Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

8001.

The sum of all the four numbers is

Answer»

3
0
4
2

Solution :LET the four integers be a-d,a,a+d, and a+2d, where a and d are integers and `dgt0`. Now,
`a+2d=(a-d)^(2)+a^(2)+(a+d)^(2)`
or `2d^(2)-2d+3a^(2)-a=0`(1)
`therefored=1/2[1pmsqrt(1+2a-6a^(2))]`(2)
Since d is a positive INTEGER, so
`1+2a-6a^(2)gt0`
or `6a^(2)-2a-1lt0`
or `(1-sqrt7)/6ltalt(1+sqrt7)/6`
or a=0 (`because` a is an integer)
Hence, from (2),
d=1 or 0
But since `dgt0`,
`therefore` d=1
Hence, the four NUMBERS are -1,0,1,2.
8002.

Consider the folowing statements I:The number of non trivial even divisors of the number 2^(a_(1)),3^(a_(2)),4^(a_(3)),5^(a_(4)),6^(a_(3)) is a_(2)+a_(4)+a_(5)+a_(2)a_(4)+a_(4)a_(5) Then

Answer»

I is FALSEAND IIis FALSE
Is trueand II is TRUE
I isfalseand II istrue
I istrueand II isfalse

Answer :C
8003.

If veca=hati-2hatj+hatk, vecb=hati+2hatj+3hatk, vec c=3hati+2hatj+hatk then the value of [veca xx vecb, vecbxx vec c, vec c xx veca] is :

Answer»

765
675
576
567

Solution :N/A
8004.

If the plane lambda x-mu y + vz =phi contains line (x-lambda)/(lambda) = (y - 2phi)/(mu) = (z-v)/(v) then the value of (mu)/(phi) is................

Answer»

2
1
`-1`
`3`

ANSWER :A
8005.

Find the number of ways in which 3 numbers in A.P. can be selected from 1, 2, 3,…….. 21.

Answer»


ANSWER :100
8006.

If a, b, c are the number of functions, injections, constant functions from a set containing 3 elements into a set containing 6 elements respectively then the ascending order of a, b, c is

Answer»

a,B,C
b,c, a
c, b, a
c, a, b

Answer :C
8007.

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

Answer»


ANSWER :`(1)/(SQRT(3))`
8008.

Find the number of ways of arranging the letters of the word 'FATHER'so that the relative positions of vowels and consonants are not disturbed.

Answer»


ANSWER :48 WAYS
8009.

An are of the catenary y= (a)/(2) (e^((x)/(a)) + e^(-(x)/(a)))=a cos h(x)/(a), whose end-points have abscissas 0 and x, respectively, revolves about the x-axis. Show that the surface area P and the volume V of the solid thus generated are related by the formula P=(2V)/(a)

Answer»

<P>

ANSWER :`P= (2V)/(a)`
8010.

A chess match between two players A and B is won by whoever first wins a total of two games. Probability of A's winning, drawng and losing any particular game are 1/6, 1/3 and 1/2 respectively. (The game are independent). If the probability that B wins the match in the 4^(th)gams is p, then 6p is equal to

Answer»


SOLUTION :Probabililty that `B` wins the match in the `4^(th)` GAME
`=1/2xx1/6xx1/3xx1/2xx6+.^(3)C_(1)xx1/2xx1/3xx1/2xx1/2=6/72+3/36=(6+6)/72=1/6`
8011.

If A[{:(3,-4),(1,1),(2,0):}] and B=[{:(2,1,2),(1,2,4):}] , then verifyAB = BA or not?

Answer»

Solution :We have, `A=[{:(2,1,2),(1,2,4):}]_(2xx3) "and" B=[{:(4,1),(2,3),(1,2):}]_(3xx2)`
So, AB and BA both are POSSIBLE
[since, in both A-B and B-A, the number of COLUMNS of first is equal to the number of rows of SECOND]
`therefore AB=[{:(2,1,2),(1,2,4):}]_(2xx3)[{:(4,1),(2,3),(1,2):}]_(3xx2)`
`=[{:(8+2+2,2+3+4),(4+4+4,1+ 6+8):}]=[{:(12,9),(12,15):}]`
and `BA=[{:(4,1),(2,3),(1,2):}]_(3xx2)[{:(2,1,2),(1,2,4):}]_(2xx3)`
`= [{:(4xx2+1,4+2,8+4),(4+3,2+ 6,4+12),(2+2,1+4,2+8):}]=[{:(9,6,12),(7,8,16),(4,5,10):}]`
8012.

