Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If `[{:(2alpha+1," "3beta),(0,beta^(2)-5beta):}]=[{:(beta+3,beta^(2)+2),(0,-6):}]` find the equation whose roots are alpha and beta.

Answer» the given matrices wil be equal, iff
`2alpha+1=alpha+3impliesalpha=2`
`3beta=beta^(2)+2impliesbeta^(2)-3beta+2=0`
:. `beta=1,2 and beta^(2) -5beta=-6`
implies ` beta^(2) -5beta+6=0`
:. `beta=2,3`
from Eqs. (i) and (ii), we get `beta=2`
rArr `alpha=2, beta=2`
`therefore` "Required equation is `x^(2)-(2+2)x+2.2=0`
`x^(2) -4x+4=0`
52.

If `P=[(secalpha,tanalpha),(-cotalpha,cosalpha)] and Q=[(-cosalpha,tanalpha),(-cotalpha,-secalpha)]` , than `2P^-1+Q=`A. `[{:("cos"alpha, -"tan"alpha), ("cot"alpha, "sec"alpha):}]`B. `[{:(0, 0), (0, 0):}]`C. `[{:(-"cos"alpha, "tan"alpha), (-"cot"alpha, -"sec"alpha):}]`D. `[{:(1, 0), (0, 1):}]`

Answer» Correct Answer - B
Find `P^(-1)` and then proceed.
53.

A square non-singular matrix A satisfies `A^2-A+2I=0," then "A^(-1)`=A. `I-A`B. `(1)/(2) (I-A)`C. `(1)/(2)(I+A)`D. `I+A`

Answer» Correct Answer - b
54.

If `[[cos theta,sin theta],[-sin theta,cos theta]], ` then `lim _(n rarr infty )A^(n)/n ` is (where `theta in R`)A. a zero matrixB. an identity matrixC. `[[0,1],[-1,0]]`D. `[[0,1],[0,-1]]`

Answer» Correct Answer - A
`because A = [[cos theta , sin theta],[-sin theta, cos theta ]]`
`therefore A^(n) = [[cos ntheta , sin ntheta],[-sin ntheta, cos ntheta ]]`
`rArr A^(n)/n = [[lim_(nrarr infty)(cos ntheta)/n , lim_(nrarr infty)(sin ntheta)/n],[-lim_(nrarr infty)(sin ntheta)/n, lim_(nrarr infty)(cos ntheta)/n ]]= [[0,0],[0,0]]`
= a zero matirx `[because - 1 lt sin infty 1 and -1 lt cos infty lt 1]`
55.

The inverse of matrix `A=[[2, -3], [-4, 2]]` isA. `(-1)/(8)[(2,3),(4,2)]`B. `(-1)/(8)[(3,2),(2,4)]`C. `(1)/(8)[(2,3),(4,2)]`D. `(1)/(8)[(3,2),(2,4)]`

Answer» Correct Answer - a
56.

If `A`satisfies the equation `x^3-5x^2+4x+lambda=0`, then `A^(-1)`exists if`lambda!=1`(b) `lambda!=2`(c) `lambda!=-1`(d) `lambda!=0`A. `lambda!=1`B. `lambda!=2`C. `lambda!=-1`D. `lambda!=0`

Answer» Correct Answer - D
57.

If a square matrix A is involutory, then `A^(2n+1)` is equal toA. IB. AC. `A^(2) `D. `(2n +1) A`

Answer» Correct Answer - B
`because A^(2n+1) = (A^(2))^(n) cdot A = (I)^(n) cdot A = IA = A`
58.

If A is a `2xx2` matrix such that `A^(2)-4A+3I=O`, then prove that `(A+3I)^(-1)=7/24 I-1/24 A`.

Answer» We have, `A^(2)-4A+3I=O`
`implies A(A+3I)-7A+3I=O`
`implies A(A+3I)-7(A+3I)=-24 I`
`implies (A+3I) (A-7I)=-24 I`
`implies (A+3I) (7/24 I-A/24)=I`
`implies (A+3 I)^(-1) =7/24 I- A/24`
59.

`A`is an involuntary matrix given by`A=[0 1-1 4-3 4 3-3 4]`, then the inverse of `A//2`will be`2A`b. `(A^(-1))/2`c. `A/2`d. `A^2`A. 2AB. `A^(-1)/(2)`C. `(A)/(2)`D. `A^(2)`

Answer» Correct Answer - A
60.

