Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1151.

Which of the following is a `2xx3` matrix such that every element in the matrix is zero ?A. `[{:(0,0,0),(0,0,0):}]`B. `[{:(0,0),(0,0),(0,0):}]`C. `[{:(0,0),(0,0)]`D. `[{:(0,0,0,0),(0,0,0,0),(0,0,0,0):}]`

Answer» Correct Answer - A
(i) Zero matrix of order `2xx3`.
(ii) The matrix with 2 rows and 3 columns with all the elements as zeroes is the required matrix.
1152.

`A` and `B` be `3xx3` matrices such that `AB+A=0`, thenA. `(A+B)^(2)=A^(2)+2AB+B^(2)`B. `|A|=|B|`C. `A^(2)=B^(2)`D. none of these

Answer» Correct Answer - A
`(a)` Given `AB+A+B=0`
`impliesAB+A+B+I=I`
`impliesA(B+I)+(B+I)=(`
`implies(A+I)(B+I)=I`
`implies (A+I)` and `(B+I)` are inverse of each other
`implies(A+I)(B+I)=(B+I)(A+I)`
`impliesAB=BA`
Thus `A` and `B` are commutative
`implies(A+B)^(2)=A^(2)+2AB+B^(2)`
1153.

For a matrix `{:[(4,1,2),(2,4,3),(5,8,6)]:}` what is the second row and third column element ?

Answer» Correct Answer - 3
1154.

In the matrix `[{:(2,-1,4),(-3,0,5):}]`, the element in the second row, third column is _______

Answer» Correct Answer - 5
1155.

The element in the first row and second column of the matrix `[{:(4,5,6),(7,8,9):}]` is _______A. 7B. 8C. 5D. 6

Answer» Correct Answer - C
(i) Draw the first horizontal line.
(ii) Draw the second vertical line.
(iii) The required element in the element on which the above two line meet.
1156.

Let a be a matrix of order `2xx2` such that `A^(2)=O`. `(I+A)^(100) =`A. 100 AB. `100 (I+A)`C. `100 I+A`D. `I+100 A`

Answer» Correct Answer - D
`(I+A)^(100)= .^(100)C_(0)I^(100)+.^(100)C_(1)I^(99)A+.^(100)C_(2)I^(98) A^(2)+ +.^(100)C_(100)A^(100)`
`=I+100 A+O+O+ +O`
`=I+100 A`
1157.

If the square matrices A and B are such that `AB = A` and `BA = B`, thenA. A, B are idempotentB. only A is idempotentC. only B is idempotentD. none of these

Answer» Correct Answer - A
1158.

The elements in the second column of the matrix `[{:(0,5,3),(-5,0,2),(-3,-2,0):}]` are _______A. 0,0,0B. 5,0,-2C. 3,2,0D. None of these

Answer» Correct Answer - B
Second column elements in the given are 5,0,-2.
1159.

If A and B are two square matrices of order `3xx3` which satify `AB=A` and `BA=B`, then Which of the following is true ?A. If matrix A is singular, then matrix B is nonsingular.B. If matrix A is nonsingular, then materix B is singular.C. If matrix A is singular, then matrix B is also singular.D. Cannot say anything.

Answer» Correct Answer - C
`AB=A implies |AB|=|A|` (1)
`implies |A|=0` or `|B|=1`
`BA=B implies |BA|=|B|` (2)
`implies |A|=1` or `|B|=0`
If `|A|=0`, then from Eq. (2) `|B|=0`
If `|B|=0`, then from Eq. (1), `|A|=0`
1160.

Let `{:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}`, then the values of x and y areA. `x=-1/11,y=2/11`B. `x=-1/11,y=-2/11`C. `x=1/11,y=2/11`D. `x=1/11,y=-2/11`

Answer» Correct Answer - A
1161.

Write the order of matrix `[{:(-3,2),(4,-1),(0,2):}]`

Answer» In the given matric, there are three rows and two columns.
`:.` The order of the matrix = Number of rows `xx` number of columns=`3xx2`
1162.

If A is a `3xx3` matrix and B is a matrix such that `A^TB and BA^(T)` are both defined, then order of B isA. `3xx4`B. `3xx3`C. `4xx4`D. `4xx3`

Answer» Correct Answer - A
1163.

Write a matrix of order `3xx3` in which every element is equal to 3.

Answer» The given matrix is of order `3xx3` and each element is equal to 3.
`:.` The required matrix `=({:(3,3,3),(3,3,3),(3,3,3):})`.
1164.

