Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2851.

The value of int_(0)^(pi//2) (cos3x+1)/(2cos x-1)dx is

Answer»

2
1
`(1)/(2)`
0

Solution :Let `I=underset(0)OVERSET(pi//2)INT (cos 3x+1)/(2cos x-1)DX`
`=underset(0)overset(pi//2)int (cos 3x-cos""(3pi)/(4))/(2(cosx-cos""(pi)/(3)))dx`
`=underset(0)overset(pi//2)int ((4cos^(3)x-3cosx)-(4cos^(3)""(pi)/(4)-3cos""(pi)/(3)))/(2(cos x-cos""(pi)/(3)))dx`
`=2underset(0)overset(pi//2)int ((cos^(3)x-cos^(3)""(pi)/(3))/(cos x-cos""(pi)/(3)))dx`
`=2underset(0)overset(pi//2)int (cos^(2)x+cos^(2)""(pi)/(3)+cos x cos ""(pi)/(3))dx-(3)/(2)underset(0)overset(pi//2)int 1dx`
`=underset(0)overset(pi//2)int (1+cos2x+(1)/(2)+cosx)dx-(3pi)/(4)`
`=(3pi)/(4)+1-(3pi)/(4)=1`
2852.

int_(0)^(1)x e^(x^(2)) dx

Answer»

Solution :`" LET I=" int_(0)^(1) xe^(x^(2))dx`
`"Let "x^(2)=trArr 2x=(DT)/(dx) rArr XD x= (dt)/(2)`
`x=0rArr t=0 `
`"and " x=1 rArrt=1`
` :, I=(1)/(2) int_(0)^(1) E^(t) dt=(1)/(2)[e^(t)]_(0)^(1)`
`=(1)/(2)(e^(1)-e^(0))=(1)/(2)(e-1)`
2853.

Determine for which values of x, the following functions are increasing or decreasing : f(x)=x^(3)+(1)/(x^(3)), x ne0

Answer»


Answer :`{:("Increasing","DECREASING"),(""(-OO","-1)UU(1","oo),(-1","1)-{0}):}`
2854.

If a,b,c are the sides of a triangle then the range of (a^(2)+b^(2)+c^(2))/(ab+bc+ca) is

Answer»

[1,2)
`(-OO, 1] UU[2, oo)`
[2,3]
(-1,3)

ANSWER :A
2855.

(x+(1)/(x))^(x) +x^((1+(1)/(x)))

Answer»

SOLUTION :`"Let " y = (x+(1)/(x))^(x) +x^((1+(1)/(x)))`
`"Let" u=(x+(1)/(x))^(x) " and "V = x^(1+(1)/(x))`
`therefore y=u + v rArr (dy)/(dx) = (DU)/(dx) + (dv)/(dx)"" ...(1)`
`"Now", u = (x+(1)/(x))^(x)`
`rArr "LOG " u = "log" (x+(1)/(x))^(x) = x" log"(x+(1)/(x))`
`rArr (1)/(u) (du)/(dx) = x* (d)/(dx) "log" (x+(1)/(x)) + "log"(x+(1)/(x))(d)/(dx) x`
`rArr (du)/(dx) = u [(x)/(x+(1)/(x))(1-(1)/x^(2))+"log" (x+(1)/(x))]`
`=(x + (1)/(x))^(x) [(x^(2)-1)/(x^(2)+1) + "log" (x+(1)/(x))]`
` "and "v = x^((1+(1)/(x))`
`rArr "log " v = "log" {x^((1+(1)/(x)))} = (1+(1)/(x))"log"x`
`rArr (1)/(v) (dv)/(dx) = (1+(1)/(x))(d)/(dx) "log"x + "log"x (d)/(dx) (1+(1)/(x))`
`rArr (dv)/(dx) = v[(1+(1)/(x))*(1)/(x)+"log"x (-(1)/(x^(2)))]`
`rArr (dv)/(dx) = x^((1+(1)/(x)))*(1)/(x^(2))[x+1-"log"x]`
`therefore "From equation (1)"`
`(dy)/(dx) = (x+(1)/(x))^(x)[(x^(2)-1)/(x^(2)+1)+ "log" (x+(1)/(x))] + x^((1+(1)/(x))) * (1)/(x^(2))[x+1-"log"x]`
2856.

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-3) are perpendicular, find the value of k.

