Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

301.

If `A[(-1,5),(-3,2)]`, then adj A=A. `[(2,3),(-5,-1)]`B. `[(1,-5),(3,-2)]`C. `[(2,-5),(3,-1)]`D. `[(-2,5),(-3,1)]`

Answer» Correct Answer - C
302.

If A and B are two non-singular matrices of order 3 such that `A A^(T)=2I` and `A^(-1)=A^(T)-A`. Adj. `(2B^(-1))`, then det. (B) is equal toA. 4B. `4sqrt(2)`C. 16D. `16sqrt(2)`

Answer» Correct Answer - D
`A A^(T)=2I` ...(1)
`implies |A|^(2)=8`
Now, `A^(-1)=A^(T)-A" adj."(2B^(-1))` ...(2)
Multiplying with A, we get
`I=A A^(T)-A^(2)"adj."(2B^(-1))`
`:. I=2I-A^(2)"adj."(2B^(-1))`
`implies A^(2)"adj." (2B^(-1))=I`
`implies |A^(2)||"adj." (2B^(-1))|=1`
`implies 8|2B^(-1)|^(2)=1`
`implies 8. 64/(|B|^(2))=1`
`implies |B|^(2)=64xx8`
`:. |B|= pm (8xx2sqrt(2))= pm 16 sqrt(2)`
303.

If `A=[{:(3,1,2),(1,2,-3):}]" and "B=[{:(-2," "0,4),(5,-3,2):}]`, find `(2A-B).`

Answer» `[{:(8,2," "0),(-3,7,-8):}]`
304.

Construct a 2 × 3 matrix whose elements are aij = (i - 2j)2/2.

Answer»

It is a (2 x 3) matrix. So, it has 2 rows and 3 columns.

Given \(a_{ij}=\frac{(i-2j)^2}{2}\)

So, a11 \(\frac{1}{2},\) a12\(\frac{9}{2},\) a13\(\frac{25}{3},\)

a21 = 0, a22 = 2, a23 = 8

So, the matrix = \(\begin{bmatrix}\frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\[0.3em]0 &2 & 8\\[0.3em]\end{bmatrix}\)

Conclusion: Therefore, Matrix is \(\begin{bmatrix}\frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\[0.3em]0 &2 & 8\\[0.3em]\end{bmatrix}\)

305.

Construct a 2 × 2 matrix whose elements are aij = (i + 2j)2/2.

Answer»

It is a (2 x 2) matrix. So, it has 2 rows and 2 columns.

Given \(a_{ij}=\frac{(i+2j)^2}{2}\)

So, a11\(\frac{9}{2},\) a12\(\frac{25}{2},\)

a21 = 8, a22 = 18

So, the matrix = \(\begin{bmatrix}\frac{9}{2} &\frac{25}{2} \\[0.3em]8 &18 \\[0.3em]\end{bmatrix}\)

Conclusion: Therefore, Matrix is = \(\begin{bmatrix}\frac{9}{2} &\frac{25}{2} \\[0.3em]8 &18 \\[0.3em]\end{bmatrix}\)

306.

If \(\begin{bmatrix}a + b&2\\[0.3em]7&ab\\[0.3em]-3&4\end{bmatrix} = \begin{bmatrix}6&2\\[0.3em]7&8\\[0.3em]-3&4\end{bmatrix}\) then find ‘a’ and ‘b’.

Answer»

 \(\begin{bmatrix}a + b&2\\[0.3em]7&ab\\[0.3em]-3&4\end{bmatrix} = \begin{bmatrix}6&2\\[0.3em]7&8\\[0.3em]-3&4\end{bmatrix}\) 

On comparing,

a + b = 6 ……(i)

ab = 8

From equation (i) and (ii),

a(6 – a)= 8

⇒ 6a – a2 – 8 = 0

⇒ a2 – 2a – 4a + 8 = 0

⇒ a2 – 2a – 4a + 8 = 0

(a – 2)(a – 4) = 0

So, a = 2, 4

From ab = 8 we get b = 4, 2

307.

Let `a,lambda,mu in R,` Consider the system of linear equations `ax+2y=lambda 3x-2y=mu` Which of the flollowing statement (s) is (are) correct?A. (a) If a = -3, then the system has infinitely many solutions for all value of `lambda and mu`.B. If `a ne -3`, then the system has a unique solution fopor all values of `lambda and mu`.C. If `lambda+u=0`, then the system has infinitely many solutions for a = -3`.D. If `lambda +mu ne 0`, then the system has no solutions for a = -3.

