Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2801.

Evaluate int_(0)^(oo) log ( x + 1/x) . (1)/(1+x^(2))dx

Answer»


ANSWER :`PI LOG 2`
2802.

((costheta+isintheta)^5(cos3theta-isin3theta)^6)/((cos2theta+isin2theta)^3(cos4theta-isin4theta)^5)=

Answer»

1
`CIS(THETA)`
i
-1

Answer :B
2803.

Show that if R is an equivalence relation on X then dom R=rngR =X.

Answer»

Solution :LET R is an EQUIVALENCE RELATION on X .
`implies R "is REFLEXIVE"`
`implies(x,x)in R AA x in X `
`implies "Dom" R="Rng" R=X`
2804.

Let phi(x)=(x)/(x^(2)+1)(x+1) if a, band c are the roots of the equation x^(3) -3x+lambda=0(lambda ne 0) Then phi(a)phi(b)phi(c ) =

Answer»

`LAMBDA`
`(-lambda)/((lambda + 2) (lambda^(2) + 16))`
`(lambda)/((lambda+ 2))`
`(lambda )/((lambda + 2) (lambda^(2) + 16))`

ANSWER :D
2805.

Refers to question 14. How many sweaters of each type of should the company make in an day to get a maximum profit? What is the maximum profit?

Answer»


Solution :Referring to solution 14, `3x+y le 600, x-y ge 100, x ge 0, y ge 0`
On solving x+y=300 and 3x+y=600 we get x=150, y=150
On solving x-y=100 and x+y=300 we get x=100, y=200

From the SHADED FEASIBLE region it is CLEAR that corrdingates of corner points are (0,0),(200,0),(150,150),(100,200), and (0,100)

Hence 150 sweaters of each type made by company and MAXIMUM profit=48000.
2806.

intsqrt((a-x)/(a+x))dx=....+c

Answer»

`(a)/(2)SIN^(-1)((X)/(a))-sqrt(a^(2)-x^(2))`
`(1)/(a)sin^(-1)((x)/(a))-sqrt(a^(2)-x^(2))`
`sin^(-1)((x)/(a))-sqrt(a^(2)-x^(2))`
`a sin^(-1)((x)/(a))-sqrt(a^(2)-x^(2))`

Answer :D
2807.

Find the area bounded by the curves y = log_(2) x and x = 2 y - y^(2) and the lines y = 0, y = 2

Answer»


Answer :`(3)/(In 2) - (4)/(3)` SQ. UNITS
2808.

Consider the function f(x)cosx^2. Then

Answer»

f is of PERIOD `2pi`
f is of period `sqrt(2pi)`
f is not periodic
f is of period `PI`

Answer :C
2809.

Rewrite the following sets by the set builder method. (i) {1,3,5,7,9}, (ii){(1)/(9),(1)/(25),(1)/(49),(1)/(81)}.

Answer»


ANSWER :`(i)` `{x : x=2n+1, N in N+{0} 0 LE n le 4}`. `(II) {x:x=(1)/((2n+1)^(2)), n in N, n le 4}`.
2810.

int(tan(x-theta)tan(x+theta)tan2xdx

Answer»


ANSWER :`(1)/(20)log|sec2x|-log|sec(x+theta)|-log|sec(x-theta)|+C`
2811.

One root of the equation (12x -1)(6x -1)(4x-1)(3x-1)=5 is

Answer»

`1/2`
`(-1)/12`
`7/24`
`24/7`

ANSWER :D
2812.

Find derivatives of the following functions(e^(sin x) - a^(cos x))

Answer»

SOLUTION :`y = E^(SIN X)- a^ (COS x)
dy/dx = d/dx(e^(sin x))-d/dx(a^(cos x)
= e^(sin x).d/dx(sin x) - a^(cos x). In a. d/dx(cos x)
e^(sin x).cos x + a^(cos x). In a. sin x`
2813.

If (2,3,-3) is one end of a diameter of the sphere x^(2)+y^(2)+z^(2) - 6x - 12y - 2z +20 = 0then the other end of the diameteris

Answer»

`(4,9,-1)`
`(4,9,5)`
`(-8,-15,1)`
`(8,15,5)`

ANSWER :B
2814.

