Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

3x-4y+2z=-1 2x+3y+5z=7 x+z=2A. 3B. 2C. 1D. `-2`

Answer» Correct Answer - A
152.

Given that matrix `A[(x,3,2),(1,y,4),(2,2,z)]`. If `xyz=60` and `8x+4y+3z=20`, then A(adj A) is equal toA. `[(64,0,0),(0,64,0),(0,0,64)]`B. `[(88,0,0),(0,88,0),(0,0,88)]`C. `[(68,0,0),(0,68,0),(0,0,68)]`D. `[(34,0,0),(0,34,0),(0,0,34)]`

Answer» Correct Answer - C
A adj. `A=|A| I`
`|A|=xyz-8x-3(z-8)+2(2-2y)`
`|A|=xyz-(8x+3z+4y)+28`
`=60-20+28=68`
`implies` A(adj. A)`=68 [(1,0,0),(0,1,0),(0,0,1)]=[(68,0,0),(0,68,0),(0,0,68)]`
153.

If a,b,c, and c, are the roots of `x^(2)-4x+3=0,x^(2)-8x+15=0` and `x^(2)-6x+5=0,` `[{:(a^(2),+c^(2),a^(2)+b^(2)),(b^(2),+c^(2),a^(2)+c^(2)):}]+[{:(2ac,-2ab),(-2bc,-2ac):}]`

Answer» `therefore" " x^(2)-4x+3=0`
`rArr" "(x-1)(x-3)=0 " " therefore x=1,3`
`x^(2)-8x+15=0`
`rArr " " (x-3)(x-5)=0 " "therefore x=3,5`
and `x^(2)-6x+5=0`
`rArr" " (x-5)(x-1)=0 " " therefore x=5,1`
it is clear that a = 1,3 and c=5
Now, `[(a^(2)+c^(2),a^(2)+b^(2)),(b^(2)+c^(2),a^(2)+c^(2))]+[(2ac,-2ab),(-2bc,-2ac)]`
`[(a^(2)+c^(2)+2ac,a^(2)+b^(2)-2ab),(b^(2)+c^(2)-2bc,a^(2)+c^(2)-2ac)]+[(2ac,-2ab),(-2bc,-2ac)]`
`[((1+5)^(2),(1-3)^(2)),((3-5)^(2),(1-5)^(2))]=[(36,4),(4,16)]`
154.

If `A=[-1 1 0-2]`, then prove that `A^2+3A+2I=Odot`Hence, find `Ba n dC`matrices of order 2 with integer elements, if `A=B^3+C^3dot`

Answer» `A=[(-1,1),(0,-2)]`
`implies A^(2)=[(-1,1),(0,-2)][(-1,1),(0,-2)]=[(1,-3),(0,4)]`
`implies A^(2)+3A+2I`
`=[(1,-3),(0,4)]+3[(-1,1),(0,-2)]+2[(1,0),(0,1)]=[(0,0),(0,0)]`
`implies A^(2)+3A+2I =O` (1)
From (1), `A^(3)+3A^(2)+2A=O`
`implies (A+I)^(3)-A=I^(3)`
`implies A=(A+I)^(3)-I^(3)=(A+I)^(3)+(-I)^(3)`
`implies B=A+I` and `C=-I`
`:. B=[(-1,1),(0,-2)]+[(1,0),(0,1)]=[(0,1),(0,-1)]`
and `C=[(-1,0),(0,-1)]`
155.

If A is an invertible matrix of order 3 and |A|= 5, then find |adj A|.

Answer»

|adj A| = |A|3 – 1 = 52 = 25

[∵| adj A| = |A|n – 1 , where n is order of A]

156.

Out of the following matrices, choose that matrix which is a scalar matrix :A. \(\begin{bmatrix} 0 &0 \\[0.3em] 0 & 0 \\[0.3em] \end{bmatrix}\) B. \(\begin{bmatrix} 0 &0& 0 \\[0.3em] 0 & 0 & 0 \\[0.3em] \end{bmatrix}\) C. \(\begin{bmatrix} 0 &0 \\[0.3em] 0 & 0 \\[0.3em] 0 & 0 \end{bmatrix}\) D. \(\begin{bmatrix} 0 \\[0.3em] 0 \\[0.3em] 0 \end{bmatrix}\)

Answer»

(A). \(\begin{bmatrix} 0 &0 \\[0.3em] 0 & 0 \\[0.3em] \end{bmatrix}\)

∵ Scalar Matrix is a matrix whose all off-diagonal elements are zero and all on-diagonal elements are equal.