The matrix `A=[-5-8 0 3 5 0 1 2-]`isa. idempotent matrixb. involutory matrixc. nilpotent matrixd. none of these

Answer» `A^(2)=AxxA[(-5,-8,0),(3,5,0),(1,2,-1)]xx[(-5,-8,0),(3,5,0),(1,2,-1)]`
`=[(25-24+0,40-40+0,0+0+0),(-15+15+0,-24+25+0,0+0+0),(-5+6-1,-8+10-2,0+0+1)]`
`=[(1,0,0),(0,1,0),(0,0,1)]`
Hence, the given matrix a is involutory.
61.

`A`is an involuntary matrix given by`A=[0 1-1 4-3 4 3-3 4]`, then the inverse of `A//2`will be`2A`b. `(A^(-1))/2`c. `A/2`d. `A^2`A. `2A`B. `A^(-1)/2`C. `A/2`D. `A^(2)`

Answer» Correct Answer - A
A is involuntary. Hence,
`A^(2)=I implies A=A^(-1)`
Also, `(kA)^(-1)=1/k (A)^(-1)`
or `(1/2 A)^(-1) =2(A)^(-1)` or `2A`
62.

If `A` is a skew symmetric matrix, then `B=(I-A)(I+A)^(-1)` is (where `I` is an identity matrix of same order as of `A`)A. idempotent matrixB. symmetric matrixC. orthogonal matrixD. none of these

Answer» Correct Answer - C
`(c )` `B=(I-A)(I+A)^(-1)`
`impliesB^(T)=(I+A^(T))^(-1)(I-A^(T))`
`=(I-A)^(-1)(I+A)`
`impliesB B^(T)=(I-A)(I+A)^(-1)(I-A)^(-1)(I+A)`
`=(I-A)(I-A)^(-1)(I+A)^(-1)(I+A)`
`=I`
(As `(I-A).(I+A)=(I+A)(I-A)`)
63.

For two unimobular complex numbers `z_(1)` and `z_(2)`, find `[(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]^(-1)`

Answer» Correct Answer - `[(1//2,0),(0,1//2)]`
`[(bar(z)_(1),-z_(2)),(bar(z)_(2),z_(1))]^(-1) [(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))]`
`=([(z_(1),z_(2)),(-bar(z)_(2),bar(z)_(1))][(bar(z)_(1), -z_(2)),(bar(z)_(2),z_(1))])^(-1)`
`=[(z_(1)bar(z)_(1)+z_(2)bar(z)_(2),0),(0,z_(2)bar(z)_(2)+z_(1)bar(z)_(1))]^(-1)`
`=[(|z_(1)|^(2)+|z_(2)|^(2),0),(0,|z_(1)|^(2)+|z_(2)|^(2))]^(-1)`
`=[(2,0),(0,2)]^(-1)=[(1//2,0),(0,1//2)]`
64.

Let `aa n db`be two real numbers such that `a >1,b > 1.`If `A=(a0 0b)`, then `(lim)_(nvecoo)A^(-n)`isa. unit matrix b. nullmatrixc. `2l`d. none of theseA. unit matrixB. null matrixC. `2I`D. none of these

Answer» Correct Answer - B
`A=((a,0),(0,b))`
`implies A^(2)=((a,0),(0,b))((a,0),(0,b))=((a^(2),0),(0,b^(2)))`
`implies A^(3)=((a^(2),0),(0,b^(2))) ((a,0),(0,b))=((a^(3),0),(0,b^(3)))`
`implies A^(n)=((a^(n),0),(0,b^(n)))`
`implies (A^(n))^(-1) =1/(a^(n)b^(n)) ((b^(n),0),(0,a^(n)))=((a^(-n),0),(0,b^(-n)))`
`implies lim_(n rarr oo) (A^(n))^(-1)=((0,0),(0,0))` as `a gt 1` and `b gt 1`
65.

If s is a real skew-symmetric matrix, the show that `I-S` is non-singular and matrix `A= (I+S) (I-S) ^(-1) = (I-S) ^(-1) (I+S) ` is orthogonal.A.B.C.D.