Given that the events E and F are such that P(E) = (1)/(2), P(E cup F) = (3)/(5) and P(F) = p. Find the p, if E and F are independent events.

Answer»


ANSWER :`(1)/(5)`
2815.

From a the point P(h, k) three normals are drawn to the parabola x^2=8y and m_1m_2" and "m_3 are the slopes of three normals, if the two normals from P are such that they make complementary angles with the axis then the directrix of the locus of point P (conic) is :

Answer»

`2x-3=0`
`2x-5=0`
`2y-3=0`
`2y-5=0`

ANSWER :C
2816.

Verify that |P(phi)|=2^@

Answer»

SOLUTION :LET `A =phi , then P(A)={phi}`
`:.`P(A) =1 =2^@`
2817.

Find the angle between two vectors a and b with magnitudes sqrt(3) and 2 respectively, having a.b=sqrt(6).

Answer»


ANSWER :`(PI)/(4)`
2818.

Let X denote the number of hours you study during a randomly selected school day. The probability that X can take the values x, has the following form, where k is some unknown constant. P(X=x)={{:(0.1,",",x=0),(kx,",","x=1 or 2"),(k(5-x),",","X=3 or 4 "),(0,",","otherwise"):} i. Find the value of k ii. What is the probability that you study atleast two hours? Exactly 2 hours? Atmost 2 hours?

Answer»


ANSWER :(a) k=0.15, (B) 0.55
2819.

Let P={(x,y)//x in R, y in R, x^(2)+y^(2)=1}, then P is

Answer»

REFLEXIVE
SYMMETRIC
anti-symmetric
EQUIVALENCE

ANSWER :B
2820.

Sum to infininty of the series 1 + 4/5 + 7/5^(2) + 10/5^(3) + ...... is

Answer»

`16/35`
`11/8`
`35/16`
`8/11`

ANSWER :C
2821.

Find the order and the degree of the following differential equation (d^2y)/(dx^2) + 5x ((dy)/(dx))^2 - 6y = log x

Answer»

SOLUTION :ORDER = 2, DEGREE = 1
2822.

Find a vector in the direction of vector veca=hati-2hatj that has magnitude7 units.

Answer»


ANSWER :`hata=(2)/(sqrt(14))hati+(3)/(sqrt(14))hatj+(1)/(sqrt(14))hatk`
2823.

Evaluate the limit . underset(n to 00)("lim")(1)/(n) [tan (pi)/(4n) + tan (2pi)/(4n) +………..tan (npi)/(4n)]

Answer»


ANSWER :`(2)/(PI) LOG 2`
2824.

Determine P(E|F) A dice is thrown three times, E : 4 appears on the third toss, F : 6 and 5 appears respectively on first two tosses

Answer»


ANSWER :`(1)/(6)`
2825.

Integrate thefunction in Exercise. (x^(3) sin(tan^(-1)x^(4)))/(1+x^(8))

Answer»


ANSWER :`-(1)/(4) COS (TAN^(-1)x^(4))+c`
2826.

If (2^(200)-2^(192).31+2^n) is the perfect square of a natural number , then find the sum of digits of 'n' .

Answer»


ANSWER :18
2827.

If ""^(n)C_(r-1)=36 ,""^(n)C_(r)= 84 and ""^(n)C_(r+1)=126,then the value of ""^(n)C_(8) is

Answer»

10
7
9
8

Answer :C
2828.

Let g(x)=e^f(x)), g(x+1)=xg(x), then (g'((2n+1)/(2))g((1)/(2))-g'((1)/(2))g((2n+1)/(2)))/(g((2n+1)/(2))g((1)/(2))), where n in N, is

Answer»

`2 (1+(1)/(2)+(1)/(3)+….+(1)/(n))`
`2(1+(1)/(3)+(1)/(5)+….+(1)/(2n-1))`
0
none of these

Answer :B
2829.

Prove that : int_(9)^(a) (dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Answer»
2830.

Evaluate the following definite integrals as limit of sums : int_(1)^(2)3^(x)dx

Answer»


ANSWER :`log_(3)^(E)`
2831.