\(\begin{bmatrix} 0 &0 \\[0.3em] 0 & 0 \\[0.3em] \end{bmatrix}\)

Option (A) is the answer.

157.

Prove that every square matrix can be uniquely expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

Answer» Let a be a square matric.
Then, `A=1/2 (A+A^(T))+1/2 (A-A^(T))`
Here, `P=1/2 (A+A^(T))` is a symmetric matrix and `Q=1/2 (A-A^(T))` is a skew-symmetric matrix.
Thus, matrix A can be expressed as sum of symmetric and skew-symmetric matrix.
158.

Solve the system of equations `x+2y+3z=1,2x+3y+2z=2 and 3x+3y+4z=1` with the help of matrix inversion.

Answer» we have
`x+2y+3z=1,2x+3y+2z=2 and 3x+3y+4z=1`
the given system of equation in the matrix form are written as below.
`[(1,2,3),(2,3,2),(3,3,4)]=[(,1),(,2),(,1)]`
` AX=B`
`rArr X=A^(-1)B`
where` " " A=[(1,2,3),(2,3,2),(3,3,4)],X=[(,x),(,y),(,z)]and B= [(,1),(,2),(,1)]`
`|A|=1(12-6)-2(8-6)+3(6-9)`
` =6-4-9=-7!=0`
` therefore A^(-1)` exixts and has unique solution.
Let C be the matrix of confactor of elements in `|A|.` Now, confactor along `R_(1)=6,-2,-3`
confactor along `R_(2)=1,-5,3`
and confacators along `R_(3)=-5,4,-1`
`therefore " " C=[(6,-2,-3),(1,-5,3),(-5,4,-1)]`
`therefore" " A=C^(T)`
`rArr " " adjA=[(6,-2,-3),(1,-5,3),(-5,4,-1)]=[(6,1,-5),(-2,-5,4),(-3,3,-1)]`
`rArr" " A^(-1)=(adjA)/(|A|)=-(1)/(7)[(6,1,-5),(-2,-5,4),(-3,3,-1)]`
`=[(-(6)/(7),-(1)/(7),(5)/(7)),((2)/(7),(5)/(7),-(4)/(7)),((3)/(7),-(3)/(7),(1)/(7))]`
from Eq. (i),`X=A^(-1)B`
`rArr " " [(,x),(,y),(,z)]=[(-(6)/(7),-(1)/(7),(5)/(7)),((2)/(7),(5)/(7),-(4)/(7)),((3)/(7),-(3)/(7),(1)/(7))][(,1),(,2),(,1)]=[(-(3)/(7)),((8)/(7)),(-(2)/(7))]`
Hence `x=-(3)/(7),y=(8)/(7) and z=-(2)/(7)` is the required solution.
159.

Determine whether the following equations will have non-trivial solutions, if so solve them: `x+3y-2z=0, 2x-y+4z=0,x-11y+14z=0`

Answer» We have, `x+3y-2z=0`
` 2x-y+4z=0`
`x-11y+14z=0`
The given system of equations in the matrix form are written as below.
`[(1,3,-2),(2,-1,4),(1,-11,14)][(,x),(,y),(,z)]=[(,0),(,0),(,0)]`
AX=O
where `A=[(1,3,-2),(2,-1,4),(1,-11,14)],X=[(,x),(,y),(,z)]and O=[(,0),(,0),(,0)]`
`therefore " " |A|=1(-14+44)-3(28-4)-2(-22+1)`
`=30-72+42=0`
and therefore the system has a non-trival solution, Now, we any write first two of the given equations
`x+3y=2z and 2x-y=-4z`
solving these equations in terms of z, we get
Putting `x=-(10)/(7)z-(8)/(7)z` in third equation of the given system,
we get , `LHS=-(10)/(7)z-(88)/(7)z=0=RHS`
Now, if `z=7k,then x=-10k and y=8k.`
Hence, `x=-10k,y=8k and z=7k` (where k is arbitary) are the requried solutions.
160.