Answer»


ANSWER :`k=-6/7`
2857.

If there is an error of 1/(10)% in the measurement of the radius of a sphere, then the percentage erro in the calculation of the volume of the sphere is

Answer»

`3//10`
`1//8`
`1//7`
`3//2`

ANSWER :A
2858.

Reflexion of the point (alpha, beta, gamma) in XY plane is

Answer»

1.`(alpha, beta, 0)`
2.`(0,0,GAMMA)`
3.`(-alpha, -beta, gamma)`
4.`(alpha, beta, -gamma)`

ANSWER :D
2859.

Thevalue(S) of alpha in [0,2pi] forwhichvectorvec(a)= hat(i) + 3hat(j) + (sin 2 alpha) hat(k)makes an obtuse angle with the z-axis and thevectors vec(b) = (tan alpha)hat(i) - hat(j) + 2 sqrt(sin(alpha)/(2))hat(k) andvec(c) = (tan alpha)hat(i) (tan alpha)hat(j)- 3 sqrt(cosec(alpha)/(2))hat(k) are

Answer»

`TAN^(-1) 3`
`PI - tan^(-1) 2`
`pi + tan^(-1)3`
`2PI - tan^(-1) 2`

ANSWER :B::D
2860.

A coin is tossed successively three times. The probability of getting exactly one head or 2 heads, is

Answer»

`1/4`
`1/2`
`3/4`
`1/3`

ANSWER :C
2861.

Find the area enclosed by y=log_(e)(x+e) and x=log_(e)((1)/(y)) and the x-axis.

Answer»


ANSWER :2
2862.

For a group of 50 male workers, the mean and S.D. of their daily wages are Rs. 630 and Rs. 90 respectively. For a group of 40 female workers, these are Rs. 540 and Rs. 60 respectively. The S.D. of these 90 workers is

Answer»

60
70
80
90

Answer :D
2863.

If p rarr (q vv r) is false, then the truth values of p, q, r are respectively

Answer»

T,F,F
F,F,F
F,T,T
T,T,F

Answer :A
2864.

Total number of species which use d -orbital in their bonding SO_(2),SO_(3),SO_(4)^(-2),CIO_(4)^(oplus),XeO_(2)F_(2),XeO_(3)

Answer»


ANSWER :`6.00`
2865.

If y = sin ^(3) x + cos^(6) x find (dy)/(dx).

Answer»


ANSWER :`3 SIN x COS x(sin x-2 cos^(4)x)`
2866.

If (dy)/(dx)+(y)/(sqrt(x^(2)+a^(2)))=3x,y(0)=a^(2) then the value of (y(sqrt(3a)))/(a^(2)).(8-3sqrt3)/(2-sqrt3) is equal to 19k, then find k.

Answer»


ANSWER :B
2867.

Let f: Rto R be by f(x)=(x-1)(x-2)(x-5). Define F(x)=int_(0)^(x)f(t)dt,xgt0 Then which of the following options is/are correct ?

Answer»

`F(x) ne 0` for all `x in (0,5)`
F has a local maximum at `x=2`
F has two local MAXIMA and ONE local minimum is `(0,oo)`
F has a local minimum at `x=1`

Solution :Given , `f:R toR and f(x)=(x-1)(x-2)(x-5)`
Since , `F(x)-int_(0)^(x) f(t)dt,x gt 0`
So, `F'(x)=(x-2)(x-5)`
Accroding to wavy curve method
`(-""+""-""+)/(1"2"5)`
F'(x) chages , it's sign form negative to positive at `x =1` and 5, So, F(x) has minima at ` x=1` and 5 and as F'(x) changes, it's sign from positive to negative at` x=2` so F(x) has maxima at ` x=2`
` because F(2)=int_(0)^(2) f(t)dt= int_(0)^(2)(t^2-8t^2+17t-10)dt`
` =[(t^4)/(4)-8(t^3)/(3)+17(t^2)/(2)-10T]_(0)^(2)`
` =4-(64)/(3)+34-20=38-(124)/(3)=-(10)/(3)`
`because` At the point of maxima `x=2`, the functional value `F(2)=-(10)/(3)`, negative for the internal `x in (0,5)`, so `F(x)ne 0` for any value of `x in (0,5)`,
Hence , OPTIONS (a),(b) and (d) are correct.
2868.