Answer» Correct Answer - A
If a = -3, then the two equations in the given system represent parallel lines for `-lambda ne mu i.e., lambda+mu ne 0` and so the system has no solution. So, option (d) is correct.
If a = -3 and `lambda+mu=0 i.e., -lambda=mu`, then the two lines given by the above system are coincident and hence the system has infinitely many solutions. So, option (c) is correct for all values of `lambda and mu`.
If `a ne -3`, then the two lines given in the system are not parallel i.e.,they are intersecting and hence the ststem has a unique solutions. So, option (b) is correct.
Clearly, option(a) incorrect.
308.

If matrix A = [1 2 3], write AA’.

Answer»

Given A = [1 2 3]

We will find A’ to calculate AA’,

A' = \(\begin{bmatrix}1 \\[0.3em]2 \\[0.3em]3\end{bmatrix}\)

Now

AA' = [1 2 3]\(\begin{bmatrix}1 \\[0.3em]2 \\[0.3em]3\end{bmatrix}\)

\(\Rightarrow\) [1 + 4 + 9]

\(\Rightarrow\) [14]

309.

Find the values of a and b which `[{:(a,b),(-a,2b):}][{:(" "2),(-1):}]=[{:(5),(4):}].`

Answer» Correct Answer - a=1, b=-3
310.

If `A=[{:(" "3," "4),(-4,-3):}]`, find f(A), where `f(x)=x^(2)-5x+7.`

Answer» `f(A)=[{:(-15,-20),(" "20," "15):}]`
311.

Give an example of twomatrices `A`and `B`such that`A!=O , B!=O , A B=O`and `B A!=O`(ii) `A!=O , B!=O , A B=B A=O`.

Answer» `A=[{:(1,0),(0,0):}],B=[{:(0,0),(1,0):}]`
312.

Give an example ofthree matrices `A , B , C`such that `A B=A C`but `B!=C`.

Answer» `A=[{:(1,0),(0,0):}],B=[{:(0,0),(1,0):}]=C[{:(0,0),(1,0):}]`
313.

If `A=[{:(1,0),(-1,7):}]" and "B=[{:(0,4),(-1,7):}]`, find `(3A^(2)-2B+I).`

Answer» `[{:(" "4,-8),(-22,134):}]`
314.

If `A=[1 2 2 2 1-2a2b]`is a matrix satisfying the equation `AA^T=""9I`,where `I`is `3xx3`identity matrix, then the ordered pair (a,b) is equal to :(1) `(2,-1)`(2) `(-2,""1)`(3) (2, 1) (4) `(-2,-1)`A. (2, 1)B. (-2, -1)C. `(2, -1)`D. `(-2, 1)`

Answer» Correct Answer - B
`therefore A A^(T) = 9 I`
`[[1,2,2],[2,1,-2],[a,2,b]][[1,2,a],[2,1,2],[2,-2,b]]= 9 [[1,0,0],[0,1,0],[0,0,1]]`
`rArr [[9,0,a+ 4+ 2b],[0,9,2a+2-2b],[a+4+2b,2a+2-2b,a^(2)+4+b^(2)]]= [[9,0,0],[0,9,0],[0,0,9]]`
On comparing, we get
`a + 2b + 4 = 0 " " (i)`
` 2a- 2b+2=0" "(ii)`
From Eqs. (i) and (ii), we get
`a = -2,`
`b= -1`
`therefore` Prdered pair is `(-2, -1)`.
315.

Find the inverse of `[{:(1," "2,-3),(2," "3," "2),(3,-3,-4):}]`

Answer» `(1)/(67).[{:(-6,17,13),(14,5,-8),(-15,9,-1):}]`
316.

Find the inverse of matrix `[{:(3,0,2),(1,5,9),(6,4,7):}]`

Answer» `(-1)/(55).[{:(-1,8,-10),(47,9,-25),(-26,-12," "15):}]`
317.

Determine the matrix A, when `A=4[{:(1,2,3),(-1,-2,-3),(4,2,6):}]+2[{:(5,4,1),(3,2,4),(3,8,2):}]`

Answer» `A=[{:(4,8,12),(-4,-8,-12),(16,8,24):}]+[{:(10,8,2),(6,4,8),(6,16,4):}]`
=`[{:(4+10,8+8,12+2),(-4+6,-8+4,-12+8),(16+6,8+16,24+4):}]=[{:(14,16,14),(2,-4,-4),(22,24,28):}]`
318.

