

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
901. |
If A and B are square matrices of order `n ,`then prove that `Aa n dB`will commute iff `A-lambdaIa n dB-lambdaI`commute for every scalar `lambdadot`A. `AB=BA`B. `AB+BA=O`C. `A=-B`D. none of these |
Answer» Correct Answer - A `(A-lambda I) (B-lambda I)=(B-lambda I) (A-lambda I)` or `AB-lambda(A+B)I+lambda^(2)I^(2)=BA-lambda(B+A)I+lambda^(2)I^(2)` or `AB=BA` |
|
902. |
If `Aa n dB`are two non-singular matrices of the same order such that `B^r=I ,`for some positive integer `r >1,t h e nA^(-1)B^(r-1)A=A^(-1)B^(-1)A=``I`b. `2I`c. `O`d. -IA. `I`B. `2I`C. 0D. `-I` |
Answer» Correct Answer - C Given, `B^(r) = I rArr B^(r) B^(-1) = IB^(-1)` `rArr B^(r-1) = B^(-1)` `therefore A^(-1) B^(r-1) A= A^(-1) B^(-1) A` ` rArr A^(-1) B^(r-1) A- A^(-1) B^(-1) A = 0 ` |
|
903. |
The equation `[1 x y][(1,3,1),(0,2,-1),(0,2,-1)] [(1),(x),(y)]=[0]` hasA. `{:("(i)",(ii)),((p),"(r)"):}`B. `{:("(i)",(ii)),((q),"(p)"):}`C. `{:("(i)",(ii)),((p),"(q)"):}`D. `{:("(i)",(ii)),((r),"(p)"):}` |
Answer» Correct Answer - C `[(1,x,y)][(1,3,1),(0,2,-1),(0,0,1)]=[(1),(x),(y)]=10` or `[(1,3+2x,1-x+y)] [(1),(x),(y)]=[0]` or `[1+3x+2x^(2)+y-xy+y^(2)]=[0]` or `2x^(2)+y^(2)+y+3x-xy+1=0` if `y=0, 2x^(2)+3x+1=0` or `(2x+1) (x+1)=0` or `x=-1//2, -1` (rational roots) If `y=-1, 2x^(2)+4x+1=0` or `x=(-4 pm sqrt(12))/4 =(-2 pm sqrt(3))/2` (irrational roots) |
|
904. |
The number of diagonal matrix, `A`or order`n`which `A^3=A`is a. is a a. 1 b. 0 c. `2^n`d. `3^n`A. 1B. 0C. `2^(n)`D. `3^(n)` |
Answer» Correct Answer - D A= diag `(d_(1), d_(2), .... ,d_(n))` Given, `A^(3)=A` `implies` diag `(d_(1)^(3), d_(2)^(3), ...., b_(n)^(3))=` diag `(d_(1), d_(2), ... , d_(n))` `implies d_(1)^(3)=d_(1), d_(2)^(3)=d_(2),..., d_(n)^(3)=d_(n)` Hence, all `d_(1), d_(2), d_(3), ..., d_(n)` have three possible values `pm 1, 0`. Each diagonal element can be selected in three ways. Hence, the number of different matrices is `3^(n)`. |
|
905. |
Let `A`, `B` are square matrices of same order satisfying `AB=A` and `BA=B` then `(A^(2010)+B^(2010))^(2011)` equals.A. `A+B`B. `2010(A+B)`C. `2011(A+B)`D. `2^(2011)(A+B)` |
Answer» Correct Answer - D `(d)` Given `AB=A` and `BA=B` `implies{:(A^(2)=A),(B^(2)=B):}` `implies{:(A^(n)=A),(B^(n)=B):}` `implies(A^(2010)+B^(2010))^(2011)=(A+B)^(2011)` Now `(A+B)^(2)=A^(2)+B^(2)+AB+BA` `=2(A+B)` `implies(A+B)^(k)=2^(k)(A+B)` `implies(A^(2010)+B^(2010))^(2011)=(A+B)^(2011)=2^(2011)(A+B)` |
|
906. |
If the orthogonal square matrices `A` and `B` of same size satisfy `detA+detB=0` then the value of `det(A+B)`A. `-1`B. `1`C. `0`D. none of these |
Answer» Correct Answer - C `(c )` Since `A` and `B` are orthogonal, det `A=-1`, det `B=1`, or the other way round Now `A^(T)(A+B)B^(T)=(A+B)^(T)` We have on taking determinants on both sides `(detA)det(A+B)detB=det(A+B)` `implies-det(A+B)=det(A+B)` `impliesdet(A+B)=0` |