Construct Collection of all the nationalised political parties in the form of set and describe it with the help of proposition.

Answer»

SOLUTION :C ={BJP, Congress, CPI, CPI (M), JU (U), JD(S),JP}
2832.

int_(2)^(e) ((1)/(ln x) - (1)/((ln x)^(2)))dx=

Answer»

0
E
`e-2log_(2)e`
`2 log_(2)e`

ANSWER :C
2833.

Prove that the circles x^(2) + y^(20 - 8x - 6y + 21 =0 and x^(2) + y^(2) - 2y - 15 = 0have exactly two common tangents. Also find the point of intersection of those tangents.

Answer»


ANSWER :`=( 8, 5)`
2834.

The pint of extremum of f(x)=int_0^x(t-2)^2(t-1)dtis a

Answer»

a)MAXIMUM at x=1
b)maximum at x=2
c)MINIMUM at x=1
d)minimum at x=2

2835.

int (1)/((x^(2) + 1)(x^(2)+ 4))dx =

Answer»

`(1)/(3) [ TAN^(-1) X - (1)/(2) tan^(-1)""(x)/(2)] + c`
`(1)/(3) [ tan^(-1) x + (1)/(2) tan^(-1)""(x)/(2)] + c`
`(1)/(3) [tan^(-1) x - (x)/(2) + 2 tan^(-1) x] + c`
`(2)/(3) [ tan^(-1) x - (3)/(2) tan^(-1)""(x)/(2)] + c`

Answer :A
2836.

Find derivatives of the following functions.sec^(-1)(2x+1)

Answer»

Solution :`y=sec^(-1)(2x+1)`
`dy/DX=1/((2x+1)sqrt(2x+1)^2-1).d/dx(2x+1)`
`[becaused/dx(sec^(-1)u)=1/(|u|sqrt(u^2-1)).(DU)/dx`
`2/((2x+1)sqrt(4x^2+4x))=1/((2x+1)sqrt(x^2+x))`
2837.

If the line y = x cuts the curve x^(3) + 3y^(3) - 30xy + 72x - 55 = 0 in points A,B and C, then the value of(4sqrt(2))/(55) OA.OB.OC (where O is the origin), is

Answer»

55
`1/(4sqrt(2))`
2
4

Answer :A
2838.

Evaluate the following integrals: int_2^3 xdx/(x^2+1)

Answer»

Solution :`int_2^3 (X dx)/(x^2+1) = 1/2 int_2^3 (2X dx)/(x^2+1)`
=`1/2[log|x^2+1|]_0^3`
=`1/2[log10-log5]`
`= 1/2 log ((10)5) = 1/2 LOG2`
2839.

thevalueof tan 40^@+ tan20^@+ sqrt(3) tan 20^@tan 40^@isequalto

Answer»

`SQRT(12)`
`(1)/( sqrt(3))`
`1`
`sqrt(3)`

ANSWER :D
2840.

If lim_(x to 0) (2^(sin x^(2)) - 2^(tan x^2) - 2x^(7))/(x^n) exists finitely and equal to a non-zero number then n is

Answer»

3
5
6
7

Solution :`lim_(x to 0)(2^(sin x^(2)) - 2^(tan x^2) - 2X^(7))/(x^n) = lim_(x to 0) (2^(tan x^2)(2^(sin x^(2)tan x^2) -1)- 2x^(7))/(x^n)`
=`lim_(x to 0) ((2^(tan x^2)(2^(sin x^(2)tan x^2) -1))/(SINX^(2)-tanx^(2)) xx (sin x^(2) - tan x^(2))- 2x^(7))/(x^n)`
=`lim_(x to 0) 1/(x^n)[(2^(tan x^2)(2^(sin x^(2)tan x^2) -1))/(sinx^(2)-tanx^(2)) ((x^(2) - (x^6)/(3 !) + (x^10)/(5!)....)-(x^(2) + (x^6)/3 + (2x^(10))/(15)+....))-2x^(7)]`
`= lim_(x to 0) (x^6)/(x^n)[(2^(tan x^2)(2^(sin x^(2)tan x^2) -1))/((sinx^(2)-tanx^(2))) (-1/2 + "term containing"x)-2x^(1)]`
`implies n = 6`.
2841.