A=[{:(2,1,2),(1,2,4):}] and B=[{:(4,1),(2,3),(1,2):}]Verify AB=BA or not.

Answer»

SOLUTION :We have, `A=[{:(2,1,2),(1,2,4):}]_(2xx3) "and"B=[{:(4,1),(2,3),(1,2):}]_(3xx2)`
So, AB and BA both are POSSIBLE
[since, in both A-B and B-A, the number of columns of FIRST is EQUAL to the number of rows of second]
`THEREFORE AB=[{:(2,1,2),(1,2,4):}]_(2xx3)[{:(4,1),(2,3),(1,2):}]_(3xx2)`
`=[{:(8+2+2,2+3+4),(4+4+4,1+ 6+8):}]=[{:(12,9),(12,15):}]`
and `BA=[{:(4,1),(2,3),(1,2):}]_(3xx2)[{:(2,1,2),(1,2,4):}]_(2xx3)`
`= [{:(4xx2+1,4+2,8+4),(4+3,2+ 6,4+12),(2+2,1+4,2+8):}]=[{:(9,6,12),(7,8,16),(4,5,10):}]`
8013.

Probability that A speaks truth is (4)/(5) A coin is tossed. A reports that a head appears. The probability that there was head is

Answer»

`(4)/(5)`
`(1)/(2)`
`(1)/(5)`
`(2)/(5)`

ANSWER :A
8014.

If the distance between the points (-1, -1, z) and (1, -1, 1) is 2 then z =_____.

Answer»

1
`SQRT2`
2
0

Answer :A
8015.

The solution of (x+y +1) (dy)/(dx) =1 is

Answer»

`x+y+2 = C E^(y)`
`x-y+2 = c e^(y)`
`x+y-2 = c e^(y)`
`x+y+2 = c e^(2Y)`

ANSWER :A
8016.

The parametric equations x=(2a(1-t^(2)))/(1+t^(2)) andy=(4at)/(1+t^(2)) represents a circle whose radius is

Answer»

a
2a
3a
4a

Answer :B
8017.

Construct truth tables for the following and indicate which of these are tautologies (p vv ~~q)^^(q vv ~~ p)

Answer»

SOLUTION :
8018.

If |a| lt 1, b = sum_(k=1)^(oo) (a^(k))/(k) rArr a=

Answer»

`sum_(K=1)^(OO)((-1)^(k)B^(k))/(k)`
`sum_(k=1)^(oo)((-1)^(k-1)b^(k))/(k!)`
`sum_(k=1)^(oo)((-1)^(k)b^(k))/((k-1)!)`
`sum_(k=1)^(oo)((-1)^(k-1)b^(k))/((k+1)!)`

Answer :B
8019.

One ticket is selected at random from 100 tickets numbered 00, 01, 02, 03,…………..99. Suppose x is the sum of the digits and y is the product of the digits, then the probability that x = 9 and y = 0 is

Answer»

`1/99`
`1/50`
`3/50`
`1/25`

ANSWER :B
8020.

Assume an auto loan in the amount of $12,000 is made. The loan carries and interest change of 14%. What is the amount of interest owed in the first three years of the loan, assuming there are no payments on the loan, and there is ul("no") compounding?

Answer»


ANSWER :`$5,040`
8021.

Find the area of the figure out only by the circle rho= sqrt3 sin varphi from the cardioid rho=1 + cos varphi

Answer»


ANSWER :`(3)/(4) (pi-sqrt3)`
8022.

If a_n = (1+2+3+......+n)/(n!) then a_1 +a_2+a_3 + ....oo =

Answer»

`e/2`
`(3E)/2`
`(5E)/2`
`(7E)/2`

ANSWER :B
8023.

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

Answer»


Answer :`(i) (1)/(36) (PI^(2) +16) (ii) (pi)/(8)`
8024.

Find the value of x,y and z from the equation:[[4,3],[x,5]]=[[y,z],[1,5]]

Answer»

SOLUTION :EQUATING the corresponding ELEMENTS on both SIDES we GET
y=4, z=3, x=1
8025.

If ninN,"then "3^(2n+2)-8n-9 is divisible by

Answer»

574
575
675
674

Answer :D
8026.

int (dx)/((x^2-1)sqrt(x-1))

Answer»


ANSWER :`-1/sqrt(x-1)`
8027.

If |{:(x,4,10),(5,2,5),(7,3,x):}|=0 then x in …………

Answer»

`{10}`
`{(15)/(2)}`
`{10,7}`
`{10,(15)/2}`

ANSWER :A
8028.

