InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1001. |
Let `A=[(2,1),(0,3)]` be a matrix. If `A^(10)=[(a,b),(c,d)]` then prove that `a+d` is divisible by 13. |
|
Answer» We have `A^(2)=[(2,1),(0,3)][(2,1),(0,3)]=[(4,5),(0,9)]` `A^(3)=A^(2)A=[(4,5),(0,9)][(2,1),(0,3)]=[(8,19),(0,27)]` `implies A^(n) =[(2^(n),3^(n)-2^(n)),(0, 3^(n))]` Now `A^(10)=[(a,b),(c,d)]` `implies a=2^(10), d=3^(10)` So, `a+b=2^(10)+3^(10)=4^(5)+9^(5)`, which is multiple of 13. |
|
| 1002. |
Show that the solution of the equation `[(x, y),(z, t)]^(2)=O` is `[(x,y),(z,t)]=[(pm sqrt(alpha beta),-beta),(alpha,pm sqrt(alpha beta))]` where `alpha, beta` are arbitrary. |
|
Answer» Given equation is `[(x,y),(z,t)]^(2)=[(0,0),(0,0)]` `implies [(x,y),(z,t)][(x,y),(z,t)]=[(x^(2)+yz,xy+yt),(zx+tz,zy+t^(2))]=[(0,0),(0,0)]` `implies x^(2)+yz=0` (1) `y(x+t)=0` (2) `z(x+t)=0` (3) `yz+t^(2)=0` (4) From (1) and (4), we have `x^(2)=t^(2)` or `x= pm t` Case I : If `x=t`, then from (2) and (3), we get `y=0, z=0` then from (1), x=0=t. Case II : If x = -t, then (2) and (3) are satified for all values of y and z. If we take `y=-beta, z=alpha`, then from (1), `x= pm sqrt(alpha beta)=-t` Obviously, case I is included in case II `(alpha=0=beta)`. Hence, the general solution of the given equation is `x=-t= pm sqrt(alpha beta), y=-beta, z=alpha` `implies [(x,y),(z,t)]=[(pm sqrt(alpha beta),-beta),(alpha, pm sqrt(alpha beta))]`, where `alpha, beta` are arbitrary |
|
| 1003. |
Let a be square matrix. Then prove that `A A^(T)` and `A^(T) A` are symmetric matrices. |
|
Answer» We have, `(A A^(T))^(T)=(A^(T))^(T)A^(T)=A A^(T)` Thus, `A A^(T)` is symmetric. Similarly, it can be proved that `A^(T)A` is symmetric. |
|
| 1004. |
Let `A=[(1,2),(-1,3)]` .If `A^6=kA-205I` then then numerical quantity of `k-40` should be |
|
Answer» `A=[(1,2),(-1,3)]` `implies A^(2)=[(1,2),(-1,3)][(1,2),(-1,3)]=[(-1,8),(-4,7)]=4A-5I` `implies A^(3)=A A^(2)=A(4A-5I)` `=4A^(2)-5A` `=4(4A-5I)-5A` `=11 A-20 I` `A^(6)=A^(3) A^(3)=(11A-20I)^(2)` `=121A^(2)-440 A+400 I` `=121 (4A-5I)-440 A+400 I` `=44A-205 I` |
|
| 1005. |
If A, B are square materices of same order and B is a skewsymmetric matrix, show that `A^(T)BA` is skew-symmetric. |
|
Answer» Matric B is skew-symmetric `:. B^(T)=-B` Now, `(A^(T)BA)^(T)=A^(T)B^(T) (A^(T))^(T)" "("as "(AB)^(T)=B^(T)A^(T))` `=A^(T)(-B)A` `=-A^(T) BA` Hence, `A^(T)BA` is a skew-symmetric matrix. |
|
| 1006. |
Write a square matrix of order 2, which is both symmetric and skew symmetric. |
|
Answer» Square matrix of order 2, which is both symmetric and skew symmetric is [(0,0),(0,0)] |
|
| 1007. |
If `A=[(1,2,3),(1,4,9),(1,8,27)]`, then | adj A| is equal toA. 12B. 144C. 72D. 64 |
|
Answer» Correct Answer - B |
|
| 1008. |
If `A=[(0,1,2),(1,2,3),(3,1,1)]`, then the sum of the all the diagonal entries of `A^(-1)` isA. 2B. 3C. `-3`D. 4 |
|
Answer» Correct Answer - d |
|
| 1009. |
If `A={:[(4,2),(3,4)],:}" then: "|adj.A|=`A. 16B. 10C. 6D. 8 |
|
Answer» Correct Answer - B |
|
| 1010. |
If A = \(\begin{bmatrix}ab & b^2 \\[0.3em]-a^2 & -ab \\[0.3em]\end{bmatrix}\), show that A2 = 0 |
|