Answer» `because ` S is skew-symmetric matrix
`therefore S^(T) =-S " "…(i) `
Frist we will show that `I-S` is non-singular. The equality
`abs(I-S) = 0 rArr I` is a characteristic root of the matrix S but this is
not possile, for a real skew-symmetric matrix can have zero
or purely imaginary numbers as its characterixtic roots. Thus,
`abs(I-S) ne 0` i.e. `I-S` is non-singular.
We have,
`A^(T) = {(I+S)(I-S)^(-1)}^(T) = {(I-S)^(-1) (I+S)}^(T)`
` = ((I+S)^(-1))^(T)(I+S)^(T) = (I+S)^(T) {(I+S)^(-1)}^(T)`
` = ((I-S)^(T))^(-1)(I+S)^(T) = (I+S)^(T) {(I-S)^(T)}^(-1)`
` = (I^(T)-S^(T))^(-1)(I^(T)+S^(T)) = (I^(T)+S^(T)) (I^(T)-S^(T))^(-1)`
`= (I+S)^(-1) (I-S) = (I-S) (I+S)^(-1)` [from Eq. (i)]
`therefore A^(T)A= (I+S)^(-1) (I-S) (I+S) (I-S)^(-1)`
`= (I-S)(I+S)^(-1) (I-S)^(-1) (I+S)`
`= (I+S)^(-1)(I+S) (I-S) (I-S)^(-1) `
`= (I-S) (I-S)^(-1)(I+S)^(-1)(I+S) `
`=Icdot I = Icdot I=I=I`
Hence, A is orthogonal.
66.

If A is any square matrix such that `A+I/2` and `A-I/2` are orthogonal matrices, thenA. A is orthogonalB. A is skew- symmetric matrix of even orderC. `A^(2)= 3/4 I`D. None of these

Answer» Correct Answer - B
`because (A-1/2I)(A-1/2)^(T)=I ` ...(i)
and `because (A+1/2I)(A+1/2)^(T)=I ` ...(ii)
`rArr (A-1/2I)(A^(T)-1/2)=I `
and `rArr (A+1/2I)(A^(T)+1/2)=I `
`rArr A + A^(T) = 0 ` [subtracting the two results]
` rArr A^(T) = - A`
`therefore` A is skew-symmetric matrix.
From first result, we get
`A A ^(T) = 3/4 I`
`rArr A^(2) = - 3/4 I`
`therefore abs(A^(2) ) = abs(-3/4I)`
`therefore abs(A)^(2) = (-3/4)^(n)`
`rArr n` is even.
67.

Prove that inverse of a skew-symmetric matrix (if it exists) is skew-symmetric.

Answer» A is skew-symmetric, then `A^(T)=-A`.
`:. (A^(-1))^(T)=(A^(T))^(-1)=(-A)^(-1) =-A^(-1)`
Thus, `A^(-1)` is skew-symmetric.
68.

If `A` is a skew symmetric matrix, then `B=(I-A)(I+A)^(-1)` is (where `I` is an identity matrix of same order as of `A`)

Answer» We have `A=(I+S)(I-S)^(-1)`
`:. A^(T)=[(I-S)^(-1)]^(T) (I+S)^(T)=[(I-S)^(T)]^(-1) (I+S)^(T)`
But `(I-S)^(T)=I^(T)-S^(T)=I +S" "("as "S^(T)=-S)`
and `(I+S)^(T)=I^(T)+S^(T)=I-S`
`:. A^(T)=(I+S)^(-1) (I-S)`
`:. A^(T)A=(I+S)^(-1) (I-S) (I+S) (I-S)^(-1)`
`=(I+S)^(-1) (I+S) (I-S) (I-S)^(-1)`
`=I`
Thus, a is orthogonal.
69.

In which of the following type of matrix inverse does not exist always?a. idempotent b. orthogonalc. involuntary d. none of theseA. idempotentB. orthogonalC. involuntaryD. none of these

Answer» Correct Answer - A
For involuntary matrix,
`A^(1)=I`
`implies |A^(2)|=|I|implies |A|^(2)=1 implies |A|= pm 1`
For idempotent matrix,
`A^(2)=A`
`implies |A^(2)|=|A|implies |A|^(2)=|A|=0` or 1
for orthogonal matrix,
`A A^(T)=I`
`implies |AA^(T)|=|I|implies|A||A^(T)|=1implies |A|^(2)=1 implies |A|= pm 1`
Thus, if matrix A is idempotent it may not be invertible.
70.