Prove the following : tan6^@.tan42^@.tan66^@.tan78^@ = 1

Answer»

SOLUTION :We have TAN3A
= tanAtan(60^@-A)tan(60^@+A)
Now putting `A=6^@` and `18^@`.
in (1) we have
`tan18^@=tan6^@tan54^@tan66^@......(2)
and `tan54^@`
=`tan18^@tan42^@tan78^@` ......(3)
Multiplying (2) and (3) we have
`tan18^@tan54^@`
=`tan6^@tan54^@tan66^@tan18^@tan42^@tan78^@`
or, 1=`tan6^@tan42^@tan66^@tan78^@`.
8029.

Two finite sets A and B have m and n elements respectively. If the number of sub-sets of A is 224 more than the number of sub-sets of B, then m - n is equal to

Answer»

2
3
4
5

Answer :B
8030.

Find the areaof the regionboundedby thecurvey= sinx, x = (pi)/(2)and x =(3 pi)/(2).

Answer»


ANSWER :2SQ . UNITS
8031.

int_(0)^(pi/2) cos^(2) x dx

Answer»

Solution :`int_(0)^(pi//2)COS^(2)x DX =int_(0)^(pi//2)((cos2x +1)/(2))dx`
`=(1)/(2) int_(0)^(pi//2)cos 2x dx +(1)/(2)int_(0)^(pi//2)1DX`
`=(1)/(2)[(sin 2x)/(2)]_(0)^(pi//2)+(1)/(2)[x]_(0)^(pi//2)`
`=(1)/(2)[((sinpi)/(2)-(sin 0)/(2))+((pi)/(2)-0)]=(pi)/(4)`
8032.

Fill in the gaps with correct answer .tanalpha = (1)/2, tanbeta = (1)/3, then alpha + beta = _____

Answer»

SOLUTION :`(PI)/4`
8033.

Evaluate the following integrals. int(3x-1)/(2x^(2)-4x+3)dx

Answer»


Answer :`(3)/(4)log|2x^(2)-4x+3|+sqrt(2)TAN^(-1)(sqrt(2)(x-1))+c`
8034.

Evaluate the following integrals. int(3x+1)/(2x^(2)-2x+3)dx

Answer»
8035.

Find (dy)/(dx) of the functions (cos x)^(y)= (cos y)^(x)

Answer»


ANSWER :`(LOG (COS y) + y TAN X)/(log (cos x) + x tan y)`
8036.

Thee number of persons joining a cinema ticket counter is a minute has Poisson distribution with parameter 6. Find the probability that i) no one joins the queue in a particular minute ii) two or more persons join the queue is a minute.

Answer»


ANSWER :i) `E^(-6)`II) `1-7e^(-6)`
8037.

On N, define a relation ~ as follows: a,b in N, a~ b if gcd (a,b)=2 Then ~ is

Answer»

REFLEXIVE but not symmetric
transitive but not reflexive
an EQUIVALENCE relation
symmetric only

ANSWER :D
8038.

A pairof lines S =0 together with the linesgiven by the equation 8x^(2)-14xy+3y^(2)+10x+10y-25=0 form a parallelogram if itsdiagonals intersect at point(3,2) then the equationS=0 is

Answer»

`6x^(2) - 9xy+ y^(2)- 25 x + 30Y + 25 =0`
`8x^(2)- 14y + 3y^(2)- 25x + 30y + 50 =0`
`8x^(2) -14xy + 3y^(2)-50X+ 50Y + 75= 0`
`6x^(2)+ 14 xy -3y^(2)- 30x +40y-75= 0`

Answer :C
8039.

The tangent to curve y_1=ax^2 + bx + 7/2 at (1,2) is parallel to normal at point (-2,2) on curve y_2=x^2 + 6x+10, then value of (a-2b) is

Answer»

SOLUTION :(1,2) LIES on `y_1`
`2=a+b+7/2 rArr a+b =-3/2`…(1)
`((dy_1)/(dx))_(1,2)=-1/((dy_2)/(dx))_(2,2)`
`2a+b=-1/2`
From (1) & (2) a=1 & b=`-5/2`
a-2b=6
8040.

A particle is projected vertically upward and is at a height h after t_(1) seconds and again after t_(2) seconds

Answer»

`h="GT"_(1)t_(2)`
`h=(1)/(2)"gt"_(1)t_(2)`
`h=(2)/(g)t_(1)t_(2)`
`h=sqrt("gt"_(1)t_(2))`

Answer :B
8041.

