Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1651.

If two tangents drawn from the point (2, a) to the hyperbola are at right angles, then a equal to

Answer»


ANSWER :1.73
1652.

Prove that the logarithmic function is increasing on (0, oo)

Answer»


ANSWER :`F'(X)GT 0`
1653.

Column -1 : real valued function, Column -2: continuity of the function, Column - 3: differentiability of the function, Match the following Column(s) (Whre [.] denotes the greatest integer function and {.} fractional at function) Which of the following combination combination is correct?

Answer»

(II)(iii)(S)
(III)(I)(P)
(II)(ii)`(R)`
(III)(i)`(R)`

Solution :(I) `F(x)=||x-6|-|x-8||-|x^(2)-4|+3x-|x-7|^(3)` is continuous `AA x epsilon R` and not DIFFERENTIABLE at `x=-2, 2, 6, 7` & `8`
(II) `f(x)=(x^(2)-9)|x^(2)+11x+24|+sin|x-7|+cos|x-4|+(x-1)^(3//5)sin(x-1)` is continuous
`AA x epsilonR` and not differentiable at `x=-8` & `7`
(III) `f(x)={((x+1)^(3//5)-(3pi)/2, : xlt-1),((x-1/2)cos^(-1)(4x^(3)-3x), : -1le x le 1), ((x-1)^(5//3),:1ltxlt2):}` is discontinuous at `x=-1` & 1 not differentiable at `x=-1, -1/2` & 1
(IV) `f(x)=P{sinx}{cosx}+(sin^(3)pi{x})([x]), x epsilon [-1, 2PI]`
Let `g(x)=UNDERSET("cont. at" x=I) ubrace((sinpi{x})([x]))(sin^(2)pi{x})`
`g^(')(I^(+))=g^(')(I^(-))` so differentiable at `x=I` and for `{sinx}{cos}`
Doubtful poins for non differentiabililty are `x=0, (pi)/2, pi, (3pi)/2`
`:.{sinx}.{cosx}` is discontinuous at `x=0, (pi)/2, 2pi`
So not differentiable at `x=2npi, 2npi+(pi)/2`
1654.

Column -1 : real valued function, Column -2: continuity of the function, Column - 3: differentiability of the function, Match the following Column(s) (Whre [.] denotes the greatest integer function and {.} fractional at function) Which of the following is correct?

Answer»

(I)(i)(S)
(IV)(i)(S)
(II)(ii)(S)
(II)(ii)(P)

Solution :(I) `f(X)=||x-6|-|x-8||-|x^(2)-4|+3x-|x-7|^(3)` is continuous `AA x epsilon R` and not differentiable at `x=-2, 2, 6, 7` & `8`
(II) `f(x)=(x^(2)-9)|x^(2)+11x+24|+sin|x-7|+cos|x-4|+(x-1)^(3//5)sin(x-1)` is continuous
`AA x epsilonR` and not differentiable at `x=-8` & `7`
(III) `f(x)={((x+1)^(3//5)-(3pi)/2, : xlt-1),((x-1/2)cos^(-1)(4x^(3)-3x), : -1le x le 1), ((x-1)^(5//3),:1ltxlt2):}` is DISCONTINUOUS at `x=-1` & 1 not differentiable at `x=-1, -1/2` & 1
(IV) `f(x)=P{sinx}{cosx}+(sin^(3)pi{x})([x]), x epsilon [-1, 2PI]`
Let `G(x)=underset("cont. at" x=I) ubrace((sinpi{x})([x]))(sin^(2)pi{x})`
`g^(')(I^(+))=g^(')(I^(-))` so differentiable at `x=I` and for `{sinx}{cos}`
Doubtful poins for non differentiabililty are `x=0, (pi)/2, pi, (3pi)/2`
`:.{sinx}.{cosx}` is discontinuous at `x=0, (pi)/2, 2pi`
So not differentiable at `x=2npi, 2npi+(pi)/2`
1655.

int _(-1) ^(1) (x ^(4))/( 1 + e ^(x ^(7)))dx is

Answer»

`1/2`
0
`1/5`
NONE of these

ANSWER :C
1656.

The general solution of differential equation : ydx-xdy=0 is :

Answer»

xy=c
`x=cy^2`
`y=cx^2`
x=cy

Answer :D
1657.

Evaluate the following inegrals int sin mx sin nx dx

Answer»


Answer :`(1)/(2)[(SIN(m-n)x)/(m-n)-(sin(m+n)x)/(m+n)]+c`
1658.

