Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

251.

Find X and Y, if `X+Y=[[5, 2],[ 0, 9]]`and `X-Y=[[3 ,6],[ 0,-1]]`.

Answer» Adding the given matrices, we get
`(X+Y)+(X-Y)=[{:(5,2),(0,9):}]+[{:(3," "6),(0,-1):}]`
`implies" "2X=[{:(5+3,2+6),(0+0,9+(-1)):}]`
`implies" "2X=[{:(8,8),(0,8):}]impliesX=(1)/(2).[{:(8,8),(0,8):}]=[{:(4,4),(0,4):}].`
On subtracting the given matrices, we get
`(X+Y)-(X-Y)=[{:(5,2),(0,9):}]-[{:(3,6),(0,-1):}]`
`implies" "2Y=[{:(5-3,2-6),(0-0,9-(-1)):}]=[{:(2,-4),(0,10):}]`
`implies" "Y=(1)/(2)[{:(2,-4),(0,10):}]=[{:(1,-2),(0," "5):}].`
Hence, `X=[{:(4,4),(0,4):}]" and "Y=[{:(1,-2),(0,5):}].`
252.

If `2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}]`, find (x-y).

Answer» We have
`2[{:(3,4),(5,x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}]`
`implies" "[{:(6,8),(10,2x):}]+[{:(1,y),(0,1):}]=[{:(7,0),(10,5):}]`
`implies" "[{:(6+1,8+y),(10+0,2x+1):}]=[{:(7,0),(10,5):}]`
`implies" "2x+1=5" and "8+y=0`
[comparing the corresponding elements]
`implies" "x=2" and "y=-8.`
`implies" "(x-y)=2-(-8)=10.`
253.

Find a matrix X such that 2A + B + X =0where` A = [[-1,2],[3,4]] and B = [[3,-2],[1,5]]`

Answer» We have
`2A+B+X=OimpliesX=-(2A+B).`
Now, `(2A+B)=2.[{:(-1,2),(3,4):}]+[{:(3,-2),(1,5):}]`
`=[{:(-2,4),(6,8):}]+[{:(3,-2),(1," "5):}]`
`=[{:(-2+3,4+(-2)),(" "6+1," "8+5):}]=[{:(1,2),(7,13):}].`
`:." "X=-(2A+B)=[{:(-1,-2),(-7,-13):}].`
254.

Find a martix X, if `X+[{:(4,6),(-3,7):}]=[{:(3,-6),(5,-8):}].`

Answer» Let `A=[{:(4,6),(-3,7):}]" and "B=[{:(3,-6),(5,-8):}].`
Then, the given matrix equation is `X+A=B.`
`:." "X+A=BimpliesX=B+(-A)`
`=[{:(3,-6),(5,-8):}]+[{:(-4,-6),(3,-7):}]`
`=[{:(3+(-4),-6+(-6)),(5+3,-8+(-7)):}]=[{:(-1,-12),(8,-15):}].`
Hence, `X=[{:(-1,-12),(8,-15):}].`
255.

If A=[0 3 -2 5] then find 'k' so that kA2=5A-6I2

Answer»

\(=\begin{bmatrix}0 &3\\-2&5\end{bmatrix}\)

A2 \(=\begin{bmatrix}0 &3\\-2&5\end{bmatrix}\)\(\begin{bmatrix}0 &3\\-2&5\end{bmatrix}\)

\(​​=\begin{bmatrix}-6 & 15\\-10 & 19\end{bmatrix}\)

Now, 5A – 6I2 \(=5\begin{bmatrix}0 & 3\\-2 & 5\end{bmatrix}-6\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}\)

\(=\begin{bmatrix}0 & 15\\-10 & 25\end{bmatrix}\)\(-\begin{bmatrix}6& 0\\0 & 6\end{bmatrix}\)

\(=\begin{bmatrix}-6 & 15\\-10 & 19\end{bmatrix}\)

= A2

Thus k = 1.

256.

Using elementary transformation, find the inverse of the matrix `A=[(a,b),(c,((1+bc)/a))]`.

Answer» Correct Answer - `[((1+bc)/a,-b),(-c,a)]`
`A=[(a,b),(c,((1+bc)/a))]`
We write,
`[(a,b),(c,((1+bc)/a))]=[(1,0),(0,1)]A`
`implies [(1,b/a),(c,((1+bc)/a))]=[(1/a,0),(0,1)]A" "(R_(1) rarr R_(1)/a)`
or `[(1,b/a),(0,1/a)]=[(1/a,0),((-c)/a,1)]A" "(R_(2) rarr R_(2)-cR_(1))`
or `[(1,b/a),(0,1)]=[(1/a,0),(-c,a)]A" "(R_(2)=aR_(2))`
or `[(1,0),(0,1)]=[((1+bc)/a,-b),(-c,a)]A" "(R_(1) rarr R_(1)- b/a R_(2))`
`implies A^(-1)=[((1+bc)/a,-b),(-c,a)]`
257.

If a matrix has 5 elements, then write all possible orders it can have.

Answer»

Given, a matrix has 5 elements. So, possible order of this matrix are 5 x 1 and 1 x 5.

258.