If `[a b c1-a]`is an idempotent matrix and `f(x)=x-^2=b c=1//4`, then the value of `1//f(a)`is ______.

Answer» Correct Answer - 0.25
`[(a,b),(c,1-a)]` is an idempotent matrix.
`implies [(a,b),(c,1-a)]^(2)=[(a,b),(c,1-a)]`
or `[(a,b),(c,1-a)][(a,b),(c,1-a)]=[(a,b),(c,1-a)]`
or `[(a^(2)+bc,ab+b-ab),(ac+c-ac,bc+(1-a)^(2))]=[(a,b),(c,1-a)]`
or `[(a^(2)+bc,b),(c,bc+(1-a)^(2))]=[(a,b),(c,1-a)]`
or `a^(2)+bc=a`
`a-a^(2)=bc=1//4` (given)
`f(a)=1//4`
161.

If B is an idempotent matrix, and `A=I-B`, thenA. `A^(2)=A`B. `A^(2)=I`C. `AB=O`D. `BA=O`

Answer» Correct Answer - A::C::D
B is an idempotent matrix
`:. B^(2)=B`
Now, `A^(2)=(I-B)^(2)`
`=(I-B) (I-B)`
`=I-IB-IB+B^(2)`
`=I-B-B+B^(2)`
`=I-2B+B^(2)`
`=I-2B+B`
`=I-B`
`=A`
Therefore, A is idempotent. Again,
`AB=(I-B)B=IB-B^(2)=B-B^(2)=B^(2)=B^(2)-B^(2)=O`
Similarly, `BA=B(I-B)=BI-B^(2)=B-B=O`.
162.

If Z is an idempotent matrix, then `(I+Z)^(n)`A. `I+2^(n)Z`B. `I+(2^(n)-1) Z`C. `I-(2^(n)-1)Z`D. none of these

Answer» Correct Answer - B
Z is idempotent, then
`Z^(2)=Zimplies Z^(3), Z^(4), ..., Z^(n)=Z`
`:. (I+Z)^(n)=^(n)C_(0)I^(n)+ .^(n)C_(1)I^(n-1) Z+.^(n)C_(2)I^(n-2)Z^(2)+ +^(n)C_(n)Z^(n)`
`=^(n)C_(0)I+ .^(n)C_(1)Z+ .^(n)C_(2)Z+ .^(n)C_(3)Z+ +^(n) C_(n)Z`
`=I +(.^(n)C_(1)+.^(n)C_(2)+.^(n)C_(3)+ +.^(n)C_(n))Z`
`=I+(2^(n)-1)Z`
163.

If `A`is an idempotent matrix satisfying, `(I-0. 4 A)^(-1)=I-alphaA ,w h e r eI`is the unit matrix of the name order as that of `A ,`then th value of `|9alpha|`is equal to ________.

Answer» Correct Answer - 6
Given `A^(2)=A`
Now `I=(I-0.4A) (I-alphaA)`
`=I-IalphaA-0.4 AI+0.4 alpha A^(2)`
`=I-Aalpha-0.4A+0.4 alpha A`
`= I-A(0.4+alpha) + 0.4 alpha A`
`implies 0.4 alpha=0.4+alpha`
`implies alpha=-2//3`
`implies |9alpha|=6`
164.

the upper triangular matrix of the matrix `[{:(1,-1,2), (2," 1",3),(3, " 2",4):}]` isA. `[{:(1,-1," 2"), (0," 3",-1),(0," 0",(-1)/(3)):}]`B. `[{:(1,1,-2), (0, 3,-1),(0, 0,(-1)/(3)):}]`C. `[{:((-1)/(3)," 0",0), (" 3", -1,0),(-1, " 2",0):}]`D. `[{:(1," 1"," 2"), (0, -3,-1),(0, " 0",(-1)/(3)):}]`

Answer» Correct Answer - A
165.

Let `A=[3x^2 1 6x],B=[abc],a n dC=[(x+2)^2 5x^2 2x5x^2 2x(x+2)^2 2x(x+2)^2 5x^2]`be three given matrices, where `a ,b ,ca n dx in Rdot`Given that `f(x)=a x^2+b x+c ,`then the value of `f(I)`is ______.