The value of [(a-b)(b-c)(c-a)] is equal to

Answer»

0
1
2[ a b c ]
2

Solution :Now, `[(a-b)(b-c)(c-a)]`
`= (a-b).[(b-c) XX (c-a)]`
`= (a-b).[bxxc-bxxa-cxxc+cxxa]`
`= (a-b).[bxxc-bxxa+cxxa] ""[ :' c xx c = 0]`
`= a.[bxxc]- a.[bxxa] + a.[cxxa] - b.[bxxc]+b.[bxxa] - b.[cxxa]`
`= [abc] - 0 + 0 + 0 - [BCA]`
`= [abc] - [abc] = 0`
1659.

Mean of a set of numbers is bar(x). If each number is increased by lambda, then the mean of new set is

Answer»

`BAR(X)`
`bar(x) + LAMBDA`
`lambda bar(x)`
`lambda`

ANSWER :B
1660.

The solution of x - 1 = (x - [x]) (x - {x}), ( where [x] and {x} are integral and frectionalpart respectively of x ) is :

Answer»

X `in` R
` x in ` R ~ [ 1, 2).
x `in [ 1, 2)`
` x in `R ~ [ 1, 2] .

Answer :C
1661.

An insect of ....................

Answer»


Solution :`v_(o)=v_(1)=omega A`
`=(sqrt(k/M))A`

`V_("rel")=sqrt(v_(0)^(2)+v_(1)^(2)+2v_(0)v_(1) COS 60^(@))`
`=sqrt(3) A sqrt(k/M)`
1662.

The number of ways of dividing 100 scouts into 3 squads of 50, 30, 20 respectively is

Answer»

`(80!)/(60!50!40!)`
`(90!)/(50!40!30!)`
`(100!)/(50!30!20!)`
`(120!)/(70!50!20!)`

ANSWER :C
1663.

Find by integration, the area of the region bounded by the lines 5x-2y=15,x+4=0 and the x-axis.

Answer»


ANSWER :`(35)/(2)`
1664.

If the integral int(5tanx)/(tanx-2)dx=x+a log|sin x-2 cosx|+c then a is equal to

Answer»

`-1`
`-2`
1
2

Answer :4
1665.

Let p: Maths is intersting and q : Maths is easy, then p rArr (~p vv q) is equivalent to

Answer»

It MATHS is EASY then it is INTERESTING
Either Maths is interesting or it easy
If Maths is interseting then it is easy
Maths is NEITHER interesting nor easy

Answer :C
1666.

Evaluate : int _(-2)^(3) |1 - x^(2) | dx

Answer»


ANSWER :`(28)/(3)`
1667.

Let a function f : XtoY is defined where X={0,1,2,3,….,9}, Y={0,1,2,…..,100} and f(5)=5, then the probability that the function of type f: xtoB where BsubeY is of bijective in nature is

Answer»

`(10!)/(sum_(r=1)^(101)r^(9)*^(100)C_(r-1))`
`("^(101)C_(9)*9!)/(sum_(r=1)^(101)r^(10)*^(100)C_(r))`
`("^(100)C_(9)*9!)/(sum_(r=1)^(101)r^(10)*^(101)C_(r))`
`("^(100)C_(9)*9!)/(sum_(r=1)^(101)r^(9)*^(100)C_(r-1))`

Solution :`(d)` Favourable cases for bijection is `"^(100)C_(9)xx9!`
For total cases
`'B'` is set of one ELEMENT, no. of function `-1`
`'B'` is set of two element, no. of function `-2^(9)`
`'B'` is set of three element, no. of function `-3^(9)`
.........
........
`'B'= Y`, No. of function `=101^(9)`
`:.` Total cases `=1+"^(100)C_(1)*2^(9)+^(100)C_(2)*3^(9)+....+^(100)C_(100)*101^(9)`
`=sum_(r=1)^(101)r^(9)*"^(100)C_(r-1)`
`:.` Required probability `=("^(100)C_(9)*9!)/(sum_(r=1)^(101)r^(9)*^(100)C_(r =1))`
1668.

Find the domain and range of the following function : f: R rarr R , f(x) =1/(1-x^(2)), x ne pm1

Answer»


SOLUTION :N/A
1669.

If f(x)= {((x^(2))/(a)-a",",x lt a),(0",",x=a),(a-(x^(2))/(a)",",x gt a):} then, ………

Answer»

`UNDERSET(x rarr a^(+))("LIM") F(x)= a`
`underset(x rarr a)("lim") f(x)= -a`
f is continuous at x=a
f is differentiable at x=a

Answer :C
1670.

Which one of the following is aromatic ?