Write the values of x – y + z from the following equation: [(x + y + z), (x + y), (y + z)] = [9, 5, 7]

Answer»

By definition of equality of matrices, we have

x + y + z = 9 ... (i) 

x + z =5 .... (ii) 

y + z =7 ... (iii) 

(i) – (ii) ⇒ x + y + z – x – z = 9 – 5 

⇒ y = 4 ... (iv) 

(ii) – (iv) ⇒ x – y + z = 5 – 4 

x – y + z = 1

259.

If A is a square matrix such that A2 = A, then write the value of (I + A)2 – 3A.

Answer»

(I + A)2 – 3A = I2 + A2 + 2A – 3A 

= I2 + A2 - A 

= I2 + A - A [∵ A2 = A]

= I2 = I . I = I

260.

If A is a square matrix such that A2 = A, then write the value of 7A – (I + A)3, where I is an identity matrix.

Answer»

7A – (I + A)3 = 7A - {I3 + 3I2A + 3I.A2 + A3

= 7A – {I + 3A + 3A + A2A} [ I3 = I2 = I, A2 = A] 

= 7A – {I + 6A + A2

= 7A – {I + 6A + A} = 7A – {I + 7A} 

= 7A – I – 7A = –I

261.

_________ matrix is both symmetric and skew symmetric matrix.

Answer»

Null matrix is both symmetric and skew symmetric matrix.

262.

Write the values of x - y + z from the following equation :[(x+y+z,x+z,y+z)]=[(9,5,7)]

Answer»

we have

[(x+y+z,x+z,y+z)]=[(9,5,7)]

By definition of equality of matrices, we have
x + y + z = 9 ... (i)
x + z =5 .... (ii)
y + z =7 ... (iii)
(i) – (ii) =>  x + y + z -x - z = 9 -5
=>  y = 4 ... (iv)
(ii) – (iv) => x - y + z =5 -4
=> x -y + z =1

263.

Write the order of the product matrix :[(1),(2),(3)] [2,3,4]

Answer» Order is 3 x 3 because it is product of two matrices having order 3 x 1 and 1 x 3.
264.

If [(1,0,0)(0,y,0)(0,0,1)] [(x)(-1)(z)] = [(1)(2)(1)], find x + y + z. 

Answer»

x = 1, y = -2, z = 1

or x + y + z = 0

265.

Find the matrix A such that `[{:(2,-1), (1,0),(-3,4):}]A=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}]`

Answer» we have, `[{:(2,-1),(1,0),(-3,4):}]_(3xx2)A=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}]_(3xx3)`
From the given equation , it is clear that order of A should be `2xx3`
Let `A=[{:(a,b,c),(d,e,f):}]`
`[{:(2,-1),(1,0),(-3,4):}][{:(a,b,c),(d,e,f):}]=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}]`
`rArr[{:(2a-d,2b-e,2c-f),(a+0d,b+0.e,c+0.f),(-3a+4d,3b+4e,-3c+4l):}]=[{:(-1,-8,-10),(1,-2,-5),( 9,22,15):}]`
`rArr [{:(2a-d,2b-e,2c-f),(a,b,c),(-3a+4d,-3b+4e,-3c+4f):}]=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}]`
By equality of matrices, we get
`a=1,b=-2,c=-5`
and `2a-d=-1rArrd=2a+1=3`
`rArr 2b-e=-8rArre=2(-2)+8=4`
2c-f=-10`rArr`f=2c+10=0
`therefore A=[{:(1,-2,-5),(3,4,0):}]`
266.

If `theta-phi=pi/2,` prove that, `[(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0`A. `2npi, in Z`B. `n pi/2, n in Z`C. `(2n+1) pi/2, n in X`D. `npi, n in Z`

Answer» Correct Answer - C
`AB=[(cos^(2) theta,),(cos theta sin theta,)][(cos^(2) phi,cos phi sin phi),(cos phi sin phi,sin^(2) phi)]`
`=[(cos^(2) theta cos^(2) phi+cos theta cos phi sin theta sin phi ,cos^(2)theta cos phi sin phi+cos theta sin theta sin^(2) phi),(cos theta sin thete cos^(2) phi+sin^(2) theta cos phi sin phi,cos theta cos phi sin theta sin phi+sin^(2) theta sin^(2) phi)]`
`=[(cos theta cos phi (cos (theta-phi)),cos theta sin phi (cos(theta-phi))),(sin theta cos phi (cos (theta-phi)),sin theta sin phi (cos (theta-phi)))]`
`=(cos (theta-phi)) [(cos theta cos phi,cos theta sin phi),(sin theta cos phi,sin theta sin phi)]`
Now, `AB=O implies cos (theta-phi)=0`
`implies theta-phi=(2n+1) pi//2, n in Z`.
267.

Solve for x and y, given that `[{:(x,y),(3y,x):}][{:(1),(2):}]=[{:(3),(5):}].`

Answer» We have
`[{:(x,y),(3y,x):}][{:(1),(2):}]=[{:(3),(5):}]`
`implies" "[{:(x+2y),(3y+2x):}]=[{:(3),(5):}]`
`implies" "{{:(x+2y=3" "...(i)),(2x+3y=5" "...(ii)):}`
Multiplying (i) by 2 and subtracting (ii)from it, we get y=1.
Putting y=1 in (i), we get x=1.
Hence, x=1 and y=1.
268.