Answer» Correct Answer - 7
We have `AB=[(3ax^(2),3bx^(2),3cx^(2)),(a,b,c),(6ax,6bx,6cx)]`
Now tr. `(AB)=` tr. (C)
`implies 3ax^(2)+b+6cx=(x+2)^(2)+2x+5x^(2) AA x in R` (Identity)
`implies 3ax^(2)+6cx+b=6x^(2)+6x+4`
`implies a=2, c=1, b=4`
166.

If A is a diagonal matrix of order `3xx3` is commutative with every square matrix of order `3xx3` under multiplication and trace (A)=12, then

Answer» Correct Answer - 64
A diagonal matrix is commutative with every square matrix if it is scalar matrix, so every diagonal element is 4. Therefore,
`|A|=64`
167.

Let `A=[a_("ij")]_(3xx3)` be a matrix such that `A A^(T)=4I` and `a_("ij")+2c_("ij")=0`, where `C_("ij")` is the cofactor of `a_("ij")` and `I` is the unit matrix of order 3. `|(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0` then the value of `lambda` is

Answer» Correct Answer - 0.4
Given that `A A^(T)=4I`
`implies |A|^(2)=4`
or `|A|= pm 2`
So `A^(T)=4A^(-1)=4 ("adj A")/(|A|)`
`implies [(a_(11),a_(21),a_(31)),(a_(12),a_(22),a_(32)),(a_(13),a_(23),a_(33))]=4/(|A|)[(c_(11),c_(21),c_(31)),(c_(12),c_(22),c_(32)),(c_(13),c_(23),c_(33))]`
Now `a_("ij")=4/(|A|) c_("ij")`
`implies -2c_("ij")=4/(|A|) c_("ij")" "("as "a_("ij")+2c_("ij")=0)`
`implies |A|=-2`
Now `|A+4I|=|A+A A^(T)|`
`=|A||I+A^(T)|`
`=-2|(I+A)^(T)|`
`=-2|I+A|`
`implies |A+4I|+2|A+I|=0`,
so on comparing, we get `5 lambda=2 implies lambda=2/5`
168.

If A=`[{:(1," 2",-1),(3,-2," 5"):}]` , then `R_(1) harr R_(2)` and `C_(1) rarr C_(1) + 2C_(3)` givenA. `[{:(-13,2,-5),(-1,2,-1):}]`B. `[{:(-1,-2,-1),(" 13",-2," 5"):}]`C. `[{:(" 13",-2," 5"),( -1, " 2", -1):}]`D. `[{:(2,-13,-5),(2,-1,-1):}]`

Answer» Correct Answer - C
169.

If `A=[(2,-3,3),(2,2,3),(3,-2,2)] ` then `C_(2)rarrC_(2)+2C_(1)` and then `R_(1)rarrR_(1)+R_(3)` givesA. `[(2,1,3),(2,6,3),(3,4,2)] `B. `[(2,-1,3),(2,4,3),(3,1,2)] `C. `[(5,5,5),(3,4,3),(2,6,3)] `D. `[(5,5,5),(2,6,3),(3,4,2)] `

Answer» Correct Answer - D
170.

`[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)]` then, `C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1)` givesA. `[(1,0,0),(3,-9,11),(-2,1,4)] =A [(-1,3,2),(0,-1,0),(0,0,-1)]`B. `[(1,0,0),(-3,-1,-4),(2,-9,11)] =A [(1,-3,2),(0,1,0),(0,0,1)]`C. `[(1,0,0),(-3,1,4),(-2,9,-11)] =A [(-1,3,2),(0,-1,0),(0,0,-1)]`D. `[(1,0,0),(-3,9,-11),(2,-1,4)] =A [(1,-3,2),(0,1,0),(0,0,1)]`

Answer» Correct Answer - D
171.

If A is a matrix of order n such that `A^(T)A=I` and X is any matric such that `X=(A+I)^(-1) (A-I)`, then show that X is skew symmetric matrix.

