InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1101. |
A square matrix can always be expressed asA. the sum of a symmetric and a skew-symmetric matrix.B. the sum of a diagonal matrix and a symmetric matrixC. a skew-symmetric matrixD. a skew-matrix |
|
Answer» Correct Answer - A see illustration 3 on page 5. |
|
| 1102. |
If A and B are two square matrices such that `B=-A^(-1)BA`, then `(A+B)^(2)` is equal toA. OB. `A^2+B^2`C. `A^2+2AB+B^2`D. A + B |
|
Answer» Correct Answer - B We have, `B=-A^(-1)BA` `rArr AB=-A(A^(-1)BA)` `rArr AB=-((A A^(-1))(BA))` `rArr AB=-(I(BA))` `rArr AB=-BA` `rArr AB+BA=O` Now, `(A+B)^2=(A+B)(A+B)` `rArr (A+B)^2=A^2+AB+BA+B^2` `rArr (A+B)^2=A^2+O+B^2` `rArr (A+B)^2=A^2+B^2` |
|
| 1103. |
The element in the first row and third column of the inverse of the matrix `{:[(1,2,-3),(0,1,2),(0,0,1)]:}`, isA. -2B. 0C. 1D. none of these |
|
Answer» Correct Answer - C Clearly, the element in the first row and third column of the inverse of the given matrix is cofactor of the element in third row and first column of the given matrix. Hence, required element =`{:abs((2,-3),(1,2))=7:}` |
|
| 1104. |
If `A=[(3,-3,4),(2,-3,4),(0,-1,1)]`, then `A^(-1)=`A. AB. `A^(2)`C. `A^(3)`D. `A^(4)` |
|
Answer» Correct Answer - c |
|
| 1105. |
Construct a `2xx3` matrix whose elements are given by `a_(ij)=(1)/(2)(i-2j)^(2).` |
| Answer» `[{:((1)/(2),(9)/(2)),(0,2),((1)/(2),(1)/(2)):}]` | |
| 1106. |
The element of second row and third column in the inverse of `[[1, 2, 1], [2, 1, 0], [-1, 0, 1]]` isA. `-2`B. `-1`C. 1D. 2 |
|
Answer» Correct Answer - b |
|
| 1107. |
if `A=[a_(ij)]_(2*2)` where `a_(ij)={i+j , i!=j` and `a_(ij)=i^2-2j ,i=j` then `A^-1` is equal toA. `(1)/(9)[(4,1),(-1,2)]`B. `(1)/(9)[(0,-3),(-3,-1)]`C. `(1)/(9)[(0,3),(3,1)]`D. None of these |
|
Answer» Correct Answer - c |
|
| 1108. |
Multiplicative inverse of the matrix `[[2,1],[7,4]]` is(i) `[[4,-1],[-7,-2]]`(ii) `[[-4,-1],[7,-2]]`(iii) `[[4,-1],[7,2]]`(iv) `[[4,-1],[-7,2]]`A. `[(4,-1),(-7,-2)]`B. `[(-4,-1),(7,-2)]`C. `[(4,-7),(7,2)]`D. `[(4,-1),(-7,2)]` |
|
Answer» Correct Answer - D |
|
| 1109. |
If a matrix has 5 elements, write all possible orders it can have. |
| Answer» Possible orders are 1x5 and 5x1. | |
| 1110. |
If there are three square matrix A, B, C of same order satisfying the equation `A^2=A^-1 and B=A^(2^n) and C=A^(2^((n-2))`, then prove that `det .(B-C) = 0, n in N`. |
|
Answer» `because B = ^(2^(n)) = A^(2.2^(n-1)) = (A^(2))^(2^(n-1)) = (A^(-1)) ^(2^(n-1) ) [ because A^(2) = A^(-1)]` `= (A^(2^(n-1)))^(-1) = (A^(2.2^(n-2)))^(-1) = [(A^(2))^(2^(n-2))]^(-1)` `= [(A^(-1))^(2^(n-2))]^(-1)= ((A^(-1))^(-1))^(2^(n-2)) = A^(2^(n-2))=C` `rArr B-C=0 rArr det (B-C) = 0` |
|
| 1111. |