If A is a square matrix such that A2 = A, then write the value of (I + A)2 - 3A.

Answer»

Given A2 = A

(I+A)2-3A=?

= I2 + A2 + 2IA - 3A { (a+b)2=a2+b2+2ab }

IA=A (by property)

Since A2=A and IA=A and I2=I

= I+2A+A−3A

= I

319.

if `A=[{:(alpha,2),(2, alpha):}]` and `|A^(3)|=125` then the value of `alpha `isA. `pm=2`B. `pm=3`C. `pm=5`D. 0

Answer» Correct Answer - B
320.

If `A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2))` then find the values of a and b.A. 4B. 5C. 6D. 7

Answer» Correct Answer - B
321.

if `A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O,`then `lambda` is equal toA. `-4`B. `-2`C. 2D. 4

Answer» Correct Answer - D
322.

Let `A=[(0, alpha),(0,0)]` and `(A+I)^(50) A=[(a,b),(c,d)]`. Then the value of `a+b+c+d` isA. 1B. 2C. 4D. None of these

Answer» Correct Answer - B
323.

If A, B are square matrices of the same order, then prove that adj (AB) = (adj B) (adj A).

Answer»

We know that,

(AB) adj (AB) = |AB|I = adj (AB)(AB) …(i)

⇒ (AB) (adj B . adj A) = A . B adj B . adj A = A(B adj B) adj A

= A(|B|I) adj A  [∵ B adj B = |B|I]

= |B|(A . adj A)

= |B||A|I  [∵ A adj A = |A|I]

= |A||B|I

= |AB|I …(ii)

From (i) and (ii), we get

(AB) (adj AB) = AB (adj B . adj A)

Pre-multiplying both sides by (AB)–1, we get

(AB)–1 ((AB) adj AB) = (AB)–1 ((AB) adj B . adj A)

⇒ adj AB = adj B . adj A

324.

The order of the matrix `[{:(1,2,3,4),(4,3,2,1),(2,4,3,1):}]` is _________

Answer» Correct Answer - `3xx4`
325.

The orders of the matrices `A=[{:(1,4),(-1,0),(5,2):}]` and `B=[{:(1,2,3),(-5,-2,1):}]` are ______ (equal/ not equal )

Answer» Correct Answer - not equal
326.

If A =\( \begin{pmatrix} 2& -4 \\[0.3em] 3 & 1 \\[0.3em] \end{pmatrix}\), then the adjoint of matrix A is :((2,-4)(3,1))(a) \( \begin{pmatrix} -1& 3 \\[0.3em] -4 & 1 \\[0.3em] \end{pmatrix}\) (b) \( \begin{pmatrix} 1& 4 \\[0.3em] -3 & 2 \\[0.3em] \end{pmatrix}\)(c) \( \begin{pmatrix} 1& 3 \\[0.3em] 4 & -2 \\[0.3em] \end{pmatrix}\)(d) \( \begin{pmatrix} -1& -3 \\[0.3em] -4 & 2 \\[0.3em] \end{pmatrix}\)

Answer»

Option :  (b) \( \begin{pmatrix} 1& 4 \\[0.3em] -3 & 2 \\[0.3em] \end{pmatrix}\)

327.

The inverse of\( \begin{pmatrix} 0& 1 \\[0.3em] 1 & 0 \\[0.3em] \end{pmatrix}\)is :(A) \( \begin{bmatrix} 1& 1 \\[0.3em] 1 & 1 \\[0.3em] \end{bmatrix}\)(B) \( \begin{bmatrix} 0& 1 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\) (C) \( \begin{bmatrix} 1& 0 \\[0.3em] 0 & 1 \\[0.3em] \end{bmatrix}\) (D) None of these.((0,1)(1,0))

Answer»

Option : (B) \( \begin{bmatrix} 0& 1 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\)

328.

If A is 2 × 3 matrix and B is a matrix such that ATB and BAT both are defined, then what is the order of B?

Answer»

We are given that, 

Order of matrix A = 2 × 3 

ATB and BAT are defined matrices. 

We need to find the order of matrix B. 

We know that the transpose of a matrix is a new matrix whose rows are the columns of the original. 