Evaluate P (AnnB)if 2P(A)=P(B)=5/13and P(A/B)=2/5.

Answer»

<P>

SOLUTION :P(A/B)=2/5`rArr (P(ANNB))/(P(B))=2/5`rArr(P(AnnB))=2/5xxP(B)`
2/5xx5/13=2/13
P(A)=5/26 THUS,`P(AnnB)`
`=`P(A)+P(B)-P(AnnB)`
=5/26+5/13-2/13=11/26
2869.

Integrate the following functions x/(9-4x^2)

Answer»

Solution :Let t = `9-4x^2`. Then
`dt = -8X DX GT x dx = -1/8 dt`
THEREFORE`int x/(9-4x^2) dx = int 1/t xx -1/8 dt`
=`-1/8 log|t|+C`
=-`1/8 log|9-4x^2| +c`
2870.

Find the area enclosed by y^2=x^3,x=0,y=1

Answer»

SOLUTION :Given CURVE is `y^2=x^3`
`impliesx=y^(2//3)`
It PASS through the origin So the REQUIRED AREA
`=int_0^1xdy= int_0^1 y^(2/3)dy=[y^(2/3)/(5//3)]_0^1=3/5`
2871.

Evalute the following integrals int (1)/(x^(2)) tan^(-1) xdx

Answer»


Answer :`- (1)/(x) tan^(-1) x + LOG x - (1)/(2) log (1 +x^(2)) + C `
2872.

The value of int_(0)^(4) 3^(sqrt(2x+1) )dx is

Answer»

`(6)/(LOG 3) (13- (4)/(log 3) )`
`(66)/(log 3)`
`(6)/(log 3) (13- (5)/(log 3) )`
NONE of these

Answer :D
2873.

The value of sum_(r = 1)^15 r^2 ((""^15C_r)/(""^15C_(r - 1)) ) of is equal to

Answer»

1240
560
1085
680

Answer :D
2874.

Let the circle (x - 1)^(2) + (y - 1)^(2) = 25 cuts a rectangular with transverse axis along y = x at four points A, B, C and D having co-ordinates (x_(1) , y_(1)) : i = 1,2,3,4 respectively O being the centre of the hyperbola, Now match the entries from the following two columns

Answer»


SOLUTION :N/A
2875.

Integrate the following functions 1/sqrt(7-6x-x^2)

Answer»

SOLUTION :`7-6x-x^2 = 7-(x^2+6x)`
=`7-(x^2+6x+9-9)`
`16-(x+3)^2`
therefore` INT 1/sqrt(7-6x-x^2) dx`
=`int 1/sqrt(16-(x+3)^2) dx`
=`sin^-1((x+3)/4)+C`
2876.

The sum of the series 1/1.2 - 1/2.3 + 1/3.4 … upto infty is equal to

Answer»

`log_(e) 2 - 1`
`log_(e) 2`
`log_(e) (4/e)`
`2log_(e) 2 `

Answer :C
2877.

The numbers of terms of the A.P 3, 7, 11, 15, …… to be taken so that the sum is 406 is

Answer»

5
10
12
14

Answer :D
2878.

The area bounded by the curves y=|x|-1 and y= -|x|+1 is

Answer»

I, II
II, II
only III
All

ANSWER :D
2879.

One compartment of a purse contains three 25 paise coins and 2 one rupee coins and the other compartment contains two 25 ps. Coins and 3 one rupee coins. The probability of drawing a rupee from the purse is

Answer»

`1//5`
`2//5`
`3//5`
`1//2`

ANSWER :D
2880.

Let S denotes the set consisting of four functions and S = { [x], sin^(-1) x, |x|,{x}} where , {x} denotes fractional part and[x] denotes greatest integer function , Let A, B , C aresubsets of S. Suppose A : consists of odd functions (s) B : consists of discontinuous function (s) and C: consists of non-decreasing function(s) or increasing function (s). If f(x) in A nn C, g(x) in B nnC, h (x) in B" but notC and" l(x) inneither A nor B nor C . Then, answer thefollowing. The range ofg(f(x)) i

Answer»

`{-1,0,1}`
`{-1,0}`
`{0,1}`
`{-2,-1,0,1}`

ANSWER :D
2881.