Answer» Given, A = \(\begin{bmatrix} ab & b^2 \\[0.3em] -a^2 & -ab \\[0.3em] \end{bmatrix}\) A2 = \(\begin{bmatrix} ab & b^2 \\[0.3em] -a^2 & -ab \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} ab & b^2 \\[0.3em] -a^2 & -ab \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} a^2b^2-a^2b^2 & ab^3-ab^3 \\[0.3em] -a^3b+a^3b & -a^2b^2+a^2b^2 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 0 &0 \\[0.3em] 0 & 0 \\[0.3em] \end{bmatrix}\) = 0 Hence, A2 = 0 |
|
| 1011. |
The adjoint of matrix `[(1,-4),(3,2)]` isA. `[(2,-3),(4,1)]`B. `[(2,-4),(3,1)]`C. `[(-2,3),(-4,-1)]`D. `[(2,4),(-3,1)]` |
|
Answer» Correct Answer - D |
|
| 1012. |
If matrix ` A=[(1,2),(4,3)]` such that `Ax =I` then x=A. `(1)/(5)[(1,3),(2,-1)]`B. `(1)/(5)[(4,2),(4,-1)]`C. `(1)/(5)[(-3,2),(4,-1)]`D. `(1)/(5)[(-1,2),(-1,4)]` |
|
Answer» Correct Answer - c |
|
| 1013. |
If `A=[(3,2),(7,5)], B=[(6,7),(8,9)]` , then adj (AB) is equal toA. `[(94,-39),(-82,34)]`B. `[(94,-39),(82,-34)]`C. `[(94,-82),(-39,34)]`D. `[(-94,-39),(82,34)]` |
|
Answer» Correct Answer - A |
|
| 1014. |
Adjoint of the matrix `N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]]` isA. NB. 2NC. `-N`D. `2N` |
|
Answer» Correct Answer - A |
|
| 1015. |
If `A = [(0,-tan(alpha//2)),(tan(alpha//2),0)]` and `I` is a `2xx2` unit matrix, prove that `I+A=(I-A)[(cosalpha,-sinalpha),(sinalpha,cosalpha)]` |
|
Answer» Since, `I=[(1,0),(0,1)]` and given `A = [(0,-tan(alpha//2)),(tan(alpha//2),0)]` `therefore" " 1+A = [(1,-tan(alpha//2)),(tan(alpha//2),1)]` `RHS = (I-A)[(cosalpha,-sinalpha),(sinalpha,cosalpha)]` `=[(1,tan(alpha//2)),(-tan(alpha//2),1)][(cosalpha,-sinalpha),(sinalpha,cosalpha)]` `=[(1,tan(alpha//2)),(-tan(alpha//2),1)]` `[((1-tan^(2)alpha//2)/(1tan^(2)(alpha//2)),(-2tan(alpha//2))/(1+tan^(2)(alpha//2))),((2tan(alpha//2))/(1+tan^(2)(alpha//2)),(1-tan^(2)(alpha//2))/(1+tan^(2)(alpha//2)))]` `RHS = [(1,lambda),(-lambda,1)][((1-lambda^(2))/(1+lambda^(2)),(-2lambda)/(1+lambda^(2))),((2lambda)/(1+lambda^(2)),(1-lambda^(2))/(1+lambda^(2)))]` `[((1-lambda^(2)+2lambda^(2))/(1+lambda^(2))(-2lambda+lambda(1-lambda^(2)))/(1+lambda^(2))),((-lambda(1-lambda)^(2)+2lambda)/(l+lambda^(2))(2lambda^(2)+1-lambda^(2))/(1+lambda^(2)))]` `[((1+lambda^(2))/(1+lambda^(2))( lambda(1+lambda)^(2))/(1+lambda^(2))),((lambda(1+lambda^(2)))/(1+lambda^(2))(1+lambda^(2))/(1+lambda^(2)))]=[(1,-lambda),(lambda,1)]` `=[(1,-tan(alpha//2)),(-tan(alpha//2),1)][therefore lambda =(alpha//2)]` `=I+A` `=LHS` |
|
| 1016. |
Let `A=[[0,-tan(alpha//2)],[tan(alpha//2),0]]`and `I`be the identity matrixof order 2. Show that `I+A=(I-A)[[cosalpha,-sinalpha],[sinalpha,cosalpha]]`. |
|
Answer» Let `"tan"(alpha)/(2)=t.` Then, `cosalpha=(1-tan^(2)(alpha//2))/(1+tan^(2)(alpha//2))=(1-t^(2))/(1+t^(2))` and, `sinalpha=(2tan(alpha//2))/(1+tan^(2)(alpha//2))=(2t)/(1+t^(2)).` `:." "(I+A)=[{:(1,0),(0,1):}]+[{:(0,-t),(t," "0):}]=[{:(1,-t),(t," "1):}].` And, `:." "(I-A)=[{:(1,0),(0,1):}]-[{:(0,-t),(t," "0):}]=[{:(1," "t),(-t," "1):}].` `:." "(I-A).[{:(cosalpha,-sinalpha),(sinalpha,cosalpha):}]` `=[{:(1,t),(-t,1):}][{:((1-t^(2))/(1+t^(2)),(-2t)/(1+t^(2))),((2t)/(1+t^(2)),(1-t^(2))/(1+t^(2))):}]` `=[{:((1-t^(2))/(1+t^(2))+(2t^(2))/(1+t^(2)),(-2t)/(1+t^(2))+(t(1-t^(2)))/(1+t^(2))),((-t(1-t^(2)))/(1+t^(2))+(2t)/(1+t^(2))," "(2t^(2))/(1+t^(2))+(1-t^(2))/(1+t^(2))):}]` `=[{:(1,-t),(t," "1):}]=(I+A).` Hence, `(I+A)=(I-A)[{:(cosalpha,-sinalpha),(sinalpha,cosalpha):}].` |
