangle

Answer :C
5090.

Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E cup F) = 0.7, find P(E|F) and P(F|E).

Answer»

<P>

ANSWER :`P(E|F)=(2)/(3), P(F|E)=(1)/(3)`
5091.

IFalpha, betaare therootsofx^2-p(x+1)-c=0 then(alpha ^2 + 2 alpha+1)/(alpha^2+2alpha +c)+(beta ^2+2beta +1)/(beta ^2 + 2 beta +c)=

Answer»

3
2
1
0

Answer :C
5092.

int e^(x). " sin x( sin x+ 2 cos x) dx "

Answer»


ANSWER :`E^(X) . SIN^(2) x+c`
5093.

The value of (4cos^2 75^@-3) sin15^@ is :-

Answer»

`2-sqrt3`
`2+sqrt3`
`1/SQRT2`
`(-1)/sqrt2`

5094.

Oneof theprincipalsolutionsofsqrt(3) secx=-2isequalto

Answer»

`(2 pi )/(3)`
`pi/6`
`(5PI)/(6)`
`pi/3`

ANSWER :C
5095.

The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), hat(i)-3hat(k) and -hat(i)+5hat(j)+hat(k) respectively, then angle ABC is equal to

Answer»

`pi/6`
`pi/4`
`pi/3`
`pi/2`

SOLUTION :Here, `AB=-3 hati+6hatj-3hatk`
`BC = -2 hati+hatj+4hatk`
and `AB*BC=6+6-12=0`
`RARR""/_ABC=pi/2`
5096.

If Delta ABC is such that angleA = 90^(@), angleB != angleC, then (b^(2) + c^(2))/(b^(2) - c^(2))sin(B-C) =

Answer»

`1//3`
`1//2`
1
`3//2`

ANSWER :C
5097.

The unit vector in the direction 6hati-2hatj+3hatk is ………….

Answer»

`(6)/(7)HATI+(2)/(7)HATJ+(3)/(7)hatk`
`(6)/(7)hati-(2)/(7)hatj+(3)/(7)hatk`
`(-6)/(7)hati+(2)/(7)hatj+(3)/(7)hatk`
`(6)/(7)hati+(2)/(7)hatj-(3)/(7)hatk`

Answer :B
5098.

Let each side of smallest square of chess board in one unit in length. Find the sum of area of all possible squares whose side parallel to side of chess board.

Answer»


ANSWER :1968
5099.

If the circle x^(2)+y^(2)+2ax+4ay-3a^(2)=0 and x^(2)+y^(2)-8ax-6ay+7a^(2)=0 touch each other externally, the point of contact is

Answer»

(a,a)
(0,a)
(a,0)
(-a,0)

ANSWER :C
5100.

Write the vale of intsqrt(1-cos2x)dx

Answer»

SOLUTION :`intsqrt(1-cos2x)DX=intsqrt(2sin^2x)dx`=sqrt2intsinx.dx=-sqrt2cosx+c`