Prove that sin18^@.cos36^@ = 1/4

Answer»

SOLUTION :`SIN18^@ COS36^@=(sqrt5-1)/4)((sqrt5+1)/4)=(5-1)/16=1/4`
8042.

Bag-I contains 3 black and 2 white balls, Bag-II contains 2 black and 4 white balls. A bag and a ball is selected at random. Determine the probability of selecting a black ball.

Answer»


ANSWER :`(7)/(15)`
8043.

Find the sum of n terms of the series (a+b)+(a^(2)+ab+b^(2))+(a^(3)+a^(2)b+ab^(2)+b^(3))+"......." where a ne 1,bne 1 and a ne b.

Answer»

Solution : ` a ne1 B ne 0 and ane b `
Let S = ( a+ b) + `(a^(2) + ab + b^(2)+ ( a^(3) + a^(2) b+ ab^(2) +b^(3) + ….+ n ` terms
`=(1) /( (a-b) ) [(a^(2)-b^(2)) + ( a^(3) -b ^(3)) + (a^(4) -b^(4) ) + ....+_n terms ]`
`= (1) /((a-b) ) [a^(2) (1+ a+ ......+ nterms )- b ^(2)(1+ b+ b^(2) + .....+nterms ) `

` =(1)/( (a- b) ) [ a^(2)* (1* (a^(n) -1) )/( (a-1) ) -b^(2) ( 1* (b^(n) -1))/( (b-1) ) ]`
` "" = (1)/( (a-b ) ) [a^(2) ((1- n^(2)))/( (1- a) ) - b^(2) ( ( 1- b^(n)))/( (1-b) ) ]`
8044.

Let A = ((a,b),(c,d)) where a,b,c,d in R . If |a|,|b|,|c|,|d| lt= where k gt 0 then

Answer»

det (A)` GT= 2hatk`
det (A) `gt= K^(2)`
det (A) `lt= 2 k^(2)`
det (A) `lt= k`

ANSWER :C
8045.

int(1+tan^(2)x)/(1-tan^(2)x)dx=....

Answer»

`LOG((1-tanx)/(1+tanx))+C`
`log((1+tanx)/(1-tanx))+c`
`(1)/(2) log((1-tanx)/(1+tanx))+c`
`(1)/(2) log((1+tanx)/(1-tanx))+c`

ANSWER :D
8046.

If x/y=(cos A)/(cos B) then (xtannA+ytanB)/(x+y) is equal to

Answer»

`COT((A+B)/2)`
`TAN((A+B)/2)`
`cot(A+B)`
`tan(A+B)`

ANSWER :B
8047.

Let f: RrarrR be defined by f(x)={(2x , xgt3),(x^(2), 1ltxle3),(2x,xle1):} Then f(-1)+f(2)+f(4) is

Answer»

1)9
2)14
3)5
4)10

Answer :A
8048.

Solve the following : [[x,a,a],[m,m,m],[b,x,b]]=0

Answer»

SOLUTION :`[[X,a,a],[m,m,m],[B,x,b]]`=0
`rArr m[[x,a,a],[1,1,1],[b,x,b]]`=0
`rArr m[[x-a,0,a],[0,0,1],[0,x-b,b]]`=0
(REPLACING `C_1` and`C_2` by `C_1-C_2` and `C_2-C_3` RESPECTIVELY)
`rArr mabs((x-a)(-x+b))`=0
`rArr m(x-a)(b-x)=0 rArr x=a,b`
8049.

Consider the functions defined implicitly by the equationy^(3)-3y+x=0 on various intervals in the real line. If x in (-oo, -2)uu(2, oo), the equation implicitly defines a unique real-valued differentiable function y=f(x). If x in (-2, 2), the equation implicitlydefines a unique real-valued differentiable function y=g(x) satisfying g(0)=0. The area of the region bounded by the curve y=f(x), the X-axis and the lines x = a and x = b, where - oo lt a lt b lt -2, is :

Answer»

`int_(a)^(b)(x)/(3[{F(x)}^(2)-1])dx + BF(b)-AF(a)`
`-int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx+bf(b)-af(a)`
`int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx-bf(b)+af(a)`
`-int_(a)^(b)(x)/(3[{f(x)}^(2)-1])dx-bf(b)+af(a)`

Answer :A
8050.

Evaluate the definite integrals int_(0)^(pi/2)cos^(2)xdx

Answer»


ANSWER :`pi/4`