|
| 1017. |
The statement are True or False:If (AB)’ = B’A’, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B. |
|
Answer» True ∵If A and B are any two matrices for which AB is defined, then (AB)’=B’A’. |
|
| 1018. |
Find the value of x, if `[1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0` |
|
Answer» We have, `[1 x 1]_(1xx3) [{:(1,3,2),(2,5,1),(15,3,2):}]_(3xx3)[{:(1),(2),(x):}]_(3xx1)=0` `rArr[1+2x+15+3 +5x+3 2+x+2]_(1xx3)[{:(1),(2),(x):}]_(3xx1)=0` `rArr [16+2x+(5x+6 ).2+(x+4).x]_(1xx1)=0` `rArr [16+2x+10x+12+x^(2)+4x]=0` `rArr [x^(2)+16x+28]= 0` `rArr [x^(2)+2x+14 x+28]=0` `rArr (x+2)(x+14)=0` `therefore x=-2,-14` |
|
| 1019. |
A matrix X has a + b rows and a + 2 columns while the matrix Y has b + 1 rows and a + 3 columns. Both matrices XY and YX exist. Find a and b. Can you say XY and YX are of the same type? Are they equal? |
|
Answer» X has a + b rows and a + 2 columns. ⇒ Order of X = (a + b) × (a + 2) Y has b + 1 rows and a + 3 columns. ⇒ Order of Y = (b + 1) × (a + 3) Recall that the product of two matrices A and B is defined only when the number of columns of A is equal to the number of rows of B. It is given that the matrix XY exists. ⇒ Number of columns of X = Number of rows of Y ⇒ a + 2 = b + 1 ∴ a = b – 1 The matrix YX also exists. ⇒ Number of columns of Y = Number of rows of X ⇒ a + 3 = a + b ∴ b = 3 We have, a = b – 1 ⇒ a = 3 – 1 ∴ a = 2 Thus, a = 2 and b = 3. Hence, Order of X = 5 × 4 And, Order of Y = 4 × 5. Order of XY = Number of rows of X × Number of columns of Y ⇒ Order of XY = 5 × 5 Order of YX = Number of rows of Y × Number of columns of X ⇒ Order of XY = 4 × 4 As the orders of the two matrices XY and YX are different, they are not of the same type and thus unequal. |
|
| 1020. |
For each real `x, -1 lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1) [(1,-x),(-x,1)]` and `z=(x+y)/(1+xy)`. ThenA. `A(z)=A(x) A(y)`B. `A(z)=A(x)-A(y)`C. `A(z)=A(x)+A(y)`D. `A(z)=A(x) [A(y)]^(-1)` |
|
Answer» Correct Answer - A `A(x)A(y)=(1-x)^(-1) (1-y)^(-1)[(1,-x),(-x,1)][(1,-y),(-y,1)]` `=(1+xy-(x+y))^(-1) [(,),(,)]` `=(1- (x+y)/(1+xy))^(-1) [(1+xy,-(x+y)),(-(x+y),1+xy)]=A(z)` |
|
| 1021. |
Find the matrix A such that `[{:(2,-1),(1,0),(-3,4):}].A=[{:(-1,-8,-10),(1,-2,-5),(9,22,15):}].` |
|
Answer» Clearly, the product is a `3xx2` matrix and the prefactor is a `3xx2` matrix. So, A must be a `2xx3` matrix. Let `A=[{:(x,y,z),(u,v,w):}].` Then the given equation becomes `[{:(2,-1),(1," "0),(-3," "4):}][{:(x,y,z),(u,v,w):}]=[{:(-1,-8,-10),(1,-2,-5),(9,22," "15):}]` or `[{:(2x-u,2y-v,2z-w),(x,y,z),(-3x+4u,-3y+4v,-3z+4w):}]=[{:(-1,-8,-10),(" "1,-2,-5),(" "9," "22," "15):}].` So, by the definition of equal matrices, we have `2x-u=-1,2y-v=-8,2z-w=-10,x=-2,z=-5.` `:." "x=1,y=-2,z=-5,u=3,v=4" and "w=0.` |
|
| 1022. |
If `[2-1 1 0-3 4]A=[-1-8-10 1-2-5 9 22 15]`, then sum of all the elements of matrix `A`is`0`b. `1`c. `2`d. `-3` |
|