So, 

If the number of rows in matrix A = 2 

And, number of columns in matrix A = 3 

Then, 

The number of rows in matrix AT = number of columns in matrix A = 3 Number of columns in matrix AT = number of rows in matrix A = 2 

So, 

Order of matrix AT can be written as,

Order of matrix AT = 3 × 2 

Thus, 

We have Number of rows of AT = 3 …(i) 

Number of columns of AT = 2 …(ii) 

If ATB is defined, that is, it exists, then 

Number of columns in AT = Number of rows in B 

⇒ 2 = Number of rows in B [from (ii)] 

Or,

Number of rows in B = 2 …(iii) 

If BAT is defined, that is, it exists, then

Number of columns in B = Number of rows in AT 

Substituting value of number of rows in AT from (i), 

⇒ Number of columns in B = 3 …(iv) 

From (iii) and (iv), 

Order of B = Number of rows × Number of columns 

⇒ Order of B = 2 × 3 

Thus, 

Order of B is 2 × 3

329.

If A is a 3 × 4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?

Answer»

A is a matrix of order 3 × 4 

So AT will be a matrix of order 4 × 3 

ATB will be defined when B is a matrix of order 3 × n 

BAT will be defined when B is of order m × 4 

From (1) and (2) we see that B should be a matrix of order 3 × 4

330.

if `A` and `B` are two matrices of order `3xx3 `so that `AB=A` and `BA=B` then `(A+B)^7=`A. `7(A+B)`B. `7. I_(3xx3)`C. `64 (A+B)`D. `128 I`

Answer» Correct Answer - C
`AB=A, BA=B`
`ABA=A^(2)` or `A(BA)=A^(2)` or `A=A^(2)`
Similarly, `B^(2)=B`
`(A+B)^(2)=A^(2)+B^(2)+AB+BA`
`=A+B+A+B=2(A+B)`
`(A+B)^(3)=(A+B)^(2) (A+B)=2(A+B)^(2)=2^(2) (A+B)`
`implies (A+B)^(7)=2^(6)(A+B)=64 (A+B)`
331.

The order of the matrix [c y x -x -y z] is ______A. `1xx4`B. `6xx1`C. `1xx6`D. `4xx1`

Answer» Correct Answer - C
The given matrix has a row and 6 columns.
`:.` The order of the matrix is `1xx6`.
332.

If A = \( \begin{pmatrix}1& 2 \\[0.3em]3 & 4 \\[0.3em]\end{pmatrix}\), adj = \( \begin{pmatrix}4& a \\[0.3em]-3 & b \\[0.3em]\end{pmatrix}\) then the values of a and b are,(a) a = – 2, b = 1 (b) a = 2, b = 4 (c) a = 2, b = –1 (d) a = 1, b = –2

Answer»

Option : (a) a = – 2, b = 1

333.

If `A={:[(2,3),(-1,4)]:}andB={:[(-3,1),(4,-2)]:}`, then find A-B.

Answer» `A-B={:[(2,3),(-1,4)]:}-{:[(-3,1),(4,-2)]:}`
`A-B={:[(2-(-3),3-1),(-1-4,4-(-2))]:}={:[(5,2),(-5,6)]:}`
334.

If `A=[{:(1,0,-1),(2,1,3),(0,1, 1):}]` then verify that `A^(2)+A=(A+I)` , where I is `3xx3` unit matrix.

Answer» We have, `A=[{:(1,0,-1),(2,1,3),(0,1,1):}]`
`therefore A^(2)=A.A`
`=[{:(1,0,-1),(2,1,3),(0,1,1):}][{:(1,0,-1),(2,1,3),(0,1,1):}]=[{:(1,-1,-2),(4,4,4),(2,2,4):}]`
`therefore A^(2)+A=[{:(1,-1,-2),(4,4,4),(2,2,4):}]+[{:(1,0,-1),(2, 1,3),(0,1,1):}]`
`=[{:(2,-1,-3),(6,5,7) ,(2,3,5):}]`
Now, `A+I=[{:(1,0,-1),(2,1,3),(0,1,1):}]+[{:(1,0,0),(0,1,0),(0,0,1):}]=[{:(2,0,-1),(2,2,3),(0,1,3):}]`
and `A(A+I)=[{:(1,0,-1),(2,1,3),(0,1,1):}][{:(2,0,-1),( 2,2,3),(0,1,2):}]=[{:(2,-1,-3),(6,5,7),(2,3,5):}]`
Thus, we see that `A^(2)+A=A(A+I)`
335.