If nth-order square matrix A is a orthogonal, then `|"adj (adj A)"|` isA. always -1 if n is evenB. always 1 if n is oddC. always 1D. none of these

Answer» Correct Answer - B
Since A is orthogonal, we have
`A A^(T)=I`
or `|A A^(T)|=1`
or `|A^(2)|=1`
or `|A|= pm 1`
Now `|"adj. (adj. A)"|=|A|^((n-1)^(2))`
71.

If a square matrix A is orthogonal as well as symmetric, thenA. A is involutory matrixB. A is idempotent matrixC. A is a diagonal matrixD. none of these

Answer» Correct Answer - A
72.

If A is a square matrix such that `A(adj A)=[(4,0,0),(0,4,0),(0,0,4)]` , then `(|adj (adj A)|)/(|adj A|)` is equal toA. 256B. 16C. 32D. 64

Answer» Correct Answer - b
73.

If square matrix a is orthogonal, then prove that its inverse is also orthogonal.

Answer» We have `A A^(T)=I`
Now, `A^(-1) (A^(-1))^(T)=A^(-1) (A^(T))^(-1)=(A^(T)A)^(-1)=I^(-1)=I`
Thus, `A^(-1)` is orthonal.
74.

Let `A=[a_("ij")]` be a matrix of order 2 where `a_("ij") in {-1, 0, 1}` and adj. `A=-A`. If det. `(A)=-1`, then the number of such matrices is ______ .

Answer» Correct Answer - 12
adj. `A=-A`
`implies A.` adj. `A=-A^(2)=|A|I=-I`
`implies A^(2)=I`
Let `A=[(a,b),(c,d)]`
`implies A^(2)=[(a^(2)+bc,(a+d)b),((a+b)c,d^(2)+bc)]=[(1,0),(0,1)]`
on comparing both sides, we get
`a^(2)+bc=1, (a+d)b=0, (a+d)c=0, d^(2)+bc=1`
Case I : When `(a+d) ne 0`
`implies b=0=c` and `a=1, d=1`
or `a=-1, d=-1`
`:. A=[(1,0),(0,1)]` or `[(-1,0),(0,-1)]`
But both are rejected as det. `A=-1` (given)
Case II : When `(a+d)=0 implies d=-a`
(i) If `a=1, d=-1 implies bc =0`
For `b=0, c` can be `-1, 0, 1`
For `b=1, c` can be 0 only.
For `b=-1, c` can be 0 only.
So, 5 matrices are possible.
(ii) If `a=-1, d=1`
`implies bc=0`
For `b=0, c=-1, 0, 1`.
For `b=1, c=0` only.
For `b=-1, c=0` only.
So, 5 matrices are possible.
(iii) If `a=0, d=0`
`implies bc=1`
`:. A=[(0,1),(1,0)]` or `A=[(0,-1),(-1,0)]`
So, 2 matrices are possible.
Therefore, total number of matrices is 12.
75.

Let `A=[a_("ij")]_(3xx3), B=[b_("ij")]_(3xx3)` and `C=[c_("ij")]_(3xx3)` be any three matrices, where `b_("ij")=3^(i-j) a_("ij")` and `c_("ij")=4^(i-j) b_("ij")`. If det. `A=2`, then det. `(BC)` is equal to _______ .

Answer» Correct Answer - 4
det. `B=|(a_(11),a_(12)/3,a_(13)/3^(2)),(3a_(21),a_(22),a_(23)/3),(9a_(32),3a_(32),a_(33))|=3xx9|(a_(11),a_(12)/3,a_(13)/3^(2)),(a_(21),a_(22)/3,a_(23)/9),(a_(32),a_(32)/3,a_(33)/9)|`
(Dividing `C_(2)` by 3 and `C_(3)` by 9)
`=|(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(32),a_(32),a_(33))|`
`="det. "A=2`
Similarly, det, `C=` det. `A=2`
`:.` det. `(BC)=` (det. B) (det. C) `=2xx2=4`
76.