Answer»




SOLUTION : azulene exists as zwittor ION so both the RINGS are aromatic
1671.

f : R rarr R , f(x) = cos x and g :R rarr R , g(x) = 3x^(2) then find the composite functions gof and fog.

Answer»


SOLUTION :N/A
1672.

Let u, v and w be such that |u|=1, |v|=2, |w|=3 If the projection v along u is equal to that of w along u and v, w are perpendicular to each other, then |u-v+w| is equal to

Answer»

2
`SQRT7`
`sqrt(14)`
14

Solution :SINCE, `|u| = 1, |v| = 2,|w| = 3`
The projectionof v ALONG `u = (v.u)/(|u|)` and theprojectionof w along `u = (w.u)/(|u|)`.
ACCORDINGTO givencondition.
`(v.u)/(|u|) = (w.u)/(|u|)`
`rArr v.u = w.u "…."(i)`
Since, v and w are perpendicularto each other.
`:. v. w = 0`
Now, `| u- v + w|^(2) = |u|^(2) +|v|^(2) +|w|^(2)`
`- 2u . v - 2v.w+2u.w`
`rArr |u- b- v + w|^(2) = 1 + 4+ 9 - 2 u . v + 0 + 2u . v` [from EQ. (i) ]
`rArr |u - v + w|^(2) = 1 + 4 + 9`
`:. |u- v + w| = sqrt(14)`
1673.

The minimum length of the intercept between the coordinate axes made by a tangent of the ellipse (x^(2))/(64)+(y^(2))/(4)=1 is

Answer»

10
`(17)/(2)`
8
`(15)/(2)`

ANSWER :A::C
1674.

If x+y=3 is tangent at (2,1) on hyperbola, intersects asymptotes at A and B such that AB=8sqrt(2). If centre of hyperbola is (-1,-1), then least possible value of sum of semi -transverset axis and semi -conjugate axis is psqrt(q) where HCF (p,q)=1 and sqrt(q) is irrational number. then, (p+q) is equal to

Answer»


SOLUTION :`(x-2)/(-1/(sqrt(2)))=(y-1)/(1/(sqrt(2)))=4sqrt(2)` or `-4sqrt(2)`
`:. A(-2,5)` & `B(6, -3)`
`:.` area of `/_\CAB=20`
`IMPLIES` sum `=2sqrt(20)=4sqrt(5)`
1675.

The probability of choosing randomly a number c from the set {1,2,3,…,9} such that the quadratic equationx^(2) + 4x + c = 0has real roots is

Answer»

`1/9`
`2/9`
`3/9`
`4/9`

ANSWER :D
1676.

Write down negations of It is raining and Mahanadi is flooded.

Answer»

SOLUTION :It is NEITHER RAIN nor MAHANADI is FLOODED.
1677.

The mean of variable 1,2….. N whose corresponding frequencies are 1,2……. N is given by

Answer»

` (n+1)/(2) `
` ( 2N +1)/(6) `
` ( n(n+1))/(2)`
` (2n+1)/(3) `

ANSWER :D
1678.

Find the logical quantifier of the following ; For every negative integer x,x^3 is also a negative integer.

Answer»

SOLUTION :For EVERY
1679.

IF(x-a) /( x^2- 3x+2)takensall realvaluesforxin R, then

Answer»

`a=2`
`a LT2`
`1 lt a lt 2`
` 1 LE a le 2`

ANSWER :D
1680.

If 0 < p

Answer»

E
p
q
0

Answer :C
1681.

Form the differential equation representing thefamily of curves y = a sin ( x + b), where a, b are arbitrary constants.

Answer»


ANSWER :`(d^(2)y)/(DX^(2)) + y = 0`
1682.

Find the probability of throwing at teast 3 sixes in 5 throws of a dia.

Answer»

Solution :In one throw of a die p(getting a 60=`1/6`
p(getting a NON 6 )=`5/6`
In 5 THROWS of a die
p(atleast 3 SIXES)=p(3 sixer)+p(4 sixer)+p(5 sixer)
= `"^5C_3(1/6)^3(5/6)^2+^5C_4(1/6)^4(5/6)+("^5C_5)(1/6)^5=250/6^5+25/6^5+1/6^5=276/6^5`
1683.