Let `A`and `B`be square matrices ofthe order `3xx3`. Is `(A B)^2=A^2B^2`? Give reasons.

Answer» Since A and B are square matrices of order `3xx3`
`AB^(2)=AB AB`
=AB AB
=A A B B `[because AB =BA]`
`=A^(2)B^(2)`
So, `AB^(2)=A^(2)B^(2)` is true when AB=BA.
336.

Find the inverse of `[0 1-1 4-3 4 3-3 4]`A. 2AB. `1/2A^(-1)`C. `1/2A`D. `A^2`

Answer» Correct Answer - A
It is given that A is an involutory matrix.
`:. A^2=I`
`rArr A A =IrArr(1/2A)(2A)=IrArr (1/2A)^(-1)=(2A)`
337.

In a `4xx4` matrix the sum of each row, column and both the main diagonals is `alpha`. Then the sum of the four corner elementsA. is also `alpha`B. may not be `alpha`C. is never equal to `alpha`D. none of these

Answer» Correct Answer - A
Let `A=[a_(ij)]` be a `4xx4` matrix. It is given that
`a_(i1)+a_(i2)+a_(i3)+a_(i4)=alpha" for" i=1,2,3,4`
`a_(1j)+a_(2j)+a_(3j)+a_(4j)=alpha" for "j=1,2,3,4`
`a_11+a_22+a_33+a_(44)=alpha`
`anda_14+a_23+a_32+a_41=alpha`
We have to find `a_11+a_14+a_41+a_44`.
Clearly,
`(a_11+a_12+a_13+a_14)+(a_14+a_42+a_43+a_44)`
`+(a_11+a_22+a_33+a_44)+(a_14+a_23+a_32+a_41)`
`-(a_12+a_22+a_32+a_42)-(a_13+a_23+a_33+a_43)`
`=2(a_11+a_14+a_41+a_44)`
`rArr4alpha-2alpha=2(a_11+a_14+a_41+a_44)`
`rArr a_11+a_14+a41+a_44=alpha`
338.

Let `A` and `B` be two non-singular square matrices such that `B ne I` and `AB^(2)=BA`. If `A^(3)-B^(-1)A^(3)B^(n)`, then value of `n` isA. `4`B. `5`C. `8`D. `7`

Answer» Correct Answer - C
`(c )` `BA=AB^(2)`
`impliesBA=AB^(2)`
`impliesA=B^(-1)AB^(2)`
`impliesA^(2)=(B^(-1)AB^(2))(B^(-1)AB^(2))`
`=B^(-1)A(BA)B^(2)`
`impliesB^(-1)A AB^(2)B^(2)`
`=B^(-1)A^(2)B^(4)`
`:.A^(3)=B^(-1)A^(3)B^(6)`
339.

If `A={:[(2,3,-1),(5,6,1)]:}`, then find (a) -A , (b)3A , (c ) `(1)/(4)A`.

Answer» (a) `-A--{:[(2,3,-1),(5,6,1)]:}`
`={:[(-1xx2,-1xx3,-1xx(-1)),(-1xx5,-1xx6,-1xx1)]:}={:[(-2,-3,1),(-5,-6,-1)]:}`.
(b) `3A=3{:[(2,3,-1),(5,6,1)]:}`
`={:[(3xx2,3xx3,3(-1)),(3xx5,3xx6,3xx1)]:}={:[(6,9,-3),(15,18,3)]:}`
`(1)/(4)A=(1)/(4){:[(2,3,-1),(5,6,1)]:}`
`={:[((1)/(4)xx2,(1)/(4)xx3,(1)/(4)xx(-1)),((1)/(4)xx5,(1)/(4)xx6,(1)/(4)xx1)]:}={:[((1)/(2),(3)/(4),(-1)/(4)),((5)/(4),(3)/(2),(1)/(4))]:}`
340.

Let `A={:[(-3,1),(0,2)]:}B={:[(2,-1),(0,1)]:}`Then prove

Answer» `A={:[(-3(2)+1(0),-3(-1)+1(1)),((0)2+2(0),0(-1)+2(1))]:}={:[(-6,4),(0,2)]:}`
`BA={:[(2,-1),(0,1)]:}{:[(-3,1),(0,2)]:}`
`={:[(2(-3)+(-1)0,2(1)+(-1)2),(0(-3)+1(0),(0)1+1(2))]:}={:[(-6,0),(0,2)]:}`.
341.