The number of rows of the matrix `[{:(3,4),(5,6):}]` is ______A. 3B. 4C. 2D. 1

Answer» Correct Answer - C
Cound the number of horizontal arrays of elements.
1165.

If `A` is a square matrix of order `3` such that `|A|=2`, then `|(adjA^(-1))^(-1)|` isA. `1`B. `2`C. `4`D. `8`

Answer» Correct Answer - C
`(c )` `|adjA^(-1)|=|A^(-1)|^(2)=(1)/(|A|^(2))`
`|(adjA^(-1))^(-1)|=(1)/(|adjA^(-1)|)=|A|^(2)=2^(2)=4`
1166.

Write all the possible orders of the matrix containing 6 elements.

Answer» The possible orders for the matrix that contain six element are `1xx6,2xx3,3xx2 and 6xx1`
1167.

If the matrix `A` and `B` are of `3xx3` and `(I-AB)` is invertible, then which of the following statement is/are correct ?A. `I-BA` is not invertibleB. `I-BA` is invertibleC. `I-BA` has for its inverse `I+B(I-AB)^(-1)A`D. `I-BA` has for its inverse `I+A(I-BA)^(-1)B`

Answer» Correct Answer - B::C
`(b,c)` Let `(I-AB)^(-1)=P`
`impliesP(I-AB)=I`
`impliesP-PAB=I`
`impliesPB^(-1)-PA=B^(-1)`
`impliesBPB^(-1)-BPA=I`
`impliesBPB^(-1)=I+BPA`
Now `BPB^(-1)=B(I-AB)^(-1)B^(-1)`
`=B(B(I-AB))^(-1)`
`=(B^(-1))^(-1)(B(I-AB))^(-1)`
`=(B(I-AB)B^(-1))^(-1)`
`=((B-BAB)B^(-1))^(-1)`
`=(I-BA)^(-1)`
1168.

If a matrix contain 6 elements then the order of the matrix can be ______A. `3xx2`B. `2xx3`C. `1xx6`D. All the above.

Answer» Correct Answer - D
Number of rows `xx` Number of coumns =6
1169.

If `A` is a square matrix such that `A*(AdjA)=[{:(4,0,0),(0,4,0),(0,0,4):}]`, thenA. `|A|=4`B. `|adjA|=16`C. `(|adj(adjA)|)/(|adjA|)=16`D. `|adj2A|=128`

Answer» Correct Answer - A::B::C
`(a,b,c)` `A(adjA)=|A|I=4I`
`:.|A|=4`
`|adjA|=|A|^(3-1)=16`
`adjKA=K^(3-1)adjA`
`|adj(adjA)|=|A|^((3-1)^(2))=|A|^(4)=256`
`:. |adjKA|=(K^(3-1))^(3)|adjA|`
`:.|adj2A|=2^(6)*16`
1170.

If a matrix contain 5 rows and 3 columns, then the number of elements of the matrix is _____A. 6B. 8C. 10D. 15

Answer» Correct Answer - D
Number of element=(Number of rows ) `xx` (Number of columns )
1171.

If a matrix contians 3 columns and 5 rows, find the order of the matrix.

Answer» Correct Answer - `5xx3`
1172.

If `a_j=0(i!=j)anda_(i j)=4(i=j)`,,then the matrix `A =[a_(i j)]_(n xx n)` is a matrix

Answer» Correct Answer - scalar
1173.

The order of column matrix containing n rows is _____.

Answer» Correct Answer - `n xx 1
1174.

If A `= [{:(-1, 0, 0),(0, x, 0),(0, 0, m):}]` is a scalar matrix, then x + m = ____.

Answer» Correct Answer - -2
1175.

Find x, y satisfying the matrix equations. [x y + 2 z - 3] + [y 4 5] = [4 9, 12]

Answer»

[X+Y Y+2+4  Z- 3+ 5] = [4 9, 12]

We know that, corresponding entries of equal matrices are equal.

= X + Y = 4 ……(i) 

= Y + 6=9 ……(ii) 

= Z + 2=12 ……(iii)

On solving equation(i),(ii) and equation(iii) we get,

= Y = 9 - 6 

= Y = 3 

= Z = 12 - 2 

= Z = 10

Put the value of Y in equation(i)…we get,

= X + 3 = 4 

= X = 4 - 3 

= X - 1 

Hence, X = 1,Y = 3 and Z = 10

1176.