Find the value of x, if `[1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=O.`

Answer» We have
`[1x1]_(1xx3)[{:(1,3,2),(2,5,1),(15,3,2):}]_(3xx3)[{:(1),(2),(x):}]_(3xx1)=O`
`implies" "[1+2x+15" "3+5x+3" "2+x+2][{:(1),(2),(x):}]=O`
`implies" "[16+2x" "6+5x" "4+x][{:(1),(2),(x):}]=O`
`implies" "[(16+2x).1+(6+5x).2+(4+x).x]=O`
`implies" "(16+2x)+(12+10x)+(4x+x^(2))=0`
`implies" "x^(2)+16x+28=0`
`implies" "(x+14)(x+2)=0`
`implies" "x+14=0" or "x+2=0`
`implies" "x=-14" or "x=-2.`
Hence, `x=-14" or "x=-2.`
269.

If `A^(2) - A + I = 0` then `A^(-1) ` is equal toA. `A^(-2)`B. `A+1`C. `I-A`D. `A-I`

Answer» Correct Answer - c
270.

If `A[{:(3,-4),(1,1),(2,0):}]` and `B=[{:(2,1,2),(1,2,4):}]` and `B=[{:(4,1),(2,3),(1,2):}]`

Answer» We have, `A=[{:(2,1,2),(1,2,4):}]_(2xx3) "and" B=[{:(4,1),(2,3),(1,2):}]_(3xx2)`
So, AB and BA both are possible
[since, in both A-B and B-A, the number of columns of first is equal to the number of rows of second]
`therefore AB=[{:(2,1,2),(1,2,4):}]_(2xx3)[{:(4,1),(2,3),(1,2):}]_(3xx2)`
`=[{:(8+2+2,2+3+4),(4+4+4,1+ 6+8):}]=[{:(12,9),(12,15):}]`
and `BA=[{:(4,1),(2,3),(1,2):}]_(3xx2)[{:(2,1,2),(1,2,4):}]_(2xx3)`
`= [{:(4xx2+1,4+2,8+4),(4+3,2+ 6,4+12),(2+2,1+4,2+8):}]=[{:(9,6,12),(7,8,16),(4,5,10):}]`
271.

If `A=[a b0a]`is nth root of `I_2,`then choose the correct statements:If `n`is odd, `a=1,b=0`If `n`is odd, `a=-1,b=0`If `n`is even, `a=1,b=0`If `n`is even, `a=-1,b=0`a. i, ii, iii, iv b.ii, iii, ivc. i, ii, iii, iv d. i,iii, ivA. i, ii, iiiB. ii, iii, ivC. i, ii, iii, ivD. i, iii, iv

Answer» Correct Answer - D
If A is nth root of `I_(2)`, then `A^(n)=I_(2)`. Now,
`A^(2)=[(a,b),(0,a)][(a,b),(0,a)]=[(a^(2),2ab),(0,a^(2))]`
`A^(3)=A^(2) A=[(a^(2),2ab),(0,a^(2))][(a,b),(0,a)]=[(a^(3),3a^(2)b),(0,a^(3))]`
Thus, `A^(n)=[(n^(n),na^(n-1)b),(0,a^(n))]`
Now,
`A^(n)=I implies [(a^(n),na^(n-1)b),(0,a^(n))]=[(1,0),(0,1)]`
`implies a^(n)=1, b=0`
272.

If for the matrix `A , A^3=I`, then `A^(-1)=``A^2`(b) `A^3`(c) `A`(d) none of theseA. `A^(2)`B. `A^(3)`C. AD. None of these

Answer» Correct Answer - a
273.

If `[alphabetagamma-alpha]`is to be square root of two-rowed unit matrix, then `alpha,betaa n dgamma`should satisfy therelation.`1-alpha^2+betagamma=0`b. `alpha^2+betagamma=0`c. `1+alpha^2+betagamma=0`d. `1-alpha^2-betagamma=0`A. `1-alpha^(2)+beta gamma=0`B. `alpha^(2)+beta gamma-1=0`C. `1+alpha^(2)+beta gamma=0`D. `1-alpha^(2)-beta gamma=0`

Answer» Correct Answer - B
We have
`[(alpha,beta),(gamma,-alpha)][(alpha,beta),(gamma,-alpha)]=[(1,0),(0,1)]`
or `[(alpha^(2)+beta gamma,0),(0,alpha^(2)+beta gamma)]=[(1,0),(0,1)]`
or `alpha^(2)+beta gamma-1=0`
274.

If `A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8`equals`4B`b. `128 B`c. `-128 B`d. `-64 B`A. 4BB. 128BC. `-128` BD. `-64`B

Answer» Correct Answer - B
We have,
`A=iB`
or `A^(2)=(iB)^(2)=i^(2)B^(2)=-B^(2)=- [(2,-2),(-2,2)]=-2B`
or `A^(4)=(-2B)^(2)=4B^(2)=4(2B)=8B`
or `(A^(4))^(2)=(8B)^(2)`
or `A^(8)=64 B^(2)=128 B`
275.