Answer» Correct Answer - B Since the product matrix is `3xx3` matrix and the pre-multiplier of a is a `3xx2` matrix, therefore A is `2xx3` matrix. Let `A=[(l,m,n),(x,y,z)]`. Then the given equation becomes `[(2,-1),(1,0),(-3,4)][(l,m,n),(x,y,z)]=[(-1,-8,-10),(1,-2,-5),(9,22,15)]` or `[(2l-x,2m-y,2n-z),(l,m,x),(-3l+4x,-3m+4y,-3n+4z)]=[(-1,-8,-10),(1,-2,-5),(9,22,15)]` or `2l-x=-1, 2m-y=-8, 2n -z=-10`, `l=1, m=-2, n=-5` `implies x=3, y=4, z=0, l=1, m=-2, n=-5` `implies A=[(l,m,n),(x,y,z)]=[(1,-2,-5),(3,4,0)]` |
|
| 1023. |
If a matrix has 18 elements, what are the possible orders it can have? |
|
Answer» Number of entries = (Number of rows) x (Number of columns) = 18 If order is (a x b) then, Number of entries = a x b So now a x b = 18 (in this case) Possible cases are (1 x 18), (2 x 9), (3 x 6), (6 x 3), (9 x 2), (18 x 1) Conclusion: If a matrix has 18 elements, then possible orders are (1 x 18), (2 x 9), (3 x 6), (6 x 3), (9 x 2), (18 x 1) |
|
| 1024. |
If a matrix has 18 elements, what are the possibleorders it can have? What, if it has 5 elements? |
| Answer» `(18xx1),(1xx18),(9xx2),(2xx9),(6xx3),(3xx6)` | |
| 1025. |
Let A be an inbertible matrix. Which of the following is not true?A. `(A^(T))^(-1)=(A^(-1))^(T)`B. `A^(-1)=|A|^(-1)`C. `(A^(2))^(-1)=(A^(-1))^(2)`D. `|A^(-1)|=|A|^(-1)` |
|
Answer» Correct Answer - B |
|
| 1026. |
Write the order of each of the following matrices: (i) `A=[{:(3," "5," "4,-2),(0,sqrt(3),-1," "(4)/(9)):}]` (ii) `B =[{:(6,-5),((1)/(2),(3)/(4)),(-2,-1):}]` (iii) `C=[7" "-sqrt(2)" "5" "0]` (iv) `D=[8" "-3]` (v) `E=[{:(-2),(3),(0):}]` (vi) `F=[6]` |
| Answer» (i) `(2xx4)` (ii) `(3xx2)` (iii) `(1xx4)` (iv) `(1xx2)` (b) `(3xx1)` (vi) `(1xx1)` | |
| 1027. |
If `A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1)` exist and not equal to 0, then `(A^(2)-4A)A^(-1)=`A. `[(-3,2,2),(2,-3,2),(2,2,-3)]`B. `[(3,2,2),(2,3,2),(2,2,3)]`C. `[(5,2,0),(2,5,0),(0,2,5)]`D. `[(5,2,5),(2,5,5),(5,5,5)]` |
|
Answer» Correct Answer - A |
|
| 1028. |
If `A=[{:(5,-2,6," "1),(7," "0,8,-3),(sqrt(2)," "(3)/(5),4," "3):}]` then write (i) the number of rows in A, (ii) the number of columns in A, (iii) the order of the matrix A, (iv) the number of all entries in A, (v) the elements `a_(23),a_(31),a_(14),a_(33),a_(22)` of A. |
| Answer» (i) 3 (ii) 4 (iii) `3xx4` (iv) 12 (v) `a_(23)=8, a_(31)=sqrt(2),a_(14)=1,a_(33)=4,a_(22)=0` | |
| 1029. |
Using elementary transformations, find the inverse of the matrix`[[2,-3],[-1, 2]]` |
|
Answer» Here, `A = [[2,-3],[-1,2]]` We know, `A = IA` `=>[[2,-3],[-1,2]]= [[1,0],[0,1]]A` Applying `R_1->R_1+R_2` `=>[[1,-1],[-1,2]] = [[1,1],[0,1]]A` Applying `R_2->R_1+R_2` `=>[[1,-1],[0,1]] = [[1,1],[1,2]]A` Applying `R_1->R_1+R_2` `=>[[1,0],[0,1]] = [[2,3],[1,2]]A` `=>I = [[-1,3],[-1/2,1]]A` Comparing it with , `I = A^-1A` So, `A^-1 = [[2,3],[1,2]]` |
|
| 1030. |
`if A=[{:(1,-1,1),(2,1,-1),(-1,-2,2):}]` then show that `A^(-1)` Does not exist. |
|
Answer» We have `[{:(1,-1," "1),(2," "1,-1),(-1,-2," "2):}]=[{:(1,0,0),(0,1,0),(0,0,1):}].A` `implies" "[{:(1,-1," "1),(0," "3,-3),(0,-3," "3):}]=[{:(1,0,0),(-2,1,0),(1,0,1):}].A" "[{:(R_(2)toR_(2)-2R_(1)),(R_(3)toR_(3)+R_(1)):}]` `implies" "[{:(1,-1," "1),(0," "3,-3),(0," "0," "0):}]=[{:(1,0,0),(-2,1,0),(-1,1,1):}].A" "[R_(3)toR_(3)+R_(2)].` Thus, we have all zeros in 3rd row of the left-hand side matrix. Hence, `A^(-1)` does not exist. |