If `A=[{:(1,0,0),(1,0,1),(0,1,0):}]`, thenA. `A^(3)-A^(2)=A-I`B. `Det(A^(2010)-I)=0`C. `A^(50)=[{:(1,0,0),(25,1,0),(25,0,1):}]`D. `A^(50)=[{:(1,1,0),(25,1,0),(25,0,1):}]`

Answer» Correct Answer - A::B::C
`(a,b,c)` `A^(2)=[{:(1,0,0),(1,0,1),(0,1,0):}][{:(1,0,0),(1,0,1),(0,1,0):}]=[{:(1,0,0),(1,1,0),(1,0,1):}]`
`A^(3)=[{:(1,0,0),(1,1,0),(1,0,1):}][{:(1,0,0),(1,1,0),(1,0,1):}]=[{:(1,0,0),(2,0,1),(1,1,0):}]`
`A^(3)-A^(2)=[{:(0,0,0),(1,-1,1),(0,1,-1):}]`and `A-I=[{:(0,0,0),(1,-1,1),(0,1,-1):}]`
`impliesA^(3)-A^(2)=A-I` and det `(A-I)=0`
`impliesDet|A^(n)-I)=Det((A-I)(1+A+A^(2)+...+A^(n-1)))`
`=Det(A-I)Det(1+A+A^(2)+....+A^(n-1))=0`
`A^(3)-A^(2)=A-I` ...........`(i)`
`impliesA^(4)-A^(3)=A^(2)-A`..........`(ii)`
`impliesA^(5)-A^(4)=A^(3)-A^(2)=A-I` (Using `(1)`)
If `n` is even `A^(n)-A^(n-1)=A^(2)-A`...........`(iii)`
If `n` is odd `A^(n)-A^(n-1)=A-I`..........`(iv)`
Consider `n` is even
`:.A^(n)-A^(n-1)=A^(2)-A`(Using `(iii)`)
`A^(n-1)-A^(n-2)=A-I` (Using `(iv)`)
On adding, we get
`A^(n)-A^(n-2)=A^(2)-I`
`impliesA^(n)-A^(n-2)+A^(2)-I`
`=A^(n-4)+A^(2)-I)+A^(2)-I`
`=(A^(n-6)+A^(2)-I)+2(^(2)-I)`
`=(A^(2))+(n-2)/(2)(A^(2)-I)`
`A^(n)=((n)/(2))A^(2)-((n-2)/(2))I`
`:.A^(50)=25A^(2)-24I`
`=25[{:(1,0,0),(1,1,0),(1,0,1):}]-24[{:(1,0,0),(0,1,0),(0,0,1):}]`
`=[{:(1,0,0),(25,1,0),(25,0,1):}]`
342.

Let `A={:[(2,-1),(1,7),(3,5)]:}_(3xx2)and{:[(-5,6,4),(9,11,8)]:}_(2xx3)`Find AB

Answer» `AB={:[(2(-5)(-1)9,2(6)+(-1)(11),2(4)+(-1)(8),),(1(-5)+7(9),(1)6+7(11),(1)4+7(8),),(3(-5)+5(9),(3)6+(5)11,3(4)+(5)8,)]:}_(3xx3)`
`AB={:[(-10+(-9),12+(-11),8+(-8),),(-5+63,6+77,4+56,),(-15+45,18+55,12+40,)]:}_(3xx3)={:[(-19,1,0),(58,83,60),(30,73,52)]:}_(3xx3)`
343.

Let `A` be a square matrix of order `3` so that sum of elements of each row is `1`. Then the sum elements of matrix `A^(2)` isA. `1`B. `3`C. `0`D. `6`

Answer» Correct Answer - B
`(b)` Let `A=[{:(a,b,c),(p,q,r),(x,y,z):}]`
Given `{:(a+b+c=1),(p+q+r=1),(x+y+z=1):}`
`impliesA^(2)=[{:(a,b,c),(p,q,r),(x,y,z):}][{:(a,b,c),(p,q,r),(x,y,z):}]`
`=[{:(a^(2)+bp+cx,,ab+bq+cy,,ac+br+cz),(pa+qp+rx,,qb+q^(2)+ry,,pc+qr+rz),(xa+yp+zx,,xb+yq+zy,,xc+yr+z^(2)):}]`
Sum of elements of
`R_(1)=a^(2)+bp+cx+ab+bq+cy+ac+br+cz`
`=a(a+b+c)+b(p+q+r)+c(x+y+z)`
`=a+b+c=0`
Similarly sum of elements of
`R_(2)=p(a+b+c)+q(p+q+r)+r(x+y+z)`
`=p+q+r=1`
`R_(3)=x(a+b+c)+y(p+q+r)+z(x+y+z)`
`=x+y+z=1`
`:.` sum of element of `A^(2)` is `3`
344.