Prove that matrix `[((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))]` is orthogonal.

Answer» `A=[((b^(2)-a^(2))/(a^(2)+b^(2)),(-2ab)/(a^(2)+b^(2))),((-2ab)/(a^(2)+b^(2)),(a^(2)-b^(2))/(a^(2)+b^(2)))]=[((1-a^(2)/b^(2))/(1+a^(2)/b^(2)),(-2 a/b)/(1+a^(2)/b^(2))),((-2a/b)/(1+a^(2)/b^(2)),-(1-a^(2)/(2))/(1+a^(2)/b^(2)))]`
`=[(cos 2 theta,-sin 2 theta),(-sin 2 theta,-cos 2 theta)]`, where `a/b= tan theta`
`:. A A^(T)=[(cos 2 theta,-sin 2 theta),(-sin 2 theta,-cos 2 theta)][(cos 2 theta,-sin 2 theta),(- sin 2 theta,-cos 2 theta)]`
`=[(1,0),(0,1)]`
Thus, A is orthogonal.
276.

If `e^(A)` is defined as `e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))]`, where `A=[(x,x),(x,x)], 0 lt x lt 1` and I is identity matrix, then find the functions f(x) and g(x).

Answer» `A=[(x,x),(x,x)]`
`implies A^(2)=[(2x^(2),2x^(2)),(2x^(2),2x^(2))], A^(3)=[(2^(2)x^(3),2^(2)x^(3)),(2^(2)x^(3),2^(2)x^(3))]` and so on
Then `e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...`
`=[(1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+...,x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+...),(x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+...,1+x+ (2x^(2))/(2!)+(2^(2)x^(3))/(3!)+...)]`
`=[(1/2(1+2x+(2^(2)x^(2))/(2!)+...)+1/2,1/2(1+2x+(2^(2)x^(2))/(2!)+...)-1/2),(1/2(1+2x+(2^(2)x^(2))/(2!)+...)-1/2,1/2(1+2x+(2^(2)x^(2))/(2!)+...)+1/2)]`
`=1/2 [(e^(2x)+1,e^(2x)-1),(e^(2x)-1,e^(2x)+1)]`
`implies f(x)=e^(2x)+1` and `g(x)=e^(2x)-1`
277.

FindA, if `[{:(4),(1),(3):}]A=[{:(-4,8,4),(-1,2,1),(-3,6,3):}]`

Answer» We have, `[{:(4),(1),(3):}]_(3xx1)A=[{:(-4,8,4),(-1,2,1),(-3,6,3):}]_(3xx3)`
`rArr [{:(4x,4y,4z),(x,y,z),(3x,3y,3z):}]=[{:(-4,8,4),(-1,2,1),(-3,6,3):}]` lt
278.

If `I_(3)` is identity matrix of order 3, then `I_(3)^(-1)=`

Answer» Correct Answer - c
279.

`if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?`

Answer» We have, `[{:(2,1),(3,2):}]_(2xx2)A.[{:(-3,2),(5,-3):}]_(2xx2)=[{:(1,0),(0,1):}]_(2xx2)`
Let `A=[{:(a,b),(c,d):}]_(2xx2)`
`therefore [{:(2,1),(3,2):}] [{:(a,b),(c,d):}][{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}]`
`rArr [{:( 2a+c,2b+d),(3a+2c,3b+2d):}][{:(-3,2),(5,-3):}]=[{:( 1,0),(0,1):}]`
`rArr [{:(-6a-3c_10b+5d,a+2c-6b-3d),(-9a-6c+15b+10d,6a+4c-9b-6d):}]=[{:(1,0),(0,1):}]`
`rArr -6a-3c+10b+5d=1`
`rArr 4a+2c-6b-3d=0`
`rArr -9a-6c+15b+10d=0`
`rArr 6a+4c-9b-6d=1`
On edding Eqs. i and iv, we get
`c+b-d=2rArrd=c+b-2`
On adding Eqs. v and vii
`v+b-2=1-arArra+b+c=3`
`rArr a=3-b-c`
Now, using values of a and d in eq. ii, we get
`4(3-b-c)+2c-6b-3(b+c-2)=0`
`rArr 12-4b-4c+2c-6b-3b-3c+6=0`
`rArr -13b-5c=-18`
On multiplying Eq. ix by 5 and Eq. x by 13, then adding we get
`=169b-65c=-234`
`170b+65c=235`
b=1
`rArr -13xx1-5c=-18`
`rArr -5c =-18+13=-5rArrc=1`
`therefore a=3-1-1=1` and d=1-1=0
`therefore A=[{:(1,1),(1,0):}]`
280.

If A, B, and C are three square matrices of the same order, then `AB=AC implies B=C`. ThenA. `|A| ne 0`B. A is invertibleC. A may be orthogonalD. A is symmetric

Answer» If `|A| ne 0`, then
`AB=AC`
or `A^(-1) AB=A^(-1) AC`
or `B=C`
Also, if A is orthogonal matrix, then `A A^(T)=I`
`implies |A A^(T)|=1 implies |A|^(2)=1implies` is invertible
281.