|
| 1031. |
Using elementary transformations, find the inverse of each of the matrices`[[2,-6],[ 1,-2]]` |
|
Answer» Here, `A = [[2,-6],[1,-2]]` We know, `A = IA` `=>[[2,-6],[1,-2]] = [[1,0],[0,1]]A` Applying `C_2->C_2+3C_1` `=>[[2,0],[1,1]] = [[1,3],[0,1]]A` Applying `C_1->C_1-C_2` `=>[[2,0],[0,1]] = [[-2,3],[-1,1]]A` Applying `C_1->C_1/2` `=>[[1,0],[0,1]] = [[-1,3],[-1/2,1]]A` `=>I = [[-1,3],[-1/2,1]]A` Comparing it with , `I = A^-1A` So, `A^-1 = [[-1,3],[-1/2,1]]` |
|
| 1032. |
Matrices A and B will be inverse of each other only if (A) `A B=B A`(B) `A B=B A=0`(C) `A B=0,B A=I`(D) `A B=B A=I` |
|
Answer» x*x^(-1)=1 similarly, B is inverse of A B*A=I-(1) A*B=I-(2) A*B=B*A-I |
|
| 1033. |
Find the inverse of the matrix`[{:(3,-1,-2),(2," "0,-1),(3,-5," "0):}]` |
| Answer» `(-1)/(8).[{:(5,-10,-1),(3,-6," "1),(10,-12,-2):}]` | |
| 1034. |
Using elementarytransformations, find the inverse of the matrix :`[[2, 0,-1],[ 5, 1, 0],[ 0, 1, 3]]` |
|
Answer» We have `[{:(2,0,-1),(5,1,0),(0,1,3):}]=[{:(1,0,0),(0,1,0),(0,0,1):}].A` `implies" "[{:(2,0,-1),(1,1,2),(0,1,3):}]=[{:(1,0,0),(-2,1,0),(0,0,1):}].A" "[R_(2)toR_(2)-2R_(1)]` `implies" "[{:(1,1,2),(2,0,-1),(0,1,3):}]=[{:(-2,1,0),(1,0,0),(0,0,1):}].A" "[R_(1)harrR_(2)]` `implies" "[{:(1,1,2),(0,-2,-5),(0,1,3):}]=[{:(-2,1,0),(5,-2,0),(0,0,1):}].A" "[R_(2)toR_(2)-2R_(1)]` `implies" "[{:(1," "1," "2),(0," "1," "3),(0,-2,-5):}]=[{:(-2," "1,0),(0," "0,1),(5,-2,0):}].A" "[R_(2)harrR_(3)]` `implies" "[{:(1,0,-1),(0,1,3),(0,0,1):}]=[{:(-2," "1,-1),(0," "0," "1),(5,-2," "2):}].A" "[{:(R_(1)toR_(1)-R_(2)),(R_(3)toR_(3)+2R_(2)):}]` `implies" "[{:(1,0,0),(0,1,0),(0,0,1):}]=[{:(" "3,-1," "1),(-15," "6,-5),(" "5,-2," "2):}].A" "[{:(R_(1)toR_(1)+R_(3)),(R_(2)toR_(2)-3R_(3)):}].` Hence, `A^(-1)=[{:(3,-1," "1),(-15," "6,-5),(5,-2," "2):}].` |
|
| 1035. |
Using elementary transformations, find the inverse of the matrix`[[2,-3, 3],[ 2, 2, 3],[ 3,-2, 2]]` |
|
Answer» Let `A = [[2,-3,3],[2,2,3],[3,-2,2]]` We know, `A = AI` `:. [[2,-3,3],[2,2,3],[3,-2,2]] = A[[1,0,0],[0,1,0],[0,0,1]]` Applying `C_2->C_2+C_3` on both sides, `[[2,0,3],[2,5,3],[3,0,2]] = A[[1,0,0],[0,1,0],[0,1,1]]` Applying `C_1->C_3-C_1` on both sides, `[[1,0,3],[1,5,3],[-1,0,2]] = A[[-1,0,0],[0,1,0],[1,1,1]]` Applying `C_3->C_3-3C_1` on both sides, `[[1,0,0],[1,5,0],[-1,0,5]] = A[[-1,0,3],[0,1,0],[1,1,-2]]` Applying `C_3->C_2/5 and C_3->C_3/5` on both sides, `[[1,0,0],[1,1,0],[-1,0,1]] = A[[-1,0,3/5],[0,1/5,0],[1,1/5,-2/5]]` Applying `C_1->C_1 - C_2` on both sides, `[[1,0,0],[0,1,0],[-1,0,1]] = A[[-1,0,3/5],[-1/5,1/5,0],[4/5,1/5,-2/5]]` Applying `C_1->C_1 + C_3` on both sides, `[[1,0,0],[0,1,0],[0,0,1]] = A[[-2/5,0,3/5],[-1/5,1/5,0],[2/5,1/5,-2/5]]` This is the form, `I = A A^-1` `:. A^-1 = [[-2/5,0,3/5],[-1/5,1/5,0],[2/5,1/5,-2/5]]` |
|
| 1036. |
Let a be a `3xx3` matric such that `[(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)]`, then find `A^(-1)`. |
|