Answer» We have `X=(A+I)^(-1) (A-I)`
`:. X^(T)=((A+I)^(-1) (A-I))^(T)`
`=(A^(T)-I)(A^(T)+I)^(-1)` (1)
Now, `(A^(T)+I)(A^(T)-I)=(A^(T)-I) (A^(T)+I)`
`:. (A^(T)+I)^(-1) (A^(T)+I) (A^(T)-I) (A^(T)+I)^(-1)`
`=(A^(T)+I)^(-1) (A^(T)-I) (A^(T)+I) (A^(T)+I)^(-1)`
`implies (A^(T)-I) (A^(T)+I)^(-1)=(A^(T)+I)^(-1) (A^(T)-I)` (2)
From (1) and (2), we have
`X^(T)=(A^(T)+I)^(-1) (A^(T)-I)`
`=(A^(T)+A A^(T))^(-1) (A^(T)-A A^(T))`
`=(A^(T) (I+A))^(-1) (A^(T) (I-A))`
`=(I+A)^(-1) (A^(T))^(-1) (A^(T) (I-A))`
`=(I+A)^(-1) ((A^(-1))^(T)A^(T)) (I-A)`
`=(I+A)^(-1) (I-A)`
`=-(A+I)^(-1) (A-I)`
`=-X`
172.

If matric A is skew-symmetric matric of odd order, then show that tr. A = det. A.

Answer» Since A is skew-symmetric matrix, tr. `A=0`.
Also, order of A is odd, then det. `A=0`.
Thus, tr. `A=` det. A
173.

If `D=diag(d_1,d_2,d_3,…,d_n)" where "d ne 0" for all " I = 1,2,…,n," then " D^(-1)`is equal toA. DB. `diag(d_1^(-1)d_2^(-1),...,d_n^(-1))`C. InD. none of these

Answer» Correct Answer - B
174.

The value of x, for which the matrix A = \(\begin{bmatrix}e^{x - 2} &e^{7 + x} \\[0.3em]e^{2 + x}&e^{2x + 3}\end{bmatrix}\) is singular is …(a) 9(b) 8 (c) 7 (d) 6

Answer»

(b) 8

Given A is a singular matrix ⇒ |A| = 0

(i.e.) \(\begin{bmatrix}e^{x - 2} &e^{7 + x} \\[0.3em]e^{2 + x}&e^{2x + 3}\end{bmatrix}\)= 0

⇒ ex - 2.e2x + 3 – e2 + x.e7 + x = 0 

⇒ e3x + 1 – e9 + 2x = 0 

⇒ e3x + 1 = e9 + 2x 

⇒ 3x + 1 = 9 + 2x 

3x – 2x = 9 – 1 ⇒ x = 8

175.

If ` [(7, -6), (8, -7)]^2008 = [(7, -6), (8, -7)]^2010` then `[(7, -6), (8, -7)]^2009` isA. `({:(7, -6), (8, -7):})^(2008) + ({:(7, -6), (8, -7):})^(2010)`B. `(1)/(2) [({:(7, -6), (8, -7):})^(2010) -({:(7, -6), (8, -7):})^(2008)]`C. `({:(1, 0), (0, 1):})`D. `({:(7, -6), (8, -7):})`

Answer» Correct Answer - D
(i) Let `A =({:(7, -6), (8, -7):})`
(ii) Calculate `A^(2)`
176.

If `A = ({:(5, 5), (0, 0):})({:(0, 0), (5, 5):}) " and " A^(n) = ({:(5^(200), 5^(200)), (0, 0):})`, then find n.A. 100B. 50C. 25D. None of these

Answer» Correct Answer - A
(i) Simplify the matrix A.
(ii) Find `A^(2), A^(3),….., A^(n)`.
177.

If `A = ({:(2, 3), (6, 9):})`, then find |A|.

Answer» Correct Answer - A
Given `A = [{:(2, 3), (6, 9):}], |A| = |{:(2, 3), (6, 9):}| = (18-18)`
`=0 ( therefore |{:(a, b), (c, d):}| = (ad-bc)).`
178.