If `A=[(costheta,-sintheta),(sintheta,costheta)]` find the values of `theta` satisfying the equation `A^(T)+A =" "I _(2).`

Answer» we have, `A^(T) " " A " " I_(2)` lt brgt `rArrA[(cos0,sin0),(-sin0,cos0)]+[(cos0,-sin0),(sin0,cos0)]=[(1,0),(0,1)]`
`rArr[(2cos0,0),(0,2cos0)]=[(1,0),(0,1)]`
`rArr cos0 = (1)/(2) = cos((pi)/(3)) rArr 0 = 2npipm (pi)/(3), n in`
77.

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det ©=5, then find the value of 10det `(A^(3)B^(2)C^(-1)).`

Answer» Given , `|A|=2,|B|=3 and |c|=5.`
Now, 10det `(A^(3)B^(2)C^(-1))=10xx|A^(3)B^(2)C^(1)|`
`=10xx|A^(3)|xx|B^(2)|xx|C^(-1)|=10xx|A^(3)|xx|B^(2)|xx|C|^(-1)`
`=(10xx|A^(3)|xx|B^(2)|)/(|C|)=(10xx2^(3)xx3^(2))/(5)=144`
78.

If nth-order square matrix A is a orthogonal, then `|"adj (adj A)"|` isA. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.C. Statement -1 is True, Statement -2 is False.D. Statement -1 is False, Statement -2 is True.

Answer» Correct Answer - C
We have known that `abs (adj(adjA))=absA^((n-1)^2)`.
So, statement -2 is false.
If A is an orthogonal matrix, then`absA=pm1`
`:. Abs(adj(adjA))=absA^((n-1)^2)=(pm1)^((n-1)^2)=pm1`.
79.

Let A be 2 x 2 matrix.Statement I `adj (adj A) = A`Statement II `|adj A| = A`A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.C. Statement -1 is True, Statement -2 is False.D. Statement -1 is False, Statement -2 is True.

Answer» Correct Answer - B
For any square matrix a of order n, we have
`abs(adjA)=absA^(n-1)and adj(adjA)=absA^(n-2)A`
`:. " For a " 2xx2` matrix, we have n=2
`abs(adj A)=absAand adj(adjA)=A`
Also, `adj(adjA)=absA^(n-2)` A is obtained by replacing A by adj A in the relation `A (adjA)=absAI_n`
Hence, both the statements are true. But, statement -2 is not the correct explanation for statement - 1.
80.

Let A be the set of all `3 xx 3` symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0. The number of matrices in A isA. 12B. 6C. 9D. 3

Answer» Correct Answer - A
A symmetric matrix is symmetric about its diagonal. So, there are even number of 1 and even number of 0 as off diagonal entries. Consequently, there can be either three 1 in the diagonal or one 1 and two zeros. Thus, we have the following cases:
CASE I When diagonal elements are 1,1,1.
In this case, we have
Number of symmetric matrices
= Number of arrangements of 1,0,0 as elements above the diagonal
`=(3!)/(2!)=3`
CASE II When diagonal elements are 1,0,0 ltbr. In this case, we have ltbRgt Number of symmetric matrices
=(Number of arrangements of 1,0,0 as entries above the diagonal)
`=(3!)/(2!)xx(3!)/(2!)=9`
`:. " Total number of matrices in " A=3+9=12`
81.

the square matrix `A=[a_(ij)]_mxxm` given by`a_(ij)=(i-j)^(n),` show that A is symmetic and skew-sysmmetic matrices according as n is even or odd, repectively.

Answer» `therefore " "a_(ij)=(i-j)^(n)=(-1)^(n) (j-i)^(n)`
`=(-1)^(n) a_(ij)={{:(a_(ji)", n is even interger"),(-a_(ji)", n is odd integer"):}`
Hence , A is symmetric if n is even ana skew-symmetric if n is odd integer.
82.

Let `A=[a_(ij)]` be a square matrix of order n such that `{:a_(ij)={(0," if i ne j),(i,if i=j):}` Statement -2 : The inverse of A is the matrix `B=[b_(ij)]` such that `{:b_(ij)={(0," if i ne j),(1/i,if i=j):}` Statement -2 : The inverse of a diagonal matrix is a scalar matrix.A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.C. Statement -1 is True, Statement -2 is False.D. Statement -1 is False, Statement -2 is True.

Answer» Correct Answer - C
We know that the inverse of a diagonal matrix
`D=diag (d_1,d_2,d_3,…,d_n)`
is a diagonal matrix given by
`D^(-1)=diag (d_1^(-1),d_2^(-1),d_3^(-1),…,d_n^(-1))`
`:. B=[b_(ij)]` is given by
`{:b_(ij)={(0," if i ne j),(1/i,if i=j):}`
Hence, statement -1 is true and statement -2 is false.
83.