Let `A=[0-tan(alpha//2)tan(alpha//2)0]`and `I`be the identity matrixof order 2. Show that `I+A=(I-A)[cosalpha-sinalphasinalphacosalpha]`.A. `-I+A`B. `I-A`C. `-I-A`D. none of these

Answer» Correct Answer - B
Since `I=[(1,0),(0,1)]` and given `A=[(0,tan alpha//2),(-tan alpha//2,0)]`
`:. I-A=[(1,-tan alpha//2),(tan alpha//2,1)]`
Now, `(I-A) [(cos alpha,-sin alpha),(sin alpha,cos alpha)]`
`=[(1,tan alpha//2),(-tan alpha//2,1)][(cos alpha,-sin alpha),(sin alpha,cos alpha)]`
`=[(1,tan alpha//2),(-tan alpha//2,1)][((1-tan^(2) alpha//2)/(1+tan^(2)alpha//2),-(2 tan alpha//2)/(1+tan^(2) alpha//2)),((2 tan alpha//2)/(1+tan^(2) alpha//2),(1-tan^(2) alpha//2)/(1+tan^(2) alpha//2))]`
`=[((1-tan^(2) alpha//2)/(1+tan^(2)alpha//2)+(2 tan^(2) alpha//2)/(1+tan^(2) alpha//2),-(2 tan alpha//2)/(1+tan^(2) alpha//2)),((-tan alpha//2 (1-tan^(2) alpha//2))/(1+tan^(2) alpha//2)+(2 tan alpha//2)/(1+tan^(2) alpha//2),(2 tan^(2) alpha//2)/(1+tan^(2) alpha//2)+(1-tan^(2) alpha//2)/(1+tan^(2) alpha//2))]`
`=[(((1+tan^(2) alpha//2))/((1+tan^(2) alpha//2)),-(tan alpha//2(1+tan^(2) alpha//2))/((1+tan^(2) alpha//2))),((tan alpha//2(1+tan^(2) alpha//2))/((1+tan^(2) alpha//2)),((1+tan^(2) alpha//2))/((1+tan^(2) alpha//2)))]`
`=[(1,-tan alpha//2),(tan alpha//2,a)]`
`=I-A` [Using (1)]
282.

A matrix denotes a number

Answer» False
A matrix is an ordered rectangular array of numbers or functions.
283.

If `A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}]`, then show that `(A+B)(A-B)neA^(2)-B^(2)`

Answer» We have, `A=[{:(0,1),(1,1):}]"and" B=[{:(0,-1),(1,0):}]`
`(A+ B)=[{:(0+0,1 -1),(1+1,1+0):}]=[{:( 0,0),(2,1):}]`
`therefore (A+B)=[{:(0+0,1-1),(1+1,1+0):}]=[{:(0,0),(2,1):}]_(2xx2)`
and ` (A-B)=[{:(0-0,1+1),( 1-1,1-0):}]=[{:(0,2),(0,1):}]_(2xx2)`
Since (A+B),(A-B) is defined, if the number of columns of (A+ B) is equal to the number of rows of (A-B) so here multiplication of matrices (A+B ),(A-B) is possible
Now, `(A+B)_(2xx2).(A-B)_(2x2)=[{:(0+0,0+0),(0+0,4+1):}]=[{:(0,0),(0,5):}]`
Also `A^(2)=A,A`
`=[{:(0,1),(1,1):}],[{:(0,1),(1,1):}]`
`=[{:(0+1,0+1) ,(0+1,1+1):}]=[{:(1,1) ,(1,2):}] `
and `B^(2)=B,B =[{:(0,-1),(1,0):}][{:(0,-1),(1,0)]`
`=[{:(0-1, 0+0),(0+0,-1+0):}] =[{:(-1,0),( 0,-1):}]`
`rArr (A+B),(A-B)neA^(2)-B^(2)`
`rArr [{:( 0,0),(0,5):}] ne[{:(2,1),(1,3):}]`
284.

show that `[(1,1,3),(5,2,6),(-2,-1,-3)]=A` is nipotent matrix of order 3.

Answer» Let `A=[(1,1,3),(5,2,6),(-2,-1,-3)]`
`therefore A^(2)=A.A=[(1,1,3),(5,2,6),(-2,-1,-3)]xx[(1,1,3),(5,2,6),(-2,-1,-3)]`
`[(1+5-6,1+2-3,3+6-9),(5+10-12,5+4-6,15+12-18),(-2-5+6,-2-2+3,-6-6+9)]`
`=[(0,0,0),(3,3,9),(-1,-1,-3)]`
`thereforeA^(3)=A^(2).=[(0,0,0),(3,3,9),(-1,-1,-3)]xx[(1,1,3),(5,2,6),(-2,-1,-3)]`
`[(0+0+0,0+0+0,0+0+0),(3+15-18,3+6-9,9+18-27),(-1-5+16,-1-2+3,-3-6+9)]=[(0,0,0),(0,0,0),(0,0,0)]=0`
`therefore" " A^(3)=Oi.e.,A^(k)=O`
Here `k=3`
285.