If A and B are two matrices such that rank of A = m and rank of B = n, thenA. rank (AB)= mnB. `"rank "(AB)gt" rank " (A)`C. `" rank "(AB)gt " rank "(B)`D. `"rank "(AB) lt min ("rank A, rank B")` |
| Answer» Correct Answer - D | |
| 1112. |
If `B ,C`are square matrices of order `na n difA=B+C ,B C=C B ,C^2=O ,`then without using mathematical induction, show that for any positiveinteger `p ,A^(p-1)=B^p[B+(p+1)C]`. |
|
Answer» `because A= B+CrArr A^(p+1) = (B+C)^(p+1) ` `= ""^(p+1) C_(0) B^(p+1) + ""^(p=1) C_(1) B^(p) C + ""^(P+1) C_(2) B^(p-1) C^(2) +... + ""^(p+1)C_(p+1) C^(p+1)` `= B^(p+1)+ ""^(p+1) C_(1) B^(p) C + 0 + 0 +... [because C^(2) = 0 rArr C^(2) = C^(3) =... = 0]` `= B^(P) [B+(p+1) C]` Hence, `A^(p+1) = B^(p)[B+(p+1)C]` |
|
| 1113. |
If `{:A=[(3,4),(2,4)],B=[(-2,-2),(0,-1)]:}," then " (A+B)^(-1)=`A. is a skew-symmetric matrixB. `A^(-1)+B^(-1)`C. does not existD. none of these |
| Answer» Correct Answer - D | |
| 1114. |
Let `A = [[3,a,-1],[2,5,c],[b,8,2]]` is symmetric and `B = [[d, 3, a],[b-a, e, -2b-c ],[-2, 6, -f]]` is skew- symmetric, find AB. If AB is symmetric or skew symmetric or neither of them. Justify your answer. |
|
Answer» `because` A is symmetric `therefore c = 5, b=-1 and a =2` …(i) and B is skew- symmetrci `therefore d =e =f=0 and 2b + c = 6, a=b, b-a=-3` …(ii) From Eqs. (i) and (ii), we get `a= 2, b= -1 , c=8, d=0, e=0, f=0` `therefore A= [[3,2,-1],[2,5,8],[-1,8,2]]and B= [[0,3,2],[-3,0,-6],[-2,6,0]]` `rArr AB= [[-4,3,-6],[-31,54,-26],[-28,9, -50]]` which neither symmetric nor skew-symmetric. |
|
| 1115. |
Let `{:A=[(a,0,0),(0,a,0),(0,0,a)]:}`, then `A^n` is equal toA. `{:[(a^n,0,0),(0,a^n,0),(0,0,a)]:}`B. `{:[(a^n,0,0),(0,a,0),(0,0,a)]:}`C. `{:[(a^n,0,0),(0,a^n,0),(0,0,a^n)]:}`D. `{:[(na,0,0),(0,na,0),(0,0,na)]:}` |
| Answer» Correct Answer - C | |
| 1116. |
`A=[(3,a,-1),(2,5,c),(b,8,2)]` is symmetric and `B=[(d,3,a),(b-a,e,-2b-c),(-2,6,-f)]` is skew-symmetric, then find AB. |
|
Answer» Correct Answer - `AB=[(-4,3,-6),(-31,54,-26),(-28,9,-50)]` A is symmetric `implies A^(T)=A` `implies [(3,2,b),(a,5,8),(-1,c,2)]=[(3,a,-1),(2,5,c),(b,8,2)]` `implies a=2, b=-1, c=8` B is skew-symmetric `implies B^(T)=-B` `implies [(d,b-a,-2),(3,e,6),(a,-2b-c,-f)]=[(-d,-3,-a),(a-b,-e,2b+c),(2,-6,f)]` `implies d=-d, f=-f` and `e=-e` `implies d=f=0` So `A=[(3,2,-1),(2,5,8),(-1,8,2)]` and `B=[(0,3,2),(-3,0,-6),(-2,6,0)]` `implies AB=[(3,2,-1),(2,5,8),(-1,8,2)][(0,3,2),(-3,0,-6),(-2,6,0)]` `=[(-4,3,-6),(-31,54,-26),(-28,9,-50)]` |
|
| 1117. |
If `{:A=[(costheta,sintheta),(-sintheta,costheta)]:}, " then "lim_(ntooo) 1/nA^n` isA. a null matrixB. an identity matrixC. `{:[(0,1),(-1,0)]:}`D. none of these |
| Answer» Correct Answer - A | |
| 1118. |
`If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n` is |
|