The square matrix `A=[a_(ij)" given by "a_(ij)=(i-j)^3`, is aA. symmetric matrixB. skew-symmetric matrixC. diagonal matrixD. hermitian matrix

Answer» Correct Answer - B
We have,
`a_(ij)=(i-j)^3rArra_(ij)=(j-i)^3=-(i-j)^3=-a_(ij)" for all "i,j`
`:.` A is a skew-symmetric matrix.
84.

Elements of a matrix A of order 10 x 10 are defined as `a_(ij)=omega^(i+j)` (where omega is cube root unity), then tr(A) of matrix is

Answer» Correct Answer - D
tr `(A) = sum_(i=j=1)^(10) a_(ij) = sum _(i=j=1) ^(10) omega^(i+j) = sum_(i=1) ^(10) omega ^(2i) `
`= omega^(2)+omega^(4) + omega^(6) + omega^(8) + ... + omega^(20) `
`= (omega^(2)+omega + 1 )+( omega^(2) + omega+1)+(omega^(2)+omega+1) + omega^(20) `
`= 0 + 0 + 0+ omega ^(2) = omega^(2)`
85.

A square matrix `A=[a_(ij)]` in which `a_(ij)=0` for ` i!=j` and `[a]_(ij)=k` (constant) for `i=j` is called aA. unit matrixB. scalar matrixC. null matrixD. diagonal matrix

Answer» Correct Answer - B
in square matrix ,
Number of rows = number of columns
`therefore m=n`
86.

If `A=[a_(ij)]_(2xx3)`, difined as `a_(ij)=i^(2)-j+1`, then find matrix A.

Answer» Correct Answer - `A={:[(1,0,-1),(4,3,2)]:}`
87.

Lat`A = [a_(ij)]_(3xx 3).` If tr is arithmetic mean of elements of rth row and `a_(ij )+ a_( jk) + a_(ki)=0` holde for all `1 le i, j, k le 3.` Matrix A isA. non- singularB. symmetricC. skew-symmetricD. nether symmetric nor skew-symmetric

Answer» Correct Answer - C
`therefore A = [[a_(11) , a_(12),a_(13)],[a_(21),a_(22), a_(23) ],[a_(31), a_(32),a_(33)]]`
`rArr t_(1) = (a_(11) + a_(12)+a_(23))/3 = 0, [because a_(ij) + a_(jk) + a_(ki)=0]`
`t_(2) = (a_(21) + a_(22) + a_(23))/3 = 0`
and `t_(3) = (a_(31) + a_(32) + a_(33))/3 = 0`
`because a_(11) + a_(11) + a_(11) = 0, a_(11) + a_(12) + a_(21)= 0,`
` a_(11) + a_(13) + a_(31) = 0, a_(22) + a_(22) + a_(22)= 0, `
` a_(22) + a_(12) + a_(21) = 0, a_(22) + a_(22) + a_(22)= 0, `
` a_(33) + a_(13) + a_(31) = 0, a_(33) + a_(23) + a_(32)= 0, `
and ` a_(33) + a_(12) + a_(21) = 0,` we get
`a_(11) = a_(22) = a_(33) = 0 `
and `a_(12) =-a_(21), a_(23) = - a_(32), a_(13) = -a_(31)`
Hence, A is skew - symmetric matrix.
88.

If `A=[a_(ij)]` is a scalar matrix, then trace of A isA. `undersetisumundersetjsuma_(ij)`B. `underset isuma_(ij)`C. `undersetjsuma_(ij)`D. `undersetisuma_(ij)`

Answer» Correct Answer - D
89.

If `A=[a_(i j)]`is a scalar matrix oforder `nxxn`such that `a_(i i)=k`for all `i`, then trace of `A`is equal to`n k`(b) `n+k`(c) `n/k`(d) none of theseA. nkB. n+kC. n/kD. none of these

Answer» Correct Answer - A
90.

The trace of the matrix A = \(\begin{bmatrix}1 & -5 & 7 \\[0.3em]0& 7 &9 \\[0.3em]11 & 8 &9\end{bmatrix}\) is : A. 17 B. 25 C. 3 D. 12

Answer»

(A). 17

As the trace of a matrix is the sum of on – diagonal elements,

So, 

1 + 7 + 9 = 17 

Trace = 17 

Option (A) is the answer.