Show that `A =[{:(5,3),(-1,-2):}]` satisfies the equation `A^(2)-3A-7I=0` and hence find the value of `A^(-1)`

Answer» We have. `A=[{:(5,3),(-1,-2):}]`
`therefore A^(2)=A.A=[{:(5,3) ,(-1,-1) :}][{:(5,3),(-1,-2):}]`
`=[{:(25-3,15-6),(-5+2,-3+4):}]=[{:(22,9),(-3,1):}]`
`3A=3[{:(5,3),(-1,-2):}]=[{:(15,9),(-3,-6):}]`
and `7I=7[{:(22,9),(-3,1):}]-[{:(15,9),(-3,-6):}]-[{:(7,0),(0,7):}]`
`=[{:(22-15 -7,9-9-0),( -3 +3-0,1+ 6-7):}]`
` =[{:(0,0) ,(0,0):}]`
=0
Since, `A^(2)-3A-7I=0`
`rArr A^(-1)[A(A^(2))-3A-7I]=A^(-1)0`
`rArr A^(-1),A-3A^(-1)-7A^(-1)I=0`
`rArr IA-3I-7A^(-1)=0 [because A^(-1)A=I]`
`rArr A-3I-7A^(-1)=0 [because A^(-1)I=A^(-1)]`
`rArr -7A^(-1)=-A+3I`
`= [{:(-5,-3),(1,2):}]+[{:(3,0),(0,3):]=[{:(-2,-3),(1,5):}]`
`therefore A^(-1)=(-1)/(7)[{:(-2,-3),(1,5):}]`
286.

If A is a square matrix, using mathematical induction prove that (AT)n = (An)T for all n ϵ N.

Answer»

Given,

A is a square matrix. 

We need to prove that (AT)n = (An)T

We will prove this result using the principle of mathematical induction.

Step 1 : 

When n = 1, we have 

∴  (AT)1 = AT

Hence, 

The equation is true for n = 1.

Step 2 : 

Let us assume the equation true for some n = k, Where k is a positive integer.

⇒ (AT)k = (Ak)T

To prove the given equation using mathematical induction, we have to show that,

(AT)k+1 = (Ak+1)T.

We know,

(AT)k+1 = (Ak+1)T

⇒ (AT)k+1 = (Ak)T × AT

We have,

 (AB)T = BTAT.

⇒ (AT)k+1 = (Ak)T 

⇒ (AT)k+1 = (A1+k)T 

∴ (AT)k+1 = (Ak+1)T

Hence, 

The equation is true for n = k + 1 under the assumption that it is true for n = k.

Therefore, 

By the principle of mathematical induction, the equation is true for all positive integer values of n.

Thus,

(AT)n = (An)T for all n ϵ N.

287.

If `A=[[1,2,-3] , [5,0,2] , [1,-1,1]]` and `B=[[3,-1,2] , [4,2,5] , [2,0,3]]` then find matrix C such that `A+2C=B`

Answer» `2c=B-A=[{:(3,-1,2),(4,2,5),(2,0,3):}]-[{:(1,2,-3),(5,0,2),(1,-1,1):}]`
`=[{:(3-1,-1-2,2+3),(4-5,2-0,5-2),(2-1,0+1,3-1):}]`
`2C=[{:(2,-3,5),(-1,2,3),(1,1,2):}] rArrC=(1)/(2)[{:(2,-3,5),(-1,2,3),(1,1,1):}]`
`=[{:(1,-3//2,5//2),(-1//2,1,3//2),(1//2,1//2,1):}]`
288.

The statement are True or False:If A and B are any two matrices of the same order, then (AB)’ = A’B’.

Answer»

False

∵If A and B are any two matrices for which AB is defined, then

(AB)’=B’A’.

289.

The statement are True or False:If A, B and C are square matrices of same order, then AB = AC always implies that B = C.

Answer»

False

∵ If AB = AC => B=C

The above condition is only possible if matrix A is invertible

(i.e |A|≠0).

⇒ If A is invertible, then

⇒ A-1(AB)= A-1(AC)

⇒ (A-1A)B = (A-1A)C

⇒ IB=IC

⇒ B=C

290.

If `A`is a square matrix,using mathematical induction prove that `(A^T)^n=(A^n)^T`for all `n in N`.

Answer» Let `P(n): (A)^(n)=(A^(n))`
`therefore P(1):(A)^(1)=(A)`
`rArr A=ArArrP(1)` is true
Now, `P(k):(A)^(n)=(A^(k))`
where `k in N`
and `P(k+1) .(A)^(k+1)=(A^(k+1))`
Where `P(k+1)` is true whenever P (k) is true.
`therefore P(k+1)(A)^(k),(A)^(1)= [A^(k+1)]`
`(A^(k)) ,(A)=[A^(k+1)]`
`(A.A^(k))=[A^(k+1)]`
`(A^(k+1))=[A^(k+1)]`
291.

Matrices of different order cannot be subtracted.

Answer» True
Two matrices of same order can be subtracted.
292.

show that the matrix `A=[(2,-2,-4),(-1,3,4),(1,-2,-3)]` is idempotent.