Answer» We have, `A[(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)]` To get `A^(-1)`, we have to transform this equation to `AB=I`. So, we will be using elementary column tranformations. Applying `C_(1) harr C_(3)`, we get `A[(3,1,2),(3,0,2),(1,0,1)]=[(1,0,0),(0,1,0),(0,0,1)]` Applying `C_(2) harr C_(3)`, we get `A[(3,1,2),(3,0,2),(1,0,1)]=[(1,0,0),(0,1,0),(0,0,1)]` `implies A^(-1) =[(3,1,2),(3,0,2),(1,0,1)]` |
|
| 1037. |
Using elementarytransformations, find the inverse of the matrix :`(2 0-1 5 1 0 0 1 3)` |
|
Answer» Let `A=[(2,0,-1),(5,1,0),(0,1,3)]` We kanow that `A=IA`. Therefore, `[(2,0,-1),(5,1,0),(0,1,3)]=[(1,0,0),(0,1,0),(0,0,1)]A` Applying `R_(1) rarr 1/2 R_(1)`, we have `[(1,0,-1/2),(5,1,0),(0,1,3)]=[(1/2,0,0),(0,1,0),(0,0,1)]A` Applying `R_(2) rarr R_(2)-5R_(1)`, we have `[(1,0,-1/2),(0,1,5/2),(0,1,3)]=[(1/2,0,0),(-5/2,1,0),(0,0,1)]A` Applying `R_(3) rarr R_(3)-R_(2)`, we have `[(1,0,-1/2),(0,1,5/2),(0,0,1/2)]=[(1/2,0,0),(-5/2,1,0),(5/2,-1,1)]A` Applying `R_(3) rarr 2R_(3)`, we have `[(1,0,-1/2),(0,1,5/2),(0,0,1)]=[(1/2,0,0),(-5/2,1,0),(5,-2,2)]A` Applying `R_(1) rarr R_(1)+1/2 R_(3)` and `R_(2) rarr R_(2) -5/2 R_(3)`, we have `[(1,0,0),(0,1,0),(0,0,1)]=[(3,-1,1),(-15,6,-5),(5,-2,2)]A` `A^(-1)=[(3,-1,1),(-15,6,-5),(5,-2,2)]` |
|
| 1038. |
Usingelementary transformations, find the inverse of the matrix`(1 3-2-3 0-1 2 1 0)` |
| Answer» `[{:(1,-2,-3),(-2," "4," "7),(-3," "5," "9):}]` | |
| 1039. |
If n = p, then the order of the matrix 7X – 5Z is: (A) p x 2 (B) 2 x n (C) n x 3 (D) p x n |
|
Answer» Answer is (B) X is of order 2 x n Z is of order 2 x p 2 x n = 2 x p given n = p |
|
| 1040. |
The restriction on n, k and p so that PY + WY will be defined are: (A) k = 3, p = n (B) k is arbitrary, p = 2 (C) p is arbitrary, k = 3 (D) k = 2,p = 3 |
|
Answer» Answer is (A) [P]p x k [Y]3x k + [W]n x 3[Y]3x k [P]{y} is possible only when k = 3 [P][Y] + [W][Y] is possible only when the order of [P][y] = order of [W][Y] P x K = n x k ∴ P = n |
|
| 1041. |
Which of the following is (are) NOT the square of a `3xx3` matrix with real entries ?A. `[(1,0,0),(0,1,0),(0,0,-1)]`B. `[(1,0,0),(0,-1,0),(0,0,-1)]`C. `[(-1,0,0),(0,-1,0),(0,0,-1)]`D. `[(1,0,0),(0,1,0),(0,0,1)]` |
|
Answer» Correct Answer - A::C `A=B^(2)implies |A|=|B|^(2)=`+ve (1) `|(1,0,0),(0,1,0),(0,0,-1)|=1(-1) lt 0` Matrix B can not possible. (2) `|(1,0,0),(0,-1,0),(0,0,-1)|=1 (1-0) gt 0` (3) `|(-1,0,0),(0,-1,0),(0,0,-1)|=-1 lt 0` Matrix B can not be possible. (4) `|(1,0,0),(0,1,0),(0,0,1)|=1 gt 0` Matrix B can be `I` (identity matrix). |
|
| 1042. |
Let `omega`be a complex cube root of unity with `omega!=1a n dP=[p_(i j)]`be a `nxxn`matrix withe `p_(i j)=omega^(i+j)dot`Then `p^2!=O ,w h e nn=`a.`57`b. `55`c. `58`d. `56`A. 57B. 55C. 58D. 56 |
|
Answer» Correct Answer - A We have, `P=[P_(ij)]_(nxxx)` `:. (P^2)_(ij)=sum_(r=1)^n p ir" " prj=sum_(r=1)^nomega^(i+r)omega^(r+j)=sum_(r-1)^nomega^(i+j+2r)` `=omega^(i+j)sum_(r=1)^n(omega^2)^r=omega^(i+j)[omega^2{((omega^2)^n-1)/(omega^2-1)}]` `=(omega^(i+j+2))/(omega^2-1)(omega^(2n)-1)` Now, `P^2=O` `rArr (P^2)_(ij)=0" for all " o,j` `rArr (omega^(i+j+2))/(omega^2-1)(omega^(2n)-1)=0" for all "i,j` `rArr omega^(2n)=1` `rArr " n is a multiple of 3"` Clearly, 57 is a multiple of 3, So, option (a) is correct. |