Let S denotes the set consisting of four functions and S = { [x], sin^(-1) x, |x|,{x}} where , {x} denotes fractional part and[x] denotes greatest integer function , Let A, B , C aresubsets of S. Suppose A : consists of odd functions (s) B : consists of discontinuous function (s) and C: consists of non-decreasing function(s) or increasing function (s). If f(x) in A nn C, g(x) in B nnC, h (x) in B" but notC and" l(x) inneither A nor B nor C . Then, answer thefollowing. The range of f(h(x)) is

Answer»

`(0, pi/2)`
`[0, pi/2)`
`(0, pi/2]`
`[0, pi/2]`

ANSWER :B
2882.

Let S denotes the set consisting of four functions and S = { [x], sin^(-1) x, |x|,{x}} where , {x} denotes fractional part and[x] denotes greatest integer function , Let A, B , C aresubsets of S. Suppose A : consists of odd functions (s) B : consists of discontinuous function (s) and C: consists of non-decreasing function(s) or increasing function (s). If f(x) in A nn C, g(x) in B nnC, h (x) in B" but notC and" l(x) inneither A nor B nor C . Then, answer thefollowing. The function l (x) is

Answer»

periodic
EVEN
ODD
neither odd nor even

ANSWER :B
2883.

If x+y+z=180^(@) then (sinx+siny+sinz)/("cos"x/2."cos"y/2."cos"z/2)=

Answer»

0
3
2
4

Answer :D
2884.

Integrate the following intcos(2-7x)dx

Answer»

SOLUTION :`INT(COS(2-7x)dx=intcosthetacdot(-1/7d theta)`
put 2-7x=`theta` then `-7x=d"theta`or `dx=(-1/7)d"theta`
`(-1/7)sintheta+C=(-1/7sin(2-7x)+C`
2885.

Evaluate int(1-cos2x)/(1+cos2x)dx.

Answer»

SOLUTION :`INT(1-cos2x)/(1+cos2x)=int(2sin^2x)/(2cos^2x)dx=inttan^2xdx=int(sec^2x-1)dx=tanx-x+C`
2886.

(1+i)^(6)+(1-i)^(6)=

Answer»

`15I`
`-15i`
`15`
0

Answer :D
2887.

' lim_ (x to 0) (a^(x)-b^(x))/(e^(x)-1) is equal to

Answer»

`"LOG"(a)/(B)`
`"log"(b)/(a)`
log ab
loga+b

Answer :A
2888.

int_(0)^((pi)/(2))(f(sinx))/(f(cosx)+f(sinx))dx is :

Answer»

`pi`
`(pi)/(2)`
`(pi)/(4)`
`(pi)/(8)`.

ANSWER :C
2889.

If P(A)=(6)/(11), P(B)=(5)/(11) amd P(A cup B)=(7)/(11), find (i) P(A cup B) (ii) P(A|B) (iii) P(B|A)

Answer»


ANSWER :(i) `(4)/(11)`, (II) `(4)/(5)`, (III) `(2)/(3)`
2890.

Statement :1 If A nad B are two fixed points and P is any point such that PA + PB =k then locus of P is an ellipse. Because Statemet :2 In any ellipse with foci at A and B is PA + PB =k.

Answer»

Stateme-1 is True, Statement-2 is True, Statemetn-2 is correct explanation for Statement-1
Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
Statement-1 is True, Statement-2 is FALSE
Statement-1 is False, Statement-2 is TURE

Answer :D
2891.

A particle is thrown with 12 m/s in positive X direction while acceleration is 2 m//s^2 in negative X direction then distance travelled by particle between t=5 to t=7 sec is

Answer»

0 m
1 m
2 m
3 m

2892.

Solve the following equations, using inverse of a matrix : {:(2x+y+z=1),(2x-4y-2x=3),(3y-5z=9):}

Answer»


ANSWER :`x=1`, `y=(1)/(2)`, `Z=-(3)/(2)`
2893.

Evaluate the integral underset(0)overset(pi//2)int tan^(5)x cos^(8)x dx

Answer»


ANSWER :`(1)/(24)`
2894.

Obtain the general solution of the following differential equations.dy/dz=sqrt(1-y^2)/sqrt(1-z^2)

Answer»

SOLUTION :`dy/dz=SQRT(1-y^2)/sqrt(1-z^2)`
`RARR dy/sqrt(1-y^2)=dz/sqrt(1-z^2)`
`rArr intdy/sqrt(1-y^2)=intdz/sqrt(1-z^2)`rArr SIN^(-1)y=sin^(-1)z+C`
2895.