Answer» `A^(2)=A.A=[(2,-2,-4),(-1,3,4),(1,-2,-3)]xx[(2,-2,-4),(-1,3,4),(1,-2,-3)]`
`=[{:(2.2+(-2).(-1)(-4).1),((-1).2+3.(-1)+4.1),(12+(-2).(-1)+(-3).1),(2.(-2)+(-2).3+(-4).(-2)),((-1).(-2)+3.3+4.(-2)),(1.(-2)+(-2).3+(-3).(-2)),(2.(-4)+(-2).4+(-4).(-3)),((-1).(-4)+3.4.+4.(-3)),(1.(-4)+(-2).4+(-3).(-3)):}`
`[(2,-2,-4),(-1,3,4),(1,-2,-3)]=A`
Hence the matrix A is idempotent.
293.

Two matrices are equal. If they have same number of rows and same number columns.

Answer» False
If two matrices have same number of rows and same number of columns, then they are said to be square matrix and it two square matrices have same elements in both the matrices only then they are called equal.
294.

Solve the following equations for X and Y : `2X-Y=[(3,-3,0),(3,3,2)], 2Y+X=[(4,1,5),(-1,4,-4)]`

Answer» Given `2X-Y=[{:(3,-3,0),(3,3,2):}]`
on multiplying both sides by 2, we get
`4x-2y=2[{:(3,-3,0),(3,3,2):}], 4x-2y=[{:(6,-6,0),(6,6,4):}]`
also given `x+2y= [{:(4,4,4),(-1,4,-4):}]`
Adding Eqs. (i) and (ii) , we get
`5X=[{:(6,-6,0),(6,6,4):}]+[{:(4,1,5),(-1,4,-4):}]`
`= [{:(6+4,-6+1,0+5),(6-1,6+4,4-4):}]=[{:(10,-5,5),(5,10,0):}]`
`X=(1)/(5)[{:(10,-5,5),(5,10,0):}]rArr X=[{:(2,-1,1),(1,2,0):}]`
putting the value of X in Eq. (ii), we get
`[{:(2,-1,1),(1,2,0):}]+2Y=[{:(4,1,5),(-1,4,-4):}]`
`rArr 2Y = [{:(4,1,5),(-1,4,-4):}]-[{:(2,-1,1),(1,2,0):}]`
`=[{:(4-2,1+1,5-1),(-1-1,4-2,-4-0):}]=[{:(2,2,4),(-2,2,-2):}]`
`Y = [{:(1,1,2),(-1,1,-2):}]`
Hence, `X = [{:(2,-1,1),(1,2,0):}] and Y= [{:(2,-1,1),(-1,1,-2):}]`
295.

If A = \(\begin{bmatrix} 0 & 0 \\[0.3em] 4 & 0 \\[0.3em] \end{bmatrix}\), find A16.

Answer»

Given : A = \(\begin{bmatrix} 0 & 0 \\[0.3em] 4 & 0 \\[0.3em] \end{bmatrix}\)

We will find A2,

A2 = A x A

\(\begin{bmatrix} 0 & 0 \\[0.3em] 4 & 0 \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 0 & 0 \\[0.3em] 4 & 0 \\[0.3em] \end{bmatrix}\)

⇒ A2 =  \(\begin{bmatrix} 0+0 & 0+0 \\[0.3em] 0+0 & 0+0 \\[0.3em] \end{bmatrix}\) 

⇒ A2 = 0

Hence, 

A16 = (A2)8 = (0)8 = 0

Hence A16 is a nill matrix.

296.

The value of x so that `[[1,x,1]][[1,3,2] , [0,5,1] , [0,3,2]][[1], [1], [x]]=0` is

Answer» we have `[1" " x" "1][(1,3,2),(0,5,1),(0,3,2)][(,1),(,1),(,x)]=0`
`rArr" "[1" "5x+6" "x+4][(,1),(,1),(,x)]=0`
`rArr" "[1+5x+6+x^(2)+4x]=0`
`or" "x^(2)+9x+7=0`
`therefore" " x= (-9pm sqrt((81-28)))/(2) implies x = (-9 pm sqrt(53))/(2)`
297.

If A `=[{:(0,1,0),(0,0,1),(p,q,r):}]`, show that ltbargt `A^(3)= pI+qA+rA^(2)`

Answer» we have, `A(2)=A.A`
`[(0,1,0),(0,0,1),(p,q,r)]xx[(0,1,0),(0,0,1),(p,q,r)]`
`[(0,0,1),(p,q,r),(pr,p+qr,q+r^(2))]`
`therefore (3)=A^(2)=[(0,1,1),(p,q,r),(pr,p+qr,q+r^(2))]xx[(0,1,0),(0,0,1),(p,q,r)]`
`=[(p,q,r),(pr,p+qr,q+r^(2)),(pq+r^(2)p,pr+q^(2)+qr^(2),p+2qr+r^(3))]" "therefore(i)`
and `pI+qA+rA^(2) =p[(1,0,0),(0,1,0),(0,0,1)]+q[(0,1,0),(0,0,1),(p,q,r)]+r[(0,0,1),(p,q,r),(pr,p+qr,q+r^(2))]`
`[(p+0+0,0+q+0,0+0+r),(0+0+pr,p+0+qr,0+q+r^(2)),(0+pq+pr^(2),0+q^(2)+pr+qr^(2),p+2qr+r^(3))]`
`[(p,q,r),(pr,p+qr,q+r^(3)),(pq+pr^(2),q^(2)+pr+qr^(2),p+2qr+r^(3))]" "therefore(ii)`
thus, from Eqs. (i) and (ii), we get `A = pI+qA+rA^(2)`
298.