Answer» Correct Answer - Zero Matrix `A=[(cos theta,sin theta),(-sin theta,cos theta)]` `A^(2)=[(cos theta,sin theta),(-sin theta,cos theta)][(cos theta,sin theta),(-sin theta,cos theta)]` `=[(cos^(2) theta-sin^(2) theta,2 sin theta cos theta),(-2 sin theta cos theta,cos^(2) theta - sin^(2) theta)]` `=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)]` `A^(3)=A^(2) A=[(cos 2 theta,sin 2 theta),(-sin 2 theta,cos 2 theta)][(cos theta,sin theta),(-sin theta,cos theta)]` `=[(cos 3 theta,sin 3 theta),(-sin 3 theta,cos 3 theta)]` Hence, `A^(n)=[(cos n theta,sin n theta),(-sin n theta,cos n theta)]` or `A^(n)/n = [((cos n theta)/n,(sin n theta)/n),((-sin n theta)/n,(cos n theta)/n)]` or `lim_(n rarr oo) A^(n)/n =[(lim_(n rarr oo) (cos n theta)/n,lim_(n rarr oo) (sin n theta)/n),(-lim_(n rarr oo) (sin n theta)/n,lim_(n rarr oo) (cos n theta)/n)]` `=[(0,0),(0,0)]=` Zero matrix |
|
| 1119. |
Find the matrix X so that `X[1 2 3 4 5 6]=[-7-8-9""""""2""""""4""""6]` |
|
Answer» Correct Answer - `X=[(1,-2),(2,0)]` It is given that `X[(1,2,3),(4,5,6)]=[(-7,-8,-9),(2,4,6)]` The matrix given on the R.H.S. of the equation is a `2xx3` matrix and the one given on the L.H.S is a `2xx3` matrix. Therefore, X has to be a `2xx2` matrix. Now, let `X=[(a,c),(b,d)]` therefore, we have `[(a,c),(b,d)][(1,2,3),(4,5,6)]=[(-7,-8,-9),(2,4,6)]` or `[(a+4c,2a+5c,3a+6c),(b+4d,2b+5d,3b+6d)]=[(-7,-8,-9),(2,4,6)]` Equating the corresponding elements of the two matrices, we have `{:(a+4c=-7",",2a+5c=-8",",3a+6c=-9),(b+4d=2",",2b+5d=4",",3b+6d=6):}` Now, `a+4c=-7 implies a=-7-4c` `:. 2a+5c=-8 implies -14-8c+5c=-8` or `-3c=6` or `c=-2` `:. a=-7-4(-2)=-7+8=1` Now, `b+4d=2` or `b=2-4d` `:. 2b+2d=4implies 4-8d+5d=4` `implies -3d=0` `d=0` `:. b=2-4(0)=2` Thus, `a=1, b=2, c=-2, d=0` Hence, the required matrix X is `[(1,-2),(2,0)]` |
|
| 1120. |
for what values of x: `[1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(0),(2),(x):}]=0? ` |
|
Answer» Correct Answer - x=-1 We have `[(1,2,1)][(1,2,0),(2,0,1),(1,0,2)][(0),(2),(x)]=0` or `[(1+4+1,2+0+0,0+2+2)][(0),(2),(x)]=0` or `[6(0)+2(2)+4(x)]=0` or `[4+4x]=[0]` or `4+4x=0` or `x=-1` |
|
| 1121. |
If `A = [[1,2],[3,-5]]` and `B=[[1,0],[0,2]]` and X is a matrix such that `A=BX`, then X= |
|
Answer» Correct Answer - `X=1/2 [(2,4),(3,-5)]` Let `X=[(a,b),(c,d)]` then `[(1,2),(3,-5)]=[(1,0),(0,2)][(a,b),(c,d)]=[(a,b),(2c,2d)]` `:. a=1, b=2, 2c=3, 2d=-5` `:. X=[(1,2),(3//2,-5//2)]=1/2 [(2,4),(3,-5)]` |
|
| 1122. |
If `A=[(3,-4),(1,-1)]` prove that `A^k=[(1+2k,-4k),(k,1-2k)]` where `k` is any positive integer. |
|