|
| 1043. |
If `omega!=1` is a complex cube root of unity, then prove that `[{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(2017)),(omega^(2017),omega^(2018),2+2omega^(2017)+omega^(2018)):}]`is singular |
|
Answer» Let `A=[{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(17)),(omega^(17),omega^(18),2+2omega^(2017)+omega^(2018)):}]` ` therefore" " omega^(3)=1rArr omega^(2017)=omega` and `omega^(2018)=omega^(2)` then `[(1+2omega+omega^(2),omega^(2),1),(1,1+omega^(2)+2omega,omega),(omega,omega^(2),2+omega+2omega^(2))]` `=[(omega,omega^(2),1),(1,omega,omega),(omega,omega^(2),-omega)]" " [therefore1+omega+omega^(2)=0]` Now, `|A|= [(omega,omega^(2),1),(1,omega,omega),(omega,omega^(2),-omega)]= omega[(omega,omega,1),(1,1,omega),(omega,omega,-omega)]=0 thus, `|A|=0.` Hence, A is singular matrix. |
|
| 1044. |
Let `A=((1,0,0),(2,1,0),(3,2,1))`. If `u_(1)` and `u_(2)` are column matrices such that `Au_(1)=((1),(0),(0))` and `Au_(2)=((0),(1),(0))`, then `u_(1)+u_(2)` is equal to :A. `((-1),(1),(0))`B. `((-1),(1),(-1))`C. `((-1),(-1),(0))`D. `((1),(-1),(-1))` |
|
Answer» Correct Answer - D `A(u_(1)+u_(2))=[(1),(1),(0)]` Now `|A|=1` `A^(-1)=1/(|A|)` adj A `u_(1)+u_(2)=A^(-1) [(1),(1),(0)]=[(1,0,0),(-2,1,0),(1,-2,1)][(1),(1),(0)]=[(1),(-1),(-1)]` |
|
| 1045. |
Find the value of `a`if `[a-b2a+c2a-b3c+d]=[-1 5 0 13]` |
|
Answer» Correct Answer - `a=1, b=2, c=3, d=4` `[(a-b,2a+c),(2a-b,3c+d)]=[(-1,5),(0,13)]` As the two matrices are equal, their corresponding elements are also equal. Comparing the corresponding elements, we get `a-b=-1` (1) `2a-b=0` (2) `2a+c=5` (3) `3c+d=13` (4) From (2), we have `b=2a` Then, from (1), we have `a-2a=-1` or `a=1` `implies b=2` Now, from (3), we have `2xx1+c=5` or `c=3` From (4), we have `3xx3+d=13` or `9+d=13` or `d=4` `:. a=1, b=2, c=3` and `d=4` |
|
| 1046. |
If [2 ,1 ,3]\(\begin{bmatrix}-1& 0 & -1 \\[0.3em]-1 &1 &0 \\[0.3em]0 &1 &1\end{bmatrix}\)\(\begin{bmatrix}1 \\[0.3em]0 \\[0.3em]-1\end{bmatrix}\)= A, then write the order of matrix A. |
|
Answer» We are given that, [2 ,1 ,3]\(\begin{bmatrix}-1& 0 & -1 \\[0.3em]-1 &1 &0 \\[0.3em]0 &1 &1\end{bmatrix}\)\(\begin{bmatrix}1 \\[0.3em]0 \\[0.3em]-1\end{bmatrix}\)= A We need to find the order of the matrix A. Let the matrices be, X = [2 ,1 ,3] Y = \(\begin{bmatrix}-1& 0 & -1 \\[0.3em]-1 &1 &0 \\[0.3em]0 &1 &1\end{bmatrix}\) Z = \(\begin{bmatrix}1 \\[0.3em]0 \\[0.3em]-1\end{bmatrix}\) Let us find the order of X. Number of rows of matrix X = 1 Number of columns of matrix X = 3 So, Order of matrix X = 1 × 3 …(i) Now, let us find the order of Y. Number of rows of matrix Y = 3 Number of columns of matrix Y = 3 So, Order of matrix Y = 3 × 3 …(ii) From (i) and (ii), Order of resulting XY = 1 × 3 [∵ Number of columns of X = Number of rows of Y] …(iii) Let us find the order of Z. Number of rows of matrix Z = 3 Number of columns of matrix Z = 1 So, Order of matrix Z = 3 × 1 …(iv) Order of resulting XYZ = 1 × 1 [∵ Number of columns of XY = Number of rows of Z] Thus, The order of matrix A = 1 × 1 |
|
| 1047. |
Find the number of all possible matrices of order `3xx3` with each entry 0 or 1. How many of these are symmetric ? |