If lim_(xto0)f(x)=l in R, then

Answer»

`lim_(xto0)F(X^(2))=L^(2)`
`lim_(xto0)f((x)/(l))=1`
`lim_(xto0)f(2x)=2l`
`lim_(xto0)f(-x)=l`

Answer :D
2842.

Evaluate the following integral : int(x+sqrt(a^(2)+x^(2)))^(2007)dx

Answer»

Solution :Let us substitute `x+SQRT(a^(2)+x^(2))=t` so that `sqrt(a^(2)+x^(2)-x=(a^(2))/(t)`
`implies2x=t-(a^(2))/(t)`
`impliesdx=(1)/(2)(1+(a^(2))/(t^(2)))DT`
under given substitution, the given integral reduces to
`int(x+sqrt(a^(2)+x^(2)))^(2007)dx=intt^(2007)*(1)/(2)(1+(a^(2))/(t^(2)))dt`
`=(1)/(2)int(t^(2007)+a^(2)t^(2005))dt`
`=(1)/(2)[(t^(2008))/(2008)+a^(2)*(t^(2006))/(2006)]+k`
`=(1)/(2)(x+sqrt(a^(2)+x^(2)))^(2006)[((x+sqrt(a^(2)+x^(2)))^(2))/(2008)+(a^(2))/(2006)]+k`
2843.

Find derivatives of the following functions. In (sqrtx + 1)

Answer»

SOLUTION :`y = In (SQRT X + 1)
dy/dx = d/dx in(sqrt x + 1)= 1/(sqrt x + 1).d/dx(sqrt x + 1)
1/(sqrt x + 1).1/(2sqrt x) = 1/{2(x + sqrt x)}`
2844.

If |a|=|b|=1 and |a+b|=sqrt(3), then the value of (3a-4b).(2a+5b) is

Answer»

`-21`
`-21/2`
`21`
`21/2`

Solution :`because|a+B|=sqrt3rArr|a|^2+|b|^2+2a*b=3`
`RARR""a*b=(3-1-1)/2=1/2"...(i)"[because|a|=|b|=1, "GIVEN"]`
`:.""(3a-4b)*(2a+5b)=6|a|^2+15a*b-20|b|^2`
`=6+7a*b-20`
`=6+7/2-20"[from Eq. (i)]"`
`=(7-28)/2-21/2`
2845.

Distance between the two planes : 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

Answer»

2 units
4 units
8 units
`(2)/(SQRT(29))` units

Answer :D
2846.

Fundamental theorem of definite integral : (d)/(dx)(F(x))=(e^(sinx))/(x),ngt0. If int_(1)^(4)(2e^(sinx^(2)))/(x)dx=F(k)-F(1) then the possible value of k is……..

Answer»

4
8
16
32

Answer :C
2847.

int(cos4x+1)/(cosx-tanx)dx=k cos4 x+c then.....

Answer»

`k=-(1)/(2)`
`k=-(1)/(8)`
`k=-(1)/(4)`
NONE of these

Answer :B
2848.

int tan^(-1) (sqrt((1-x)/(1+x)))dx is equal to

Answer»

`1/2(x cos^(-1)x-sqrt(1-x^(2))+C)`
`1/2(x cos^(-1)x+sqrt(1-x^(2))+c)`
`1/2(xsin^(-1)x-sqrt(1-x^(2))+c)`
`1/2(x SIN^(-1)x + sqrt(1-x^(2))+c)`

ANSWER :A
2849.

Let A(3, 7) and B(6, 5) are two points. C:x^(2)+y^(2)-4x-6y-3=0 is a circle. Q.Equation of the member of the family of circles S that bisects the circumference of C is :

Answer»

`X^(2)+y^(2)-5x-1=0`
`x^(2)+y^(2)-5x+6y-1=0`
`x^(2)+y^(2)-5x-6y-1=0`
`x^(2)+y^(2)+5x-6y-1=0`

ANSWER :C
2850.

Let ** be a binary operation on the set of natural numbers given by a**b = L.C.M of a and b, find 5**7,

Answer»


ANSWER :`5**7 =` LCMOF 5AND `7=35`.