Answer» We have. `A^(2)=[(3,-4),(1,-1)][(3,-4),(1,-1)]=[(5,-8),(2,-3)]=[(1+2xx2,-4xx2),(2,1-2xx2)]` and `A^(3)=[(5,-8),(2,-3)][(3,-4),(1,-1)]=[(7,-12),(3,-5)]=[(1+2xx3,-4xx3),(3,1-2xx3)]` Thus, it is true for indices 2 and 3. Now, assume `A^(k)=[(1+2k,-4k),(k,1-2k)]` to be true. Then, `A^(k+1)=[(1+2k,-4k),(k,1-2k)][(3,-4),(1,-1)]` `=[(3+2k,-4(k+1)),(k+1,-1-2k)]` `=[(1+2(k+1),-4(k+1)),(k+1,1-2(k+1))]` thus, if the law is true for `A^(k)`, it is also true for `A^(k+1)`. but it is true for `k=2, 3` etc. Hence, by induction, the required result follows. |
|
| 1123. |
Consider, `A=[(a,2,1),(0,b,0),(0,-3,c)]`, where a, b and c are the roots of the equation `x^(3)-3x^(2)+2x-1=0`. If matric B is such that `AB=BA, A+B-2I ne O` and `A^(2)-B^(2)=4I-4B`, then find the value of det. (B) |
|
Answer» Given that a, b and c are roots of the equation `x^(3)-3x^(2)+2x-1=0`. Let `x^(3)-3x^(2)+2x-1=(x-a) (x-b) (x-c)` (1) Now, `A^(2)-B^(2)=4I-4B` `:. A^(2)=B^(2)-4B+4I` `implies A^(2)=(B-2I)^(2)` `implies A^(2)-(B-2I)^(2)=O` `implies (A+B-2I) (A-B+2I)=O" "("as "AB=BA)` Now, `A+B-2I ne O` `:. A-B+2I=O` [as otherwise `(A-B+2I)^(-1)` exists and `A+B-2I=O`] `:. B=A+2I =[(a+2,2,1),(0,b+2,0),(0,-3,c+2)]` `:. |B|=(a+2) (b+2) (c+2)` (2) Putting `x=-2` in (1), we get `-8-12-4-1=(-2-a) (-2-b) (-2-c)` `:. 25=(a+2) (b+2) (c+2)` `:. |B|=25` |
|
| 1124. |
if `A=[[i,0] , [0,i]]` where `i=sqrt(-1)` and `x epsilon N` then `A^(4x)` equals to: |
|
Answer» `A^(2)=[(i,0),(0,i)][(i,0),(0,i)]=[(i^(2),0),(0,i^(2))]=[(-1,0),(0,-1)]` `A^(4)=[(-1,0),(0,-1)][(-1,0),(0,-1)]=[(1,0),(0,1)]=I` `implies A^(4n)=I^(n)=I` |
|
| 1125. |
Let `A=[("tan"pi/3,"sec" (2pi)/3),(cot (2013 pi/3),cos (2012 pi))]` and P be a `2 xx 2` matrix such that `P P^(T)=I`, where I is an identity matrix of order 2. If `Q=PAP^(T)` and `R=[r_("ij")]_(2xx2)=P^(T) Q^(8) P`, then find `r_(11)`. |
|
Answer» `R=P^(T)Q^(8)P` `=P^(T)(PAP^(T))^(8)P` `=P^(T)PAP^(T) (PAP^(T))^(7)P` `=IAP^(T) (PAP^(T))^(7) P` `=AP^(T) PAP^(T) (PAP^(T))^(6)P` `=A^(2)P^(T) (PAP^(T))^(6)P` ... ... `=A^(8) P^(T)P` `=A^(8)` Now, `A^(2)=A A=[(sqrt(3),-2),(0,1)][(sqrt(3),-2),(0,1)]` `=[((sqrt(3))^(2),-2sqrt(3)-2),(0,1)]` `A^(3)=A^(2)A=[(3,-2sqrt(3)-2),(0,1)][(sqrt(3),-2),(0,1)]` `=[((sqrt(3))^(3),-6-2sqrt(3)-2),(0,1)]` `:. R=[r_("ij")]_(2xx2)=P^(T) Q^(8) P=A^(8)=[((sqrt(3))^(8),-),(-,-)]` `implies r_(11)=81` |
|
| 1126. |
The matrix R(t) is defined by `R(t)=[(cos t,sin t),(-sin t,cos t)]`. Show that `R(s)R(t)=R(s+t)`. |
|
Answer» `R(s)R(t)=[(cos s ,sin s),(cos t,sin t)][(cos t,sin t),(-sin t,cos t)]` `=[(cos s cos t-sin s sin t,cos s sin t + sin s cos t),(-sin s cos t-cos s sin t,cos s cos t-sin s sin t)]` `=[(cos(s+t),sin (s+t)),(-sin (s+t),cos (s+t))]` `=R(s+t)` |
|
| 1127. |
If matrix `A=[(0,1,-1),(4,-3,4),(3,-3,4)]=B+C`, where B is symmetric matrix and C is skew-symmetric matrix, then find matrices B and C. |
|