91.

If matrix `A=[a_(ij)]_(2X2)`, where ` a_(ij)={[1,i!=j],[0,i=j]}, then A^2` is equal toA. IB. AC. 0D. none of these

Answer» We have, `A=[a_(ij)]_(2xx2)`, where `a_(ij)=1`, if `inej=0` and if i=j
`A=[{:(0,1),(1,0):}]`
and `A^(2)=[{:(0,1),(1,0):}][{:(0,1),(1,0):}]=[{:(1,0),(0,1):}]=I`
92.

If `A=[{:(0,1),(1,0):}]` then `A^(2)` is equal toA. `[{:(0,1),(1,0):}]`B. `[{:(1,0),(1,0):}]`C. `[{:(0,1),(0,1):}]`D. `[{:(1,0),(0,1):}]`

Answer» `because A^(2)=A.A=[{:(0,1),(1,0):}] [{:(0,1),(1,0):}]=[{:(1,0),(0,1):}]`
93.

The matrix A = \(\begin{bmatrix}0 & 0& 4 \\[0.3em]0 & 4 & 0 \\[0.3em]4 & 0 &0\end{bmatrix}\) is a :A. square matrix B. diagonal matrix C. unit matrix D. none of these

Answer»

None of these. 

Option (D) is the answer.

94.

The inverse of a symmetric matrix is :(a) Symmetric (b) Non-symmetric (c) Null matrix (d) Diagonal matrix

Answer»

Option : (a) Symmetric

95.

If A and B are square matrices of equal order, then which one is correct among the following? (a) A + B = B + A (b) A + B = A – B (c) A – B = B – A(d) AB = BA

Answer»

Correct option is : (a) A + B = B + A

Matrix addition is commutative. 

∴ A + B = B + A

96.

If` A` and` B `are two matrices of the order` 3 xx m` and `3 xx n`, respectively and `m= n,` then order of matrix `(5A-2B)` is (a) `m xx 3` (b) `3 xx 3` (c) `m xx n` (d) `3 xx n`A. `mxx3`B. `3xx3`C. `mxxn`D. `3xxn`

Answer» Correct Answer - D
`A_(3xxm)` and `B_(3xxn)` two matrices. If `m=n`, then A and B have same orders as `3xxn` each. So the order of (5A-2B) should be same as `3xxn`.
97.

If A and B are two matrices of the order 3 × m and 3 × n, respectively, and m = n, then the order of matrix (5A – 2B) isA. m × 3B. 3 × 3C. m × nD. 3 × n

Answer»

A. m × 3

As order of A is 3 × m and order of B is 3 × n

As m = n. So, order of A and B is same = 3 × m

∴ subtraction is possible.

And (5A – 3B) also has same order.

98.

If A and B are two matrices of the order 3 × m and 3 × n, respectively, and m = n, then the order of matrix (5A – 2B) is A. m × 3B. 3 × 3C. m × n D. 3 × n

Answer»

As order of A is 3 × m and order of B is 3 × n

As m = n. So, order of A and B is same = 3 × m

∴ subtraction is possible.

And (5A – 3B) also has same order.

99.

`[{:(2x+y,4x),(5x-7,4x):}]=[{:(7,7y-13),(y,x+6):}]` then the value of `x,y` isA. x =3,y=1B. x=2,y=3C. x=2,y=4D. x=3,y=3

Answer» We have, `4x=x+6rArrx=2`
and `4x=7y-13rArr8=7y-13`
`rArr 7y=21 rArr y=3`
`therefore x+yuu=2+3=5`
100.

The number of possible matrices of order 3 × 3 with each entry 2 or 0 is :A. 9 B. 27 C. 81 D. none of these.

Answer»

(D). none of these.

Let A = \(\begin{bmatrix}a_{11} & a_{12} & a_{13} \\[0.3em]a_{21} & a_{22} & a_{23} \\[0.3em]a_{31} &a_{32} & a_{33}\end{bmatrix}\)

Elements = 9 Order = 3 × 3 

Every item in this matrix can be filled in two ways either by 0 or by 2. 

Possible Matrices = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 512 

Option (D) is the answer.