If P ` = [{:(3, 0), (0, lambda):}]` is scalar matrix then `lambda` = ____.

Answer» Correct Answer - `lambda= 3`
1177.

Let matrix `A=[(4,6,6),(1,3,2),(-1,-4,-3)],` Find the non-zero column vector X such that `AX= lambdaX` for some scalar `lambda.`

Answer» The characteristic equation is `|A-lambdaI|=0`
`rArr" " [(4-lambda,6,6),(1,3-lambda,2),(-1,-4,-3-lambda)]=0`
`rArr " " lambda^(3)-4lambda^(2)-lambda+4=0`
or `(lambda+1)(lambda-1)(lambda-4)=0`
The eigen values are `lambda=-1,1,4`
If `lambda=-1`, we get `5x+6y+6z=0,x+4y+2z=0`
and `-x-4y-2z=0`
Giving `(x)/(6)=(y)/(2)=(z)/(-7),X=[(,6),(,2),(,-7)]`
If `lambda =4`, we get `0.x+6y+6z=0,x-y+2z=0`
and `-x-4y-7=0`
Giving `(x)/(3)=(y)/(1)=(3)/(-1),X=[(,0),(,1),(,-1)]`
Hence, vector are X `X=[(,6),(,2),(,-7)][(,0),(,1),(,-1)][(,3),(,1),(,-1)]`
1178.

If \(2\begin{bmatrix}3& 4 \\[0.3em]5 & x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix},\)find x and y.

Answer»

 \(2\begin{bmatrix}3& 4 \\[0.3em]5 & x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix}\) 

 \(=\begin{bmatrix}6& 8 \\[0.3em]10 & 2x\end{bmatrix}+\)\(\begin{bmatrix}1& y \\[0.3em]0 & 1\end{bmatrix}=\)\(\begin{bmatrix}7& 0 \\[0.3em]10 & 5\end{bmatrix}\) 

We know that, corresponding entries of equal matrices are equal.

= Y + 8=0 

2X + 1=5

= Y = -8 

2X = 5 - 1 

= Y= - 8 

X = \(\frac{4}{2}\)

= Y= - 8 

X = 2

Hence, 

X = 2 

Y = -8

1179.

Find the value of λ, a non-zero scalar, if \(\lambda\begin{bmatrix}1 & 0 & 2 \\[0.3em]1 & 4 & 5 \\[0.3em]\end{bmatrix}+\)\(2\begin{bmatrix}1 & 2 & 3 \\[0.3em]-1 & -3 & 2 \\[0.3em]\end{bmatrix}=\)\(\begin{bmatrix}4 & 4 & 10 \\[0.3em]4 & 2 & 14 \\[0.3em]\end{bmatrix}.\)

Answer»

=  \(\lambda\begin{bmatrix}1 & 0 & 2 \\[0.3em]1 & 4 & 5 \\[0.3em]\end{bmatrix}+\)\(\begin{bmatrix}2 & 4 &6 \\[0.3em]-2 & -6 & 4 \\[0.3em]\end{bmatrix}=\)\(\begin{bmatrix}4 & 4 & 10 \\[0.3em]4 & 2 & 14 \\[0.3em]\end{bmatrix}\) 

We know that, corresponding entries of equal matrices are equal.

\(\begin{bmatrix}\lambda+2 & 0+4 & 2\lambda+6 \\[0.3em]3\lambda-2 & 4\lambda-6 & 5\lambda+4 \\[0.3em]\end{bmatrix}=\)\(\begin{bmatrix}4 & 4 & 10 \\[0.3em]4 & 2 & 14 \\[0.3em]\end{bmatrix}\)

= λ + 2 = 4

= λ = 4 - 2

= λ = 2

Hence, λ = 2

=  λ[110425]+λ[102145]+[2−24−664]=[246−2−64]=[44421014][44104214]  

We know that, corresponding entries of equal matrices are equal. = [λ+23λ−20+44λ−62λ+65λ+4]

=[λ+20+42λ+63λ−24λ−65λ+4]

=[44421014][44104214] = λ + 2 = 4 = λ = 4 - 2 = λ = 2

Hence, λ = 2
1180.

If x1, x2, x3 as well as y1, y2, y3 are in geometric progression with the same common ratio, then the points (x1, y1), (x2, y2), (x3, y3) are (a) vertices of an equilateral triangle (b) vertices of a right angled triangle (c) vertices of a right angled isosceles triangle (d) collinear

Answer»

Answer is (d) collinear

1181.

