InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 12152. |
Let P(x) be a polynomial with real coefficients such that int_(0)^(1)x^(m) P(1 -x)dx = 0 AA minNcup{0}, then |
|
Answer» <P>`P(X) =x^(N) (1-x)^(n)` for some `n in N` |
|
| 12153. |
Find [vec(a)vec(b)vec( c )] if vec(a)=hati-2hatj+3hatk,vec(b)=2hati-3hatj+hatk and vec( c )=3hati+hatj-2hatk. |
|
Answer» |
|
| 12155. |
Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^2-4A+I=O, where I is 2xx2 identity matrix and O is 2xx2 zero matrix. Using this equation find A^(-1) |
|
Answer» |
|
| 12156. |
If x =(4)/((sqrt(5)+1)(root4(5)+1)(root8(5)+1)(root16(5)+1)). Then the value of (1+x)^(48) is- |
|
Answer» 5 |
|
| 12157. |
If f (x) ={{:(xlog_(e)x",",x gt0),(0",",x=0):}"not conclusion of LMVT holds " at x = 1 in the interval [0,a] for f(x), then [a^(2)] is equal to (where [.] denotes the greatest interger) "_______". |
|
Answer» |
|
| 12158. |
If the line (x)/(1)=(y)/(2)=(z)/(3) intersects the line 3beta^2x+3(1-2alpha)y+z=3=-(1)/(2){(6alpha^2x+3(1-2beta)y+2z)} then point (alpha, beta, 1) lie on the plane |
|
Answer» `2x-y+z=4` |
|
| 12159. |
ABCD is a square with side a. If AB and AD are taken as positive coordinate axes then equation of circle circumscribing the square is |
|
Answer» `X^(2)+y^(2)-ax-ay=0` |
|
| 12160. |
Prove that: x/(log x) lt log (1+x) lt x if x gt 0. |
| Answer» | |
| 12161. |
If A and B are two events of a sample space S such that P(A)=2.0, P(B)=0.6 and P(A|B)=0.5 then P(A^(1)|B)= |
| Answer» ANSWER :A | |
| 12162. |
If (3,1) is a focus and x= 0 is the corresponding directrix of a conic with accentricity 2, then its vertices are |
|
Answer» `(1,1) (-3,1) ` |
|
| 12163. |
A quadratic polynominal maps from [-2,3] onto [0,3] and touches X-axis at x=3, then the polynominal is |
|
Answer» `3/16(X^(2)-6x+16)` |
|
| 12164. |
IF a setAhas12elements, thenthe numberof subsetsof Ahavingatleast3 elements is |
|
Answer» |
|
| 12165. |
Examine the continuity of f, where f is defined by f(x)= {(sin x- cos x",","if" x ne 0),(-1,"if" x = 0):} |
|
Answer» |
|
| 12166. |
Intergrate the following: intcos5x cos2xdx |
|
Answer» SOLUTION :`intcos5x COS2XDX` =`1/2 int2cos5x cos2xdx` =`1/2 `INT(cos7x+cos3x)DX` 1/2.1/7sin7x+1/2.1/3sin3x+C =1/14sin7x+1/6sin3x+C |
|
| 12167. |
Consider the sequence 1,3,3,5,5,5,5,5,7,7,7,7,7,7,7,…… and evaluate its 2016 ^(th) term. |
|
Answer» |
|
| 12168. |
If x^(2) + 9y^(2) + 25z^(2) = xyz((15)/(x)+(5)/(y)+(3)/(z)), then - |
| Answer» Answer :A,B | |
| 12169. |
Find the area of the region bounded by the parabola y=x^2" and "y= |x|. |
|
Answer» |
|
| 12170. |
Let A_(n)=[-1/n,1/n], n in N, and A = overset(infty)underset(n=1)cap A_(n) rArr a cancel(in) underset(n ne 1)overset(infty)cap A_(n)=A, and B={0},then |
|
Answer» A=B |
|
| 12171. |
If (a + 2)(a - 3)(a + 4) = 0 and a > 0, then a = |
|
Answer» 1 |
|
| 12172. |
If a gt0, then int_(-pi)^(pi) (sin^2 x)/(1+a^x)dx is equal to |
| Answer» ANSWER :A | |
| 12173. |
Findproducts : [[a,b],[c,d]][[0,1],[1,0]] |
|
Answer» SOLUTION :`[[a,B],[C,d]][[0,1],[1,0]]` `=[[a.0+b.1""a.1+b.0],[c.0+d.1" "c.1+d.0]]=[[b,a],[d,c]]` |
|
| 12174. |
The parabola y=px^(2)+px+q is symmetrical about the line |
| Answer» Answer :D | |
| 12175. |
Evaluate the following:lim_(xto0) cos(sin x) |
|
Answer» SOLUTION :`lim_(xto0)` COS(SIN x) =cos(SIN0)=cos0=1 |
|
| 12177. |
The solution of the differential equation (1-x^(2)).(dy)/(dx)+xy=(x-x^(3))y^((1)/(2)), is(AA|x| lt1)sqrt(9y)=-f(x)=c(1-x^2)^((1)/(4)), where c is an arbitrary constant and f((1)/(2))=(3)/(4). Then f(x) is |
|
Answer» an ODD function |
|
| 12178. |