Integrationof certainirrational expressions I=int(dx)/(x(2+3sqrt((x-1)/(x)))).

Answer»


ANSWER :`-(1)/(SQRT(3))arc tan"" (2t + 1)/(sqrt(3))+In|root(3)((t+2)^(4))/(root(3)(t-1).sqrt(t^(2)+t+1))|+C,`
2896.

State whether the points A(3, 2), B(-4,-3) lie on the same side or opposite sides of the line 2x - 3y +4 = 0.

Answer»


SOLUTION :NA
2897.

Integrate the following functions : e^(x)((2+sin2x)/(1+cos2x))

Answer»


ANSWER :`E^(X)tanx+c`
2898.

Let O be a point inside DeltaABC such that angleOAB = angleOBC = angle OCA = theta Area of DeltaABC is equal to

Answer»

`((a^(2) + b^(2) + c^(2))/(4)) tan theta`
`((a^(2) + b^(2) + c^(2))/(4)) cot theta`
`((a^(2) + b^(2) + c^(2))/(2)) tan theta`
`((a^(2) + b^(2) + c^(2))/(2)) cot theta`

Solution :
Applying sine rule in `DeltaAOB`, we have
`(OA)/(sin angleABO) = (AB)/(sin angle AOB)`
or `OA = (c sin angleABO)/(sin angleAOB) = (c sin (B - theta))/(sin B)`...(i)
`[ :' angle ABO = B - theta, angle AOB = 180^(@) - theta - angleABO = 180^(@) -B]`
Again in `DeltaAOC`, we have
`(OA)/(sin angleACO) = (AC)/(sin angleAOC)`
`rArr OA = (b sin angleACO)/(sin angleAOC) = (b sin theta)/(sin A)`
`[ :' angleOAC = A - theta, angleAOC = 180^(@) - theta - angleOAC = 180^(@)]`
From Eqs. (i) and (ii), we have
`(c sin (B - theta))/(sin B) = (b sin theta)/(sin A)`
or `c sin A (B - theta) = b sin theta sin B`
`= b sin theta sin (A +C)`
or `2R sin C sin A (sin B cos theta - cos B sin theta)`
`= 2R sin B sin theta (sin A cos C + cos A sin C)`
Dividing both SIDES by `2R sin theta sin A sin B sin C`, we get
`cot theta - cot B = cot C + cot A`
or `cot theta = cot A + cot B + cot C`
Squaring both sides, we have
`cot^(2) theta = cot^(2) A + cot^(2) B + cot^(2)C + 2(cotA cot B + cot B cot C + cot C cot A)`
or `cosec^(2) theta - 1 = (cosec^(2) A -1) + (cosec^(2) B -1) + (cosec^(2) C -1) + 2`
[SINCE in `DeltaABC, cot A cot B + cot B cot C + cot C cot A = 1`]
or `cosec^(2) theta = cosec^(2) A + cosec^(2) B + cosec^(2)C`
Area of triangle ABC,
`Delta = Delta_(1) + Delta_(2) + Delta_(3)`
`=(1)/(2) [a OB + b OC + c OA] sin theta`
`=(1)/(4) tan theta [2 a OB cos theta + 2B OC cos theta+ 2c OA cos theta]`
`=(1)/(4) tan theta [(a^(2) + x^(2) -y^(2)) + (b^(2) + y^(2) - z^(2)) + (c^(2) + z^(2) - x^(2)]`
`= (1)/(4) tan theta [a^(2) + b^(2) + c^(2)]`
2899.

If n(A)=n then n{(x,y,z),x,y,z in A ,x ne y, y ne z ,zne x}=

Answer»

`n^(3)`
`n(n-1)^(2)`
`n^(2)(n-2)`
`n^(3)-3N^(2)+2N`

ANSWER :D
2900.

The vector equation of the line of intersection of the planes vecr=vecb+lamda_1 (vecb-veca) + mu_1 (veca-vecc) and vecr=vecc+lamda_2(vecb-vecc)+mu_2(veca+vecb) veca,vecb,vecc being non - coplanar vectors, is

Answer»

`VECR = vecb+mu_1 (veca+vecc)`
`vecr = vecb+lamda_1 (veca-vecc)`
`vecr = 2vecb+lamda_2 (veca-vecc)`
NONE of these

Answer :A