If `A = [{:(x^(2), y^(2)), ("log"_(1024)a, -9):}],a =16^(25) " and if " A = A^(-1), " then "[{:(x^(2), y), (1, x^(2) + y):}]^(-1)` = _____.A. `(1)/(65)[{:(7, 2),(-1, 9):}]`B. `(1)/(65)[{:(7, -2),(1, 9):}]`C. `(1)/(65)[{:(7, 2),(1, 9):}]`D. `(1)/(65)[{:(9, 2),(-1, 7):}]`

Answer» Correct Answer - A
(i) Put `a = 16^(25) " in log"_(1024)` a and simplify.
(ii) Then, find x and y values using the relation `A = A^(-1)`.
(iii) Find the inverse of the given matrix.
179.

The number of integral values of x for which the determinant of the matrix `[(5x+14,-2),(7x+8,x)]` is alwats less than 1 isA. 3B. 4C. 5D. 6

Answer» Correct Answer - B
(i) Find the deteminant of matrix.
(ii) Solve the inequation.
180.

State whether the statements is true or false: AB = AC ⇒ B = C for any three matrices of same order.

Answer»

Answer is False

181.

In the matrix A = \(\begin{bmatrix} a&1&x \\[0.3em] 2&\sqrt3&x^2 - y \\0&5&-\frac{2}{5} \\[0.3em] \end{bmatrix}\), write(i) The order of the matrix A(ii) The number of elements(iii) Write elements a23, a31, a12

Answer»

For the given matrix,

(i) The order of the matrix A is 3 x 3.

(ii) The number of elements of the matrix = 3 x 3 = 9

(iii) Elements: a23 = x2 – y, a31 = 0, a12 = 1

182.

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Answer»

We know that in mathematics, a matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.

The number of rows and columns that a matrix has is called its order or its dimension. By convention, rows are listed first; and columns second.

We are given with a matrix that has 28 elements.

We know that,

If a matrix has mn elements, then the order of the matrix can be given by m × n, where m and n are natural numbers.

Therefore, for a matrix having 28 elements, that is, mn = 28, possible orders can be found out as follows:

∵ mn = 28

Take m and n to be any number, such that, when it is multiplied it gives 28.

So, let m = 1 and n = 28.

Then, m × n = 1 × 28 (=28)

⇒ 1 × 28 is a possible order of the matrix having 28 elements.

Take m = 2 and n = 14.

Then, m × n = 2 × 14 (=28)

⇒ 2 × 14 is a possible order of the matrix having 28 elements.

Take m = 4 and n = 7.

Then, m × n = 4 × 7 (=28)

⇒ 4 × 7 is a possible order of the matrix having 28 elements.

Take m = 7 and n = 4.

Then, m × n = 7 × 4 (=28)

⇒ 7 × 4 is a possible order of the matrix having 28 elements.

Take m = 14 and n = 2.

Then, m × n = 14 × 2 (=28)

⇒ 14 × 2 is a possible order of the matrix having 28 elements.

Take m = 28 and n = 1.

Then, m × n = 28 × 1 (=28)

⇒ 28 × 1 is a possible order of the matrix having 28 elements.

Thus, the possible orders of the matrix having 28 elements are

1 × 28, 2 × 14, 4 × 7, 7 × 4, 14 × 2 and 28 × 1

If the matrix had 13 elements, then also we find the possible order in same way.

Here, mn = 13.

Take m and n to be any number, such that, when it is multiplied it gives 13.

Take m = 1 and n = 13.

Then, m × n = 1 × 13 (=13)

⇒ 1 × 13 is a possible order of the matrix having 13 elements.

Take m = 13 and n = 1.

Then, m × n = 13 × 1 (=13)

⇒ 13 × 1 is a possible order of the matrix having 13 elements.

Thus, the possible orders of the matrix having 13 elements are 1 × 13 and 13 × 1

183.

If `P=[2" "2" "1],Q=[1" "2" "3],R={:[(1),(2),(3)]:},andS={:[(3),(2),(1)]:}`, then PR+QS=A. [19]B. [10]C. [15]D. [12]

Answer» Correct Answer - A
184.

Given `A={:[(2,-3),(4,5)]:},B={:[(7,9),(8,1)]:}andC={:[(-2,3),(1,-5)]:}`, find (AB)C and A(BC). What do you notice ?

Answer» Correct Answer - `{:[(35,-105),(-95,-1)]:}`,
185.