Answer» Correct Answer - `B=1/2 [(0,5,2),(5,-6,1),(2,1,8)], C=1/2[(0,-3,-4),(3,0,7),(4,-7,0)]` Here matrix A is expressed as the sum of symmetric and skew-symmetric matrix. Then `B=1/2(A+A^(T))` and `C=1/2 (A-A^(T))` Now `A=[(0,1,-1),(4,-3,4),(3,-3,4)]` `implies A^(T)=[(0,4,3),(1,-3,-3),(-1,4,4)]` `implies B=1/2 ([(0,1,-1),(4,-3,4),(3,-3,4)]+[(0,4,3),(1,-3,-3),(-1,4,4)])` `=1/2 [(0,5,2),(5,-6,1),(2,1,8)]` and `C=1/2 ([(0,1,-1),(4,-3,4),(3,-3,4)]-[(0,4,3),(1,-3,-3),(-1,4,4)])` `=1/2 [(0,-3,-4),(3,0,7),(4,-7,0)]` |
|
| 1128. |
Let `A=B B^(T)+C C^(T)`, where `B=[(cos theta),(sin theta)], C=[(sin theta),(-cos theta)], theta in R`. Then prove that a is unit matrix. |
|
Answer» `A=B B^(T)+C C^(T)` `=[(cos theta),(sin theta)][(cos theta),(sin theta)]+[(sin theta),(-cos theta)][(sin theta, -cos theta)]` `=[(cos^(2) theta,cos theta . sin theta),(sin theta.costheta,sin^(2) theta)]+[(sin^(2) theta,0sintheta.cos theta),(-sin theta. cos theta,cos^(2) theta)]` `=[(1,0),(0,1)]` |
|
| 1129. |
Consider the matrices `A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),(-1,2)], C=[(3),(1),(2)]` Out of the given matrix products, which one is not defined ?A. `(AB)^(T)C`B. `C^(T)C (AB)^(T)`C. `C^(T)AB`D. `A^(T)AB B^(T)C` |
|
Answer» Correct Answer - B `A rarr 3xx3, B rarr 3xx2, C rarr 3xx1` `AB rarr 3xx2 implies (AB)^(T)=2xx3 implies (AB)^(T)C` is defined `C^(T) rarr 1xx3, implies C^(T) C rarr 1xx1` Hence `C^(T)C(AB)^(T)` is not defined. Now, `C^(T) AB` is also defined. `A^(T) rarr 3xx3, B^(T) rarr 2xx3` `A^(T)A rarr 3xx3` `B B^(T) rarr 3xx3` `implies A^(T) AB B^(T) rarr 3xx3` `implies A^(T) AB B^(T) C` is defined |
|
| 1130. |
If one of the eigenvalues of a square matrix a order `3xx3` is zero, then prove that det `A=0`. |
|
Answer» Let `A=[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]` `implies A-lambdaI=[(a_(1)-lambda,b_(1),c_(1)),(a_(2),b_(2)-lambda,c_(2)),(a_(3),b_(3),c_(3)-lambda)]` `implies` det. `(A-lambdaI)=(a_(1)-lambda)[(b_(2)-lambda)(c_(3)-lambda)-b_(3)c_(2)]` `-b_(1) [a_(2) (c_(3)-lambda)-c_(2)a_(3)]+c_(1)[a_(2)b_(3)-a_(3)(b_(2)-lambda)]` Now if one of the eigenvalues is zero, one root of `lambda` should be zero. Therefore, constant term in the above polynominal is zero. `implies a_(1) b_(2)c_(3)-a_(1)b_(3)c_(2)-b_(1)a_(2)c_(3)+b_(1)c_(2)a_(3)+a_(1)a_(2)a_(3)-c_(1)a_(3)b_(2)=0` But in above equation L.H.S. is the value of determinant of A. Hence, det. `A=0` |
|
| 1131. |
Show that if `lambda_(1), lambda_(2), ...., lamnda_(n)` are `n` eigenvalues of a square matrix a of order n, then the eigenvalues of the matric `A^(2)` are `lambda_(1)^(2), lambda_(2)^(2),..., lambda_(n)^(2)`. |
|
Answer» `AX=lambdaX` or `A(AX)=A(lambdaX)` or `A^(2)X=lambda(AX)=lambda(lambdaX)=lambda^(2)X` i.e., `A^(2)X=lambda^(2)X` Hence, eigenvalue of `A^(2)` is `lambda^(2)`. Thus, if `lambda_(1), lambda_(2), ..., lambda_(n)` are eigenvalue of A, then `lambda_(1)^(2), lambda_(2)^(2), ..., lambda_(n)^(2)` are eigenvalues of `A^(2)`. |