If `A= [[3,2,2],[2,4,1],[-2,-4,-1]] ` and X,Y are two non-zero column vectors such that `AX=lambda X, AY=muY , lambdanemu, ` find angle between X and Y.

Answer» `because AX = lambda X rArr (A-lambdaI) X = 0`
`because = X ne 0`
`therefore det (A-lambdaI)=0`
`rArr [[3-lambda,2,2],[2, 4-lambda,1],[-2, -4,-1-lambda]]=0`
Applying `R-(3) rarr R_(3) + R_(2)`, then
` [[3-lambda,2,2],[2, 4-lambda,1],[0, -lambda,-lambda]]=0`
Applying `C_(2 ) rarr C_(2) C_(3),` then
`rArr [[3-lambda,0,2],[2, 3-lambda,1],[0, 0,-lambda]]=0`
`rArr -lambda (3-lambda )^(2) = 0`
` rArr lambda = 0,3`
It is clear that `lambda = 0 mu = 3`
for `lambda = 0, AX = 0 rArr [[3,2,2],[2,4,1],[-2,-4,-1]][[x],[y],[z]] = [[0],[0],[0]]`
`rArr 3x+ 2y+ 2z = 0 and 2x + 4y + z=0`
`therefore x/-5= y/1 = z/8`
So, `X= [[-6],[1],[8]]`
For` mu= 3, (A-3I) Y=0`
` rArr [[0,2,2],[2,1,1],[-2,-4,-4]][[alpha],[beta],[gamma]] = [[0],[0],[0]]`
`rArr 0.alpha +2beta + 2gamma = 0and 2 alpha + beta + gamma = 0`
`therefore alpha/0 = beta / 4 = gamma/(-4)`
`rArr alpha/0 = beta / -1= gamma/1`
So, `Y=[[0],[-1],[1]]`
If `theta` angle between X and Y, then
`cos theta = (0.(-6)+(-1)cdot 1 + 1cdot8)/(sqrt((0+1+1))sqrt(36+1 +64) ) = 7/sqrt(202)`
1182.

Use matrix method to solve the equations `5x - 7y = 2` and `7x - 5y = 3`A. `x=(11)/(24), y=(1)/(24)`B. `x=(10)/(24, y=(5)/(24)`C. `x=-6, y=-5`D. `x=2, y=1`

Answer» Correct Answer - a
1183.

If for a matrix A, `absA=6and adj A=`{:[(1,-2,4),(4,1,1),(-1,k,0)]:}`, then k is equal toA. -1B. 0C. 1D. 2

Answer» Correct Answer - B
If A is a square matrix of order `nxxn` then `abs(adjA)=abs(A)^(n-1)`.
Here, n =3,`absA=6and adjA={:[(1,-2,4),(4,1,1),(-1,k,0)]:}`.
`:. A={:abs((1,-2,4),(4,1,1),(-1,k,0))=6^2:}`
`-1,(-2-4)-k(1-36)rArr6+15k=36rArrk=2`
1184.

If A and B are square matrices of order 3 such that `absA=-1,absB=3," then "abs(3AB)` equalsA. -9B. -81C. -27D. 81

Answer» Correct Answer - a
1185.

Let A be a square matrix of order n. Statement - 1 : `abs(adj(adj A))=absA^(n-1)^2` Statement -2 : `adj(adj A)=absA^(n-2)A`A. Statement -1 is True, Statement -2 is true, Statement -2 is a correct explanation for Statement-1.B. Statement-1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.C. Statement -1 is True, Statement -2 is False.D. Statement -1 is False, Statement -2 is True.

Answer» Correct Answer - A
Statement -1 is ture (see Theorem 8 on page 16.7)
`:. abs(adj(adj A))=abs(absA^(n-2)A)=absA^((n-2)n)absA`
`rArr abs(adj(adjA))=abs A^(n^2-2n+1)=absA^((n-1))^2`
1186.

The system of equations:`x+y+z=5``x+2y+3z=9``x+3y+lambdaz=mu`has a unique solution, if`lambda=5,mu=13`(b) `lambda!=5``lambda=5,mu!=13`(d) `mu!=13`A. `lambda=5,mu=13`B. `lambda ne 5`C. `lambda=5, mu ne 13`D. `mu ne 13`

Answer» Correct Answer - B
The system oif equations will have unique solution if
`{:[(1,1,1),(1,2,3),(1,3,lambda)]:} ne 0 rArrlambda -5 ne 0 rArr lambda ne 5`
1187.