If `A = [{:(1,2),(-2,3):}], B= [{:(2,1),(2,3):}] and C = [{:(-3,1),(2,0):}]`,verify that (AB)C = A(BC) and A(B+C)=AB+AC.

Answer» we have, AB `AB = [{:(1,2),(-2,3):}],xx [{:(2,1),(2,3):}]`
`=[{:(1.2+2.2,1.1+2.3),((-2).2+3.2,(-2).1+3.3):}]=[{:(6,7),(2,7):}]`
`BC =[{:(2,1),(2,3):}]xx[{:(-3,1),(2,0):}]=[{:(2*(-3)+1.2,2.1+1.0),(2*(-3)+3.2,2.1+3.0):}]`
`=[{:(-6+2,2+0),(-6+6,2+0):}]=[{:(-4,2),(0,2):}]`
`BC =[{:(2,1),(-2,3):}]xx[{:(-3,1),(2,0):}]=[{:(1*(-3)+2.2,,1.1+2.0),((-2)*(-3)+3.2,,(-2)1+3.0):}]`
`=[{:(-3+4,1+0),(6+6,-2+0):}]=[{:(1,1),(12,-2):}]` ltbegt `B+C =[{:(2,1),(2,3):}]+[{:(-3,1),(2,0):}]=[{:(2-3,1+1),(2+2,3+0):}]=[{:(-1,2),(4,3):}]`
Now, (AB)C `[{:(6,7),(2,3):}]xx[{:(-3,1),(2,0):}]=[{:(-18-3,6+0),(-6+14,2+0):}]`
`=[{:(-4,6),(8,2):}]`
A(BC)` =[{:(1,2),(-2,3):}]xx[{:(-4,2),(0,2):}]`
`=[{:(-4+0,2+4),(8+0,-4+6):}]=[{:(-4,2),(8,2):}]`
Thus, from Eqs. (i) and (ii), we get, (AB)C =A(BC)
Now, A(B+C) `=[{:(1,2),(-2,3):}]xx[{:(-1,2),(4,3):}]=[{:(-1+8,2+6),(2+12,-4+9):}]`
`=[{:(7,8),(14,5):}]`and AB+AC `=[{:(6,7),(2,7):}]xx[{:(1,1),(12,-2):}]=[{:(6+1,7+1),(2+12,7-2):}]`
`=[{:(7,8),(14,5):}]`
Thus, from Eqs, (iii) and (iv), we get
299.

If `A=[{:(" "1,-1," "2),(" "3," "2," "0),(-2," "0," "1):}],B=[{:(3,1),(0,2),(-2,5):}]" and "C=[{:(2,1,-3),(3,0,-1):}` then verify that `(AB)C=A(BC).`

Answer» We have
`AB=[{:(1,-1,2),(3,2,0),(-2,0,1):}][{:(3,1),(0,2),(-2,5):}]`
`=[{:(3-0-4,1-2+10),(9+0-0,3+4+0),(-6+0-2,-2+0+5):}]=[{:(-1,9),(" "9,7),(-8,3):}]`
`implies" "(AB)C=[{:(-1,9),(" "9,7),(-8,3):}][{:(2,1,-3),(3,0,-1):}]`
`=[{:(-2+27,-1+0,3-9),(18+21,9+0,-27-7),(-16+9,-8+0,24-3):}]=[{:(25,-1,-6),(39,9,-34),(-7,-8,21):}]`
Also, `BC=[{:(3,1),(0,2),(-2,5):}][{:(2,1,-3),(3,0,-1):}]`
`=[{:(6+3,3+0,-9-1),(0+6,0+0,0-2),(-4+15,-2+0,6-5):}]=[{:(9,3,-10),(6,0,-2),(11,-2,1):}]`
`implies" "A(BC)=[{:(1,-1,2),(3,2,0),(-2,0,1):}][{:(9,3,-10),(6,0,-2),(11,-2," "1):}]`
`=[{:(9-6+22,3-0-4,-10+2+2),(27+12+0,9+0-0,-30-4+0),(-18+0+11,-6+0-2,20-0+1):}]`
`=[{:(25,-1,-6),(39,9,-34),(-7,-8,21):}].`
Hence, `(AB)C=A(BC).`
300.

If A = \(\begin{bmatrix}4& 1 \\[0.3em]5& 8\\[0.3em]\end{bmatrix}\), show that (A + A’) is symmetric.A = [(4,1)(5,8)]

Answer»

Given A = \(\begin{bmatrix}4 &1 \\[0.3em]5 & 8 \\[0.3em]\end{bmatrix}\).

To Prove: A + A’ is symmetric.(Note:A matrix P is symmetric if P’ = P)

Proof: We will find A’,

A' = \(\begin{bmatrix}4 &1 \\[0.3em]5 & 8 \\[0.3em]\end{bmatrix}\)

Now let us take P = A + A’

\(\Rightarrow P'=P\)

Hence A + A’ is a symmetric matrix.