|
Answer» Correct Answer - `2^(9), 2^(6)` The given matrix of the order `3xx3` ha 9 elements and each of these elements can be either 0 or 1. Now, each of the 9 elements can be chosen in two possible ways. Therefore, by the multiplication principle, the required number of possible matrices is `2^(9)=512`. Each of the diagonal and upper triangle elements can be chosen in two ways. So, number of symmetric matrices is `2^(6)`, as lower triangle elements are same as corresponding upper triangle elements. |
|
| 1048. |
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3. |
|
Answer» We are given with the information that, Each element of the 2 × 2 matrix can be filled in 3 ways, either 1, 2 or 3. We need to find the number of total 2 × 2 matrices with each entry 1, 2 or 3. Let A be 2 × 2 matrix such that, A =\(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\) Note that, There are 4 elements in the matrix. So, If 1 element can be filled in 3 ways, either 1, 2 or 3. That is, Number of ways in which 1 element can be filled = 31 Then, Number of ways in which 4 elements can be filled = 34 ⇒ Number of ways in which 4 elements can be filled = 81 Thus, Total number of 2 × 2 matrices with each entry 1, 2 or 3 is 81. |
|
| 1049. |
Matrix A = \(\begin{bmatrix}0 & 2b & -2 \\[0.3em]3& 1 &3 \\[0.3em]3a & 3 &-1\end{bmatrix}\) is given to be symmetric, find the values of a and b. |
|
Answer» We are given that, A = \(\begin{bmatrix} 0 & 2b & -2 \\[0.3em] 3& 1 &3 \\[0.3em] 3a & 3 &-1 \end{bmatrix}\)is symmetric matrix. We need to find the values of a and b. We must understand what symmetric matrix is. A symmetric matrix is a square matrix that is equal to its transpose. A symmetric matrix ⇔ A = AT This means, We need to find the transpose of matrix A. Let us take transpose of the matrix A. We know that, The transpose of a matrix is a new matrix whose rows are the columns of the original. We have, 1st row of matrix A = (0 ,2b, -2) 2nd row of matrix A = (3,1, 3) 3rd row of matrix A = (3a ,3 ,-1) For matrix AT, it will become 1st column of AT = 1st row of A = (0 ,2b,-2) 2nd column of AT = 2nd row of A = (3,1 ,3) 3rd column of A T = 3rd row of A = (3a,3 ,-1) ∴ AT = \(\begin{bmatrix} 0 & 3 & 3a \\[0.3em] 2b& 1 &3 \\[0.3em] -2 & 3 &-1 \end{bmatrix}\) Now, as A = AT. Substituting the matrices A and AT, we get \(\begin{bmatrix} 0 & 2b & -2 \\[0.3em] 3& 1 &3 \\[0.3em] 3a & 3 &-1 \end{bmatrix}\)= \(\begin{bmatrix} 0 & 3 & 3a \\[0.3em] 2b& 1 &3 \\[0.3em] -2 & 3 &-1 \end{bmatrix}\) We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 Applying this property, we can write 2b = 3 …(i) -2 = 3a …(ii) 3 = 2b 3a = -2 We can find a and b from equations (i) and (ii). From equation (i), 2b = 3 ⇒ b = \(\frac{ 3}{2}\) From equation (ii), - 2 = 3a ⇒ a = \(-\frac{ 2}{3}\) Thus, we get a = \(-\frac{ 2}{3}\) and b = \(\frac{ 3}{2}\). |
|
| 1050. |
Let A be a matrix of order 3, such that `A^(T)A=I`. Then find the value of det. `(A^(2)-I)`. |
|
Answer» det. `(A^(2)-I)=` det. `(A A-A^(T)A)` = det. `[(A-A^(T))A]` =det. `(A-A^(T))` det. A Now, `A-A^(T)` is skew-symmetric matrix. `:.` dte. `(A-A^(T))=0` `implies` det. `(A^(2)-I)=0` |
|