Match the following lists :

Answer» `a rarr q, b rarr p, c rarr s, d rarr r`.
a. `|A|=2implies |2A^(-1)|=2^(3)//|A|=4`
b. `|"adj (adj (2A))"|=|2A|^(4)=2^(12)|A|^(4)=2^(12)//2^(12)=1`
c. `(A+B)^(2)=A^(2)+B^(2)`
`implies AB+BA=O`
`implies |AB|=|-BA|=-|BA|=-|AB|`
`implies |AB|=0`
`implies |B|=0`
d. Product ABC is not defined.
186.

If `A-B={:[(18,1,-9),(11,12,2)]:}andA+3B={:[(26,1,3),(-13,-16,10)]:}`, then find A.A. `{:[(20,1,6),(5,5,4)]:}`B. `{:[(20,1,6),(-5,-5,4)]:}`C. `{:[(20,1,-6),(5,5,4)]:}`D. `{:[(20,1,-6),(-5,-5,-4)]:}`

Answer» Correct Answer - C
`A-B={:[(18,1,-9),(11,12,2)]:}` (1)
`A+3B={:[(26,1,3),(-13,-16,10)]:}` (2)
`3xx(1)rArr3A-3B={:[(54,3,-27),(33,36,6)]:}` (3)
Add Eqs. (2) and (3), we get
A=3B+3A-3B
`={:[(26,1,3),(-13,-16,10)]:}+{:[(54,3,-27),(33,36,6)]:}`
`4A={:[(80,4,-24),(20,20,16)]:}`
`A{:[(20,1,-6),(5,5,4)]:}`.
187.

The number of all possible matrices of order 3 x 3 with each entry 0 or 1 is: (A) 27 (B) 18 (C) 81 (D) 512

Answer»

Answer is (D)

There are 9 elements in the matrix. Each elements can be placed in 2 ways is all possible matrices of order 3 x 3 is 29 = 512

188.

If `A= [(1,1,3),(5,2,6),(-2,-1,-3)]` then find `A^(14)+3A-2I`

Answer» `[(1,1,3),(5,2,6),(-2,-1,-3)][(1,1,3),(5,2,6),(-2,-1,3)]= [(1+5-6, 1+2-3, 3+6-9),(5+10-12, 5+4-6,15+12-18),(-2-5+6, -2-2+3, -6-6+9)]`
`= [(0,0,0),(3,3,9),(-1,-1,-3)]`
`A^4 = A^2 xx A^2 = [(0,0,0),(3,3,9),(-1,-1,-3)][(0,0,0),(3,3,9),(-1,-1,-3)]`
`= [(0,0,0),(0,0,0),(0,0,0)]`
so, `A^14 + 3A-2I = 3[(1,1,3),(5,2,6),(-2,-1,-3)]- 2[(1,0,0),(0,1,0),(0,0,1)]`
`= [(3,3,9),(15,10,18),(-6,-3,-9)]-[(2,0,0),(0,2,0),(0,0,2)]`
`= [(1,3,9),(15,8,18),(-6,-3,-11)]`
Answer
189.

If P = \(\begin{bmatrix} -3 & 1 \\[0.3em] 2 & 5\end{bmatrix},\) Q = \(\begin{bmatrix} 1 & 6 \\[0.3em] -4 & 0\end{bmatrix}\) and R =  \(\begin{bmatrix} 4 & -1 \\[0.3em] 2 & 3\end{bmatrix}\) find the value of 4P – 2Q + 3R.

Answer»

4P - 2Q + 3R

= 4\(\begin{bmatrix}-3 & 1 \\[0.3em] 2&5\end{bmatrix}\) - 2\(\begin{bmatrix}1 & 6 \\[0.3em] -4 & 0 \end{bmatrix}\) + 3\(\begin{bmatrix}4 & -1 \\[0.3em] 2&3\end{bmatrix}\)

\(\begin{bmatrix}-12 & 4 \\[0.3em] 8&20\end{bmatrix}\) - \(\begin{bmatrix}2 & 12 \\[0.3em] 8&0\end{bmatrix}\) + \(\begin{bmatrix}12 & -3 \\[0.3em] 6&9\end{bmatrix}\)

\(\begin{bmatrix}-12-2+12 &4-12-3 \\[0.3em]8-(-8)+6&20-0+9\end{bmatrix}\) = \(\begin{bmatrix}-2 & -11 \\[0.3em] 22&29\end{bmatrix}\)

190.