Which of the following is the solution set of the equat where x in (0, 1), is equal to

Answer»

0
1
`-1`
NONE of these

Solution :`tan (sin^(-1) (cos (sin^(-1) x))) tan(cos^(-1) (sin (cos^(-1) x)))`
`= tan(sin^(-1) (cos (cos^(-1) SQRT(1 -x^(2)))))`
`tan {cos^(-1) (sin (sin^(-1) sqrt(1 -x^(2))))}`
`= tan (sin^(-1) sqrt(1 -x^(2)) tan (cos^(-1) sqrt(1 - x^(2)))`
`= tan (cos^(-1) x) tan (sin^(-1) x)`
`= tan(cos^(-1) x) tan (pi//2 - cos^(-1 x)`
`= tan (cos^(-1) x) cot (cos^(-1) x) = 1`
1684.

If |z| =3 , the area of the triangle whose sides are z , omega zand z + omega z (where omega is a complex cube root of unity) is

Answer»

`(9 sqrt3)/(4)`
`(8 sqrt3)/(2)`
`(5)/(2)`
`(8 sqrt3)/(3)`

ANSWER :A
1685.

Let a kind of bacteria grow in such a way that at time t sec, there are t^(3//2) bacteria. Find the rate of growth at time t=4 hours.

Answer»


ANSWER :180 bacteria/sec
1686.

Consider the proposition : "If the pressure increases, then the volume decreases". The negation of this propositions is

Answer»

If the PRESSURE does not INCREASES the VOLUME does not DECREASE
If the volume increases, the pressure decrease
Pressure increases and volume does not decreases
If the volume decrease, then the pressure increases

Answer :C
1687.

If |(z - 4bari)/(z-2)| = 2 then the locus of z is

Answer»

a CIRCLE with centre 0
a REAL circle
an imaginary circle
line

ANSWER :B
1688.

" if " int (sin 2x- cos 2x) dx=(1)/(sqrt(2)) sin (2x-k)+c " then " k=?

Answer»

`-(5PI)/(4)`
`(PI)/(4)`
`-(pi)/(4)`

ANSWER :A
1689.

I : I xx (a xx i) + j xx (a xx j + k xx (a xx k) = 2a II : I xx [(a xx b) xx i) + j xx [(a xx b) xx j) + k xx [(a xx b) xx k) = 0

Answer»

only I is ture
Only II is ture
both I and II are true
Neither I nor II are true

Answer :A
1690.

The locus of the point (x, y) which is equidistant from the points (a + b, b - a) and (a - b, a + b) is

Answer»

AX = by
ax + by = 0
bx + AY = 0
bx - ay = 0

Answer :D
1691.

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk, then the value of [(veca, vecb, vecc)] is equal to

Answer»


ANSWER :-7
1692.

Find the coefficient of x^7 in (1+ x^2)^4 (1 + x)^7

Answer»


ANSWER :323
1693.

Evaluate: int(sin^(-1)x^(3))/(sqrt(1-x)^(2))dx

Answer»

Solution :We have `int((LNX)^N)/(X)x=int(lnx)^(n)1/xdx=int(lnx)^(n)d(lnx)=(lnx)^(n+1)/(n+1)+C`
1694.

If int_(0)^(pi//2) sin^(4) x cos^(2)x dx = (pi)/(32) then int_(0)^(pi//2) cos^(4) x sin^(2) x dx=

Answer»

0
1
`pi/32`
`pi/16`

ANSWER :C
1695.

Find the value of int_(-(pi)/(2))^(pi/2)|sinx|dx.

Answer»


ANSWER :2
1696.

int_(2/sqrt3)^2(dx)/(x(sqrtx^2-1)

Answer»

SOLUTION :`int_(2/sqrt3)^2(DX)/(X(sqrtx^2-1)dx)=[sec^(-1)x]_0^1`
`sec^(-2)-sec^(-1)(2/sqrt3)`
`cos^(-1)-cos^(-1)((sqrt3)/2)=pi/6`
1697.

A paramagnetic material has 10^(28) atoms//m^(3). Its magnetic susceptibility at temperature 350K is 2.8xx10^(-4). Its susceptibility at 300K is :

Answer»

`3.267xx10^(-4)`
`3.672xx10^(-4)`
`3.726xx10^(-4)`
`2.672xx10^(-4)`

SOLUTION :NA
1698.

(1+omega)(1+omega^(2))(1+omega^(5))..........2n factors =

Answer»

0
1
`-1`
2

Answer :B
1699.

int1/(sqrtx+xsqrtx)dx=

Answer»

`tan^(-1)sqrtx+C`
`2LOG(sqrtx+1)+C`
`2tan^(-1)sqrtx+C`
`1/2tan^(-1)sqrtx+C`

ANSWER :C
1700.

if a sinphi-bcosphi show that, acosphi+bsinphi=pmsqrt(a^2+b^2-c^2)

Answer»


ANSWER : `acosphi+bsinphi=pmsqrt(a^2+b^2-c^2)`