|
| 1132. |
Find x, y and z so that A = B, where \(A=\begin{bmatrix}x-2 & 3 & 2z \\[0.3em]18z & y+2 &6z \\[0.3em]\end{bmatrix},\)\(B=\begin{bmatrix}y & z & 6 \\[0.3em]6y & z &2y \\[0.3em]\end{bmatrix}\) |
|
Answer» Given two matrices are equal as A = B. \(\begin{bmatrix} x-2 & 3 & 2z \\[0.3em] 18z & y+2 &6z \\[0.3em] \end{bmatrix} \)\(=\begin{bmatrix} y & z & 6 \\[0.3em] 6y & z &2y \\[0.3em] \end{bmatrix} \) We know that if two matrices are equal then the elements of each matrices are also equal. ∴x – 2 = y …(1) z = 3 And y + 2 = z … (2) 2y = 6z ⇒ y = 3z …(3) Putting the value of z in equation (3), ∴ y = 3z = 3 × 3 = 9 Putting the value of y in equation (1), x – 2 = 9 ⇒ x – 2 = 9 ⇒ x = 9 + 2 ⇒ x = 11 ∴ x = 11, y = 9, z = 3. |
|
| 1133. |
The inventor of input-output analysis is: (a) Sir Francis Galton (b) Fisher (c) Prof. Wassily W. Leontief (d) Arthur Cayley |
|
Answer» (c) Prof. Wassily W. Leontief |
|
| 1134. |
Which of the following matrix has no inverse?(a) \( \begin{pmatrix} -1&1\\1&-4 \end{pmatrix}\)(b) \( \begin{pmatrix} 2&-1\\-4&2 \end{pmatrix}\)(c) \( \begin{pmatrix} cos\,a&sin\,a\\-sin\,a&cos\,a \end{pmatrix}\)(d) \( \begin{pmatrix} sin\,a&sin\,a\\-cos\,a&cos\,a \end{pmatrix}\) |
|
Answer» (b) \( \begin{pmatrix} 2&-1\\-4&2 \end{pmatrix}\) So \( \begin{pmatrix} 2&-1\\-4&2 \end{pmatrix}\) has no inverse. |
|
| 1135. |
The inverse matrix of \( \begin{pmatrix} \frac{4}{5}&\frac{5}{12}\\\frac{2}{5}&\frac{1}{2} \end{pmatrix}\) is(a) \(\frac{7}{30}\)\( \begin{pmatrix} \frac{1}{2}&\frac{5}{12}\\\frac{2}{5}&\frac{4}{5} \end{pmatrix}\)(b) \(\frac{7}{30}\)\( \begin{pmatrix} \frac{1}{2}&\frac{-5}{12}\\\frac{-2}{5}&\frac{1}{5} \end{pmatrix}\)(c) \(\frac{30}{7}\)\( \begin{pmatrix} \frac{1}{2}&\frac{5}{12}\\\frac{2}{5}&\frac{4}{5} \end{pmatrix}\)(d) \(\frac{30}{7}\)\( \begin{pmatrix} \frac{1}{2}&\frac{-5}{12}\\\frac{-2}{5}&\frac{4}{5} \end{pmatrix}\) |
|
Answer» (c) \(\frac{30}{7}\)\( \begin{pmatrix} \frac{1}{2}&\frac{5}{12}\\\frac{2}{5}&\frac{4}{5} \end{pmatrix}\) |
|
| 1136. |
Find the adjoint of the matrix A = \(\begin{bmatrix} 2&3\\1&4 \end{bmatrix}\) |
|
Answer» A = \(\begin{bmatrix} 2&3\\1&4 \end{bmatrix}\) Adj A = \(\begin{bmatrix}4&-3\\-1&2\end{bmatrix}\) |
|
| 1137. |
adj (AB) is equal to: (a) adj A adj B (b) adj AT adj BT (c) adj B adj A (d) adj BT adj AT |
|
Answer» (c) adj B adj A |
|
| 1138. |
If A = \( \begin{pmatrix}-1&2\\1&-4\end{pmatrix}\) then A (adj A) is: (a) \( \begin{pmatrix}-4&-2\\-1&-1\end{pmatrix}\)(b) \( \begin{pmatrix}4&-2\\-1&1\end{pmatrix}\)(c) \( \begin{pmatrix}2&0\\0&2\end{pmatrix}\)(d) \( \begin{pmatrix}0&2\\2&0\end{pmatrix}\) |
|