If `A={:[(-1,2),(3,4)]:}andB=A^(T)," then "A^(T)+B^(T)=`A. `{:[(-3,4),(6,8)]:}`B. `{:[(-2,0),(0,4)]:}`C. `{:[(1,0),(0,1)]:}`D. `{:[(-2,5),(5,8)]:}`

Answer» Correct Answer - D
Find `A^(T)andB^(T)` and add the two matrices.
191.

If A, B and C are three matrices of order `3xx4,3xx2andaxx2` respectively, then find the order of matrix `A^(T)BC^(T)`.

Answer» Correct Answer - `4xx1`
192.

If `X={:[(1,2),(3,2)]:}andX^(2)-3X=`A. IB. 3IC. 4ID. `-4I`

Answer» Correct Answer - C
(i) Evaluate `X^(2),3X`.
(ii) `X^(2)-3XrArrX(X-3)`.
193.

If X and Y are two matrices such that `X+Y={:[(4,-3),(5,2)]:}andX-Y={:[(6,-5),(3,2)]:}`, then find the matrices X and Y.

Answer» Correct Answer - `X={:[(5,-4),(4,2)]:},Y={:[(-1,1),(1,0)]:}`
194.

If `A-B^(T){:[(2,3,4,-1),(0,3,-1,5)]:}andA^(T)+B={:[(5,3),(1,0),(2,5),(3,-1)]:}`, then find the matrices A and B.

Answer» Correct Answer - `A={:[(7//2,2,3,1),(3//2,3//2,2,2)]:}`
`B={:[(3//2,3//2),(-1,-3//2),(-1,3),(2,-3)]:}`
195.

If `A={:[(-1,3),(4,5)]:}`, then find (A-I)(A-2I).

Answer» Correct Answer - `(A-I)(A-2I)={:[(18,3),(4,24)]:}`
196.

If `A={:[(7,0),(0,7)]:}," then find "A^(n)(ninN)` ________ .A. `{:[(7,0),(0,7)]:}`B. `{:[(7^(n),0),(0,7^(n))]:}`C. `{:[(7,7^(n)),(0,7^(n))]:}`D. `{:[(0,7^(n)),(7^(n),0)]:}`

Answer» Correct Answer - B
Given `A={:[(7,0),(0,7)]:}`
`A-7={:[(1,0),(0,1)]:}`
`A=7I`
`A^(n)=7^(n)I^(n)`
`A^(n)=7^(n)I(becauseI^(n)=I)`
`=7^(n){:[(1,0),(0,1)]:}`
`={:[(7^(n),0),(0,7^(n))]:}`.
197.

If `A={:[(1,2),(3,4)]:}andB={:[(5,6),(7,8)]:}`, then find 3A+7B.

Answer» Correct Answer - `{:[(38,48),(58,68)]:}`
198.

`A={:[(-5,-3,4),(3,2,-4)]:}andB={:[(-4,5,-2),(3,1,5)]:}`, then find X such that 3A-2B+X=0.A. `{:[(7,19,16),(3,4,22)]:}`B. `{:[(-7,-19,16),(3,4,22)]:}`C. `{:[(7,19,-16),(-3,-4,22)]:}`D. `{:[(7,19,16),(-3,-4,22)]:}`

Answer» Correct Answer - C
(i) X=2B-3A
(ii) `3A-2B+X=0rArrX=2B-3A`.
(iii) Multiply each element of B with 2 to get 2B.
(iv) Multiply each element of A with 3 to get 3B.
199.

If `{:A=[(3,1),(-1,2)]:}," then "A^(-2)=`A. `{:[(8,-5),(-5,3)]:}`B. `{:[(8,-5),(5,3)]:}`C. `{:[(8,-5),(-5,-3)]:}`D. `{:[(8,5),(-5,3)]:}`

Answer» Correct Answer - d
200.

From the matrix equation AB = AC we can conclude B = C provided thatA. A is singularB. A is non-singular.C. A is symmetric.D. A is square

Answer» Correct Answer - B