. For what values of `lambda` and `mu` the system of equations `x+y+z=6, x+2y+3z=10, x+2y+lambdaz=mu` has (i) Unique solution (ii) No solution (iii) Infinite number of solutions

Answer» we can write the above system of equations in the matrix form
`[(1,1,1),(1,2,3),(1,2,lambda)][(,x),(,y),(,z)]=[(,6),(,10),(,mu)]`
`rArr AX=B`
where A`A=[(1,1,1),(1,2,3),(1,2,lambda)],X=[(,x),(,y),(,z)]andB=[(,6),(,10),(,mu)]`
`therefore` augmented matrix
`C=[A:B]=[(1,1,1,vdots,6),(1,2,3,vdots,10),(1,2,lambda,vdots,mu)]`
Appying `R_(2) to R_(2) and R_(3) to R_(3)-R_(1),` we get
`C=[(1,1,1,vdots,6),(0,1,2,vdots,4),(0,1,lambda-1,vdots,mu-6)]`
Applying `R_(3) to R_(3)-R_(2),` we get
(I) No solution `p(A)!=p(c)`
`i.e.," " lambda-3!=0 and mu-10!= 0`
(ii) A unique solution `p(A) = p(c) =3`
`ie.," " lambda-3and mu in R`
`therefore" " lambda!=3 and mu in R`
(iii) Infinite number of solutions `p(A)=p(c)(angle3)`
`ie.," " lambda-3=0 and mu -10=0`
`therefore " " lambda=3 and mu =10`
1188.

If `{:A=[(-4,-1),(3,1)]:}`, then the determint of the matrix `(A^2016-2A^2015-A^2014)`,isA. 2014B. 2016C. `-175`D. `-25`

Answer» Correct Answer - B
Let `B=A^2016-2A^2015-A^2014`. Then,
`B=A^2014(A^2-2A-1)`
`rArr absB=absA^2014abs(A^2-2A-1)`
Now,`A=[(-4,-1),(3,1)]`
`:.{:A^2-2A-I=[(-4,-1),(3,1)][(-4,-1),(3,1)]-2[(-4,-1),(3,1)]-[(1,0),(0,1)]:}`
`{:= [(13,3),(-9,-2)]+[(8,2),(-6,-2)]+[(-1,0),(0,-1)]=[(20,5),(-15,-5)]:}`
`rArrabs(A^2-2A-I)={:[(20,5),(-15,-5)]=-25:}`
`and absA={:abs((-4,-1),(3,1))=-1:}`
Hence,`absB=(-1)^2014=-25`
1189.

Let, `C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]]` for `k ge l and ` `A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]]`, thenA. `k_(1) = K_(2)`B. `k_(1) + k_(2) = 2`C. `k_(1) = ""^(2n)C_(n)-1`D. `k_(2) = ""^(2n)C_(n+1)`

Answer» Correct Answer - A::C
`A_(1) + A_(2) + A_(3) +... + A_(n) = [[C_(0)^(2),0],[0,C_(1)^(2)]]+ [[C_(1)^(2),0],[0, C_(2)^(2)]]`
`+ [[C_(2)^(2),0],[0,C_(3)^(2)]]+...+ [[C_(n-1)^(2),0],[0, C_(n)^(2)]]`
` = [[C_(0)^(2)+C_(1)^(2) + C_(2)^(2)+...+C_(n-1)^(2),0],[0,C_(1)^(2)+C_(2)^(2)+C_(2)^(3)+...+C_(n)^(2)]]`
`[[""^(2n)C_(n)-1,0],[0,""^(2n)C_(n)-1]] =[[k_(1),0],[0,k_(2)]]` [given ]
`therefore k_(1) = k_(2) =""^(2n) C_(n)-1`
1190.

Suppose A and B be two ono-singular matrices such that `AB= BA^(m), B^(n) = I and A^(p) = I `, where `I` is an identity matrix. The relation between m, n and p, isA. `p = mn^(2)`B. `p=m^(n)-1`C. `p=n^(m) - 1`D. `p = m^(n-1)`