Answer» (c) \( \begin{pmatrix} 2&0\\0&2 \end{pmatrix}\) A = \( \begin{pmatrix} -1&2\\1&-4 \end{pmatrix}\) |A| = 4 – 2 = 2 We know that A (adj A) = |A| ⇒ 2\( \begin{pmatrix} 1&0\\0&1 \end{pmatrix}\) = \( \begin{pmatrix} 2&0\\0&2 \end{pmatrix}\) |
|
| 1139. |
......... Matrix is both symmetric and skew-symmetric matrix. |
| Answer» Null matrix is both symmetric and skew-symmetric matrix. | |
| 1140. |
The negative of a matrix is obtained b y multiplying it by ........... |
|
Answer» Let A is a given matrix, `therefore -A=-1[A]` So, the negative of a matrix is obtained by multiplying it by -1 . |
|
| 1141. |
Sum of two skew-symmetric matrices is always ......... Matrix. |
|
Answer» Let A is a given matrix, then (-A) is a skew symmetric matrix Similarly, for a given matrix -B is a skew -symmetric matrix. Hence -A-B=-(A+B)`rArr` sum of two skew symmetric matrices is always skew symmetric m atrix. |
|
| 1142. |
`{:(A),(B),(C):}overset(A" " B" " C)({:[(0,3,4),(3,0,5),(4,5,0)]:})` The above matrix represent the number of routes by which we can travel from one place to another. How many ways can a person travel from B to C?A. 3B. 5C. 0D. 4 |
|
Answer» Correct Answer - B Element in the second row third column. |
|
| 1143. |
A matrix of order `mxxn` contains 7 elements, then how many different order pairs (m,n) can take ?A. 2B. 1C. 3D. 7 |
|
Answer» Correct Answer - A Since the matrix contain 7 elements `implies 1xx7 or 7xx1` `:.` Two different order pairs are possible. |
|
| 1144. |
Write a matrix which contains 1 row and 3 columns. |
| Answer» Correct Answer - [a,b,c] | |
| 1145. |
There are 4 routes from city A to city B, 5 routes from city B to city C and 3 routes from city C to city A. Convert the above information into matrix form. |
| Answer» Correct Answer - `[{:(0,4,0),(0,0,5),(3,0,0):}]` | |
| 1146. |
The order of the matrix formed with the information given in the following table is ______. A. `1xx9`B. `9xx1`C. `3xx3`D. None of these |
|
Answer» Correct Answer - C `3xx3` |
|
| 1147. |
The element in the second row and third columns of the matrix `[{:(x,y,z,p),(a,b,c,d):}]` is _______A. xB. pC. dD. c |
|
Answer» Correct Answer - D The element in the second row and third column is c. |
|
| 1148. |
In the matrix `[{:(2,-1,4),(-3,0,5):}]`, the element in the second row and third column is __________A. 5B. 0C. 3D. 4 |
|
Answer» Correct Answer - A 5 |
|
| 1149. |
The order of the matrix formed with , the information given in the following tables is _______ |
| Answer» Correct Answer - `3xx3` | |
| 1150. |
The element in the second row and third column of the matrix `[{:(1,2,3),(4,5,6),(7,8,9):}]` is ________A. 7B. 6C. 8D. 9 |
|
Answer» Correct Answer - A (i) Draw the second horizontal line. (ii) Draw the third vertical line. (iii) The required element is the element on which the above two lines meet. |
|