A fair die is rolled. Consider the events A={1,3,5}, B={2,3} and C={2,3,4,5}. Find (i) P(AnnB),P(AuuB) (ii) P(A//B),P(B//A) (iii) P(A//C),P(C//A) (iv) P(B//C),P(C//B) |
|
Answer» |
|
| 12179. |
IFDelta= | (1,5,6),(0,1,7),(0,0,1)| and Delta ' =|(1,0,1),(3,0,3),(4,6,100)| then |
|
Answer» `Delta ^2 - 3Delta' =0` |
|
| 12180. |
I :If(a alpha+b)^2+ (a beta= b)^(-2)=1wherealpha, betaare therootsof ax^2 + bx+c=0 thenac ( ac+ 2)=b^2 II :the valueof 'a' forwhichonerootof the quadraticequation(a^2 -5a+3) x^2 + (3a-1)x+2=0istwiceaslargeasthequadraticequation |
|
Answer» ONLYI is true |
|
| 12182. |
The value of sqrt24.99 is |
|
Answer» 1)5.001 |
|
| 12183. |
int sec^((2)/(3))x dx= |
|
Answer» `-3(TANX)^((1)/(3)+c` |
|
| 12184. |
If the sum of the first n terms of a series be 5n^(2) + 2n, then its second term is |
|
Answer» 6 |
|
| 12185. |
If 2x-y ge 2, x -2y le 2, x+y le 5, x ge 0, y gt 0 then the minimum value of f=x-y is |
|
Answer» 1 |
|
| 12186. |
A circle of radius r passes through the origin and meets the axes at A and B. The locus of the centroid of triangleOAB" is" |
|
Answer» `x^(2)+y^(2)=4R^(2)` |
|
| 12187. |
If A and B are mutually exclusive events with P(B)ne 1thenP(A| bar B) is equal to {HerebarB is the complement of the event B) |
|
Answer» <P>`(1)/(P(B))` |
|
| 12188. |
Integration of a binomialdifferential int3sqrt(1+4sqrt(x))/(sqrt(x))dx. |
|
Answer» |
|
| 12189. |
Which of the graphs is not a graph of functions ? |
|
Answer»
|
|
| 12190. |
Which of the following graph of potential energy represents the unimolecular elimination reaction ? |
|
Answer»
|
|
| 12191. |
In a B School there are 15 teachers who teach marketing or finance. Of these, 8 teach finance and 4 teach both marketing and finance. How many teach marketing but not finance? |
|
Answer» 15 |
|
| 12192. |
Simplify the following((costheta-isintheta)^7)/((sin2theta-icos2theta)^4) |
|
Answer» |
|
| 12193. |
If X and Y are two non-empty sets, where f:XtoY is function defined such that f(C)={f(x):x inC}andf'(D)={x:f(x)inD} for DsubeYfor any AsubeXandBsubeY, then : |
|
Answer» `f(f^(-1)(B))=B` only if `B=f(X)` |
|
| 12194. |
The volume (in ml) of 0.5 M NaOH required for the complete reaction with 150 ml of 1.5M H_(3)PO_(3) solution is |
|
Answer» 1350 |
|
| 12195. |
int_(- (pi)/(6) )^((pi)/(6) ) sin^(5) x cos^(2) x dx = …...... |
|
Answer» `(1)/( SQRT2) - 1` |
|
| 12196. |
If (x^(4))/((x-1)(x-2))=x^(2)+3x+7+(A)/(x-2)+(B)/(x-1) then A= |
|
Answer» 7 |
|
| 12197. |
If the tangent and the normal to a rectangular hyperbola xy = c^(2) , at apoint , cuts off intercepts a_(1)" and " a_(2) on the x- axis and b_(1) b_(2) on the y- axis, then a_(1)a_(2) + b_(1) b_(2) is equal to |
| Answer» Answer :C | |
| 12198. |
Find the area of the region enclosed by the given curves .y=cos x , y=1 -(2x)/(pi) |
|
Answer» |
|
| 12199. |
If the latus rectum through one focum subtends a right angle at the farther vertex of the hyperbola then its eccentricity is |
| Answer» ANSWER :B | |
| 12200. |
Consider the equaitonof line abarz + abarz+ abarz + b=0, whereb is arealparameterand a isfixed non-zero complex number. The interceptof line on imaginary axis is givenby |
|
Answer» `(b)/(bara-a)` Let thePQbe thesegement intercept between axes. Forintercept on real AXIS `Z_(R)`. `z =BARZ` `rArr Z_(R)(a+ bara) + b =0` ` rArr Z_(R) = (-b)/(a + bara)` For interceptonimaginary `Z_(1)` `z +barz = 0` `rArr Z_(1)(bara - a) + b=0` `rArr Z_(1)= (b)/(a+bara)` For mid-point, `z= (Z_(R) + Z_(I))/(2)` `rArr z =(-b)/(2)[(1)/(bara+a)+(1)/(bara +a)]` `z= (BARAB)/((a + bara)(a-bara))` `rArr z = (barab)/(a^(2) -(a)^(2))` `(z[a^(2)-(a)^(2)])/(bara) = barz((bara)^(2) - (a)^(2))/(a)` `rArr az + bar(az) =0` |
|