Answer» Correct Answer - B
`because AB = BA^(m) `
` rArr B = A^(-1) BA^(m)`
`therefore B^(n) = underset("n times")(underbrace((A^(-1) BA^(m))(A^(-1)BA^(m))... (A^(-1) BA^(m))))`
`=A^(-1) underset("n times")(underbrace(BA^(m-1)BA^(m-1)... BA^(m-1)BA^(m-1)))A` ...(i)
Given, ` AB = BA^(m)`
` rArr A AB = ABA^(m) = BA^(2m) rArr A A AB = BA^(3m)`
Similarly, `A^(x) B = BA^(mx) AA m in N`
From Eq. (i) we get
`B^(n)=A^(-1) BA^(m-1) underset("(n-1) times")(underbrace(BA^(m-1)BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`=A^(-1) B(A^(m-1) B)A^(m-1) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`=A^(-1) BBA^((m-1)m) A^(m-1) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`=A^(-1) B^(2)A^((m^(2)-1)) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`..." " ..." "... " "... `
`=A^(-1) B^(m) (A) ^(m^(n)-1)A`
`I = A^(-1) I A^(m^(n)-1) A [because B^(n) = I]`
`I = A^(-1) A^(m^(n)-1) A= A^(-1) A^(m^(n))`
`rArr I = A^(m^(n)-1)`
`therefore p= m^(n)-1 " "...(ii) [because A^(p) = I]`
From Eq. (ii), we get
`p = m^(n) - 1`
1191.

Suppose A and B be two ono-singular matrices such that `AB= BA^(m), B^(n) = I and A^(p) = I `, where `I` is an identity matrix. If `m = 2 and n = 5 ` then p equals to

Answer» `AB=BA^2`
`B^-1(AB)= B^-1(BA^2)`
`= (B^-1B)A^2`
`= A^2`
`A^2 = B^-1AB`
`A^4= A^2A^2= (B^-1AB)(B^-1AB) = B^-1ABB^-1AB`
`= B^-1A(BB^-1)AB`
`= B^-1A(I)AB`
`=B^-1A^2B`
`=B^-1(B^-1AB)B`
`=B^-2AB^2`
`A^8=A^4A^4= (B^-2AB^2)(B^-2AB^2)`
`= B^-2A^2B^2`
`=B^-2(B^-1AB)B^2`
`= B^-3AB^3`
`A^16= A^8A^8 = B^-3B^3B^-3AB^3`
`= B^-3A^2B^3`
`=B^-3(B^-1AB)B^3`
`= B^-4AB^4`
`A^32= A^16A^16 = B^-4AB^4B^-4AB^4`
`= B^-4A^2B^4`
`= B^-4(B^-1AB)B^4`
`=B^-5AB^5`
as, `B^5 = I `
so, `B^-5 = I`
putting in eqn
`=IAI`
`A^32=A`
multilpying by `A^-1` to both sides
`A^32 = A`
`A^32A^-1 = A*A^-1`
`A^31 = I`
1192.

Suppose A and B be two ono-singular matrices such that `AB= BA^(m), B^(n) = I and A^(p) = I `, where `I` is an identity matrix. If `m = 2 and n = 5 ` then p equals toA. 30B. 31C. 33D. 81

Answer» Correct Answer - B
`because AB = BA^(m) `
` rArr B = A^(-1) BA^(m)`
`therefore B^(n) = underset("n times")(underbrace((A^(-1) BA^(m))(A^(-1)BA^(m))... (A^(-1) BA^(m))))`
`=A^(-1) underset("n times")(underbrace(BA^(m-1)BA^(m-1)... BA^(m-1)BA^(m-1)))A` ...(i)
Given, ` AB = BA^(m)`
` rArr A AB = ABA^(m) = BA^(2m) rArr A A AB = BA^(3m)`
Similarly, `A^(x) B = BA^(mx) AA m in N`
From Eq. (i) we get
`B^(n)=A^(-1) BA^(m-1) underset("(n-1) times")(underbrace(BA^(m-1)BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`=A^(-1) B(A^(m-1) B)A^(m-1) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`=A^(-1) BBA^((m-1)m) A^(m-1) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`=A^(-1) B^(2)A^((m^(2)-1)) underset("(n-2) times")(underbrace(BA^(m-1)... BA^(m-1)BA^(m-1)))A`
`..." " ..." "... " "... `
`=A^(-1) B^(m) (A) ^(m^(n)-1)A`
`I = A^(-1) I A^(m^(n)-1) A [because B^(n) = I]`
`I = A^(-1) A^(m^(n)-1) A= A^(-1) A^(m^(n))`
`rArr I = A^(m^(n)-1)`
`therefore p= m^(n)-1 " "...(ii) [because A^(p) = I]`
Put `m = 2, n = 5 ` in Eq. (ii), we get
`p= 2^(5) - 1 = 31`