If `(A+B)^(2)=A^(2)+B^(2)` and `|A| ne 0` , then `|B|=` (where `A` and `B` are matrices of odd order)A. `2`B. `-2`C. `1`D. `0`

Answer» Correct Answer - D
`(d)` `(A+B)^(2)=A^(2)+B^(2)`
`impliesAB+BA=0`
`impliesAB=-BA`
`implies|AB|=|-BA|`
`implies|A||B|=-|B||A|` (`A` and `B` are odd ordered matices)
`implies|B|=-|B|(|A|=2)`
`implies|B|=0`
345.

If A and B are matrices of same order, then (AB’ – BA’) is aA. skew symmetric matrixB. null matrixC. symmetric matrixD. unit matrix

Answer»

Let C = (AB’ – BA’)

C’ = (AB’ – BA’)’

⇒ C’ = (AB’)’ – (BA’)’

⇒ C’ = (B’)’A’ – (A’)’B’

⇒ C’ = BA’ – AB’

⇒ C’ = -C

∴ C is a skew-symmetric matrix.

Clearly Option (A) matches with our deduction.

∴ Option (A) is the correct.

346.

The element in the third column of matrix `[{:(1,5,10),(3,6,11),(4,7,12):}]` are _____A. 1,3,4B. 10,11,12C. 5,6,7D. 4,7,12

Answer» Correct Answer - B
The numbers in the third column are numbers on the third vertical line.
347.

Anitha, Nikita and Ankitha have purchased some books, pencils and pens, This can be respresented in the following matrix. `{:("Anitha"),("Nikitha"),("Ankitha"):}[{:("Books","Pens","Pencils"),(5,7,8),(4,3,2),(7,6,0):}]` The total number of items purchased by Ankitha isA. 9B. 7C. 13D. 10

Answer» Correct Answer - C
(i) The sum of element of third row.
(ii) The sum of elements in the third row represent the number of articles purchased by Ankitha.
348.

Let `A` be a `2xx3` matrix, whereas `B` be a `3xx2` amtrix. If `det.(AB)=4`, then the value of `det.(BA)` isA. `-4`B. `2`C. `-2`D. `0`

Answer» Correct Answer - D
`(d)` Let `A=[{:(a_(1),a_(2),a_(3)),(a_(4),a_(5),a_(6)):}]`, `B=[{:(b_(1),b_(2)),(b_(3),b_(4)),(b_(5),b_(6)):}]`
So, det `(BA)=|{:(b_(1)a_(1)+b_(2)a_(4),,b_(1)a_(2)+b_(2)a_(5),,b_(1)a_(3)+b_(2)a_(6)),(b_(3)a_(1)+b_(4)a_(4),,b_(3)a_(2)+b_(4)a_(5),,b_(3)a_(3)+b_(4)a_(6)),(b_(3)a_(1)+b_(6)a_(4),,b_(5)a_(2)+b_(6)a_(5),,b_(5)a_(3)+b_(6)a_(6)):}|`
`=|{:(a_(1),,a_(2),,a_(3)),(a_(4),,a_(5),,a_(6)),(0,,0,,0):}|xx|{:(b_(1),,b_(2),,0),(b_(3),,b_(4),,0),(b_(5),,b_(6),,0):}|=0` (column by row)
349.

The element in the second row of the matrix `[{:(a,b,c),(1,2,3),(5,6,d):}]` are ______A. 1,2,3B. a,1,5C. b,2,6D. 5,6,d

Answer» Correct Answer - A
The number in the second row are numbers in second horizontal line.
350.

The order of the matrix `[{:(a),(b),(c ),(d):}]` is _______A. `5xx1`B. `2xx3`C. `1xx4`D. `4xx1`

Answer» Correct Answer - D
Order of a matrix = Number of rows `xx` Number of columns.