|
907. |
The number of `2xx2` matrices `A`, that are there with the elements as real numbers satisfying `A+A^(T)=I` and `A A^(T)=I` isA. zeroB. oneC. twoD. infinite |
Answer» Correct Answer - C `(c )` `A=({:(a,b),(c,d):})` `A+A^(T)=I` `implies({:(a,b),(c,d):})+({:(a,c),(b,d):})=({:(1,0),(0,1):})` `implies2a=1`, `b+c=0`, `2d=1` `impliesa=(1)/(2)`, `c=-b`, `d=(1)/(2)` `impliesA=({:((1)/(2),b),(-b,(1)/(2)):})` Now `AA^(T)=I` `implies({:((1)/(2),b),(-b,(1)/(2)):})({:((1)/(2),-b),(b,(1)/(2)):})=I` `implies({:((1)/(4)+b^(2),0),(0,b^(2)+(1)/(4)):})=({:(1,0),(0,1):})` `impliesb^(2)+(1)/(4)=1impliesb=+-(sqrt(3))/(2)` `:.A=({:((1)/(2),(sqrt(3))/(2)),(-(sqrt(3))/(2),(1)/(2)):})and({:((1)/(2),-(sqrt(3))/(2)),((sqrt(3))/(2),(1)/(2)):})` No. of matrices `=2` |
|
908. |
Let `Aa n dB`be two `2xx2`matrices. Consider the statements`A B=O A+OorB=O``A B=I_2 A=B^(-1)``(A+B)^2=A^2+2A B+B^2`(i) and (ii) are false, (iii) is true(ii) and (iii) are false, (i) is true(i) is false (ii) and, (iii) are true(i) and (iii) are false, (ii) is trueA. (i) and (ii) are false, (iii) is trueB. (ii) and (iii) are false, (i) is trueC. (i) is false, (ii) and (iii) are trueD. (i) and (iii) are false, (ii) is true |
Answer» Correct Answer - D (i) is false. If `A=[(0,1),(0,-1)]` and `B=[(1,1),(0,0)]`, then `AB=[(0,0),(0,0)]=O` (ii) is true as the product AB is an identity matrix, if and only if B is inverse of the matrix A. (iii) is false since matrix multiplication in not commutative. |
|
909. |
Give an example of twonon-zero `2xx2`matrices `A`and `B`such that `A B=O`. |
Answer» Let `A=[{:(1,1),(1,1):}]" and "B=[{:(" "1,-1),(-1," "1):}]`. Then, `AB=[{:(1,1),(1,1):}][{:(" "1,-1),(-1," "1):}]` `=[{:(1-1,-1+1),(1-1,-1+1):}]=[{:(0,0),(0,0):}]` and `BA=[{:(" "1,-1),(-1," "1):}][{:(1,1),(1,1):}]` `=[{:(" "1-1," "1-1),(-1+1,-1+1):}]=[{:(0,0),(0,0):}].` Thus, `AneO, BneO.` But, AB=BA=O. |
|
910. |
The number of 3 3 non-singular matrices, with four entries as 1 andall other entries as 0, is(1) 5(2) 6 (3) at least 7 (4) less than 4A. 5B. 6C. atleast 7D. less then 4 |
Answer» Correct Answer - C First row with exactly one zero `therefore ` Total number of cases = 6 First row 2 zeroes, we get more cases. `therefore ` Total we get more then 7. |
|
911. |
If `X`and `Y`are `2xx2`matrices, then solvethe following matrix equations for `X`and `Ydot``2X+3Y=[2 3 4 0]`, `3X+2Y=[-2 2 1-5]` |
Answer» We have, ` 2X+3Y=[{:(2,3),(4,0):}]` and `3X+2Y=[{:(-2,2),(1,-5):}]` On subtracting Eq. i from Eq. ii we get `therefore (3X+2Y)-(2X_3Y)=[{:(-2,-2,2-3),(1-4,-5,0):}]` `(X-Y)=[{:(-4,-1),(-3,-5):}]` On adding Eqs. I and ii, we get `( 5X+5Y)=[{:(0,5),(5,-5):}]` `rArr (X+Y)=(1)/(5)[{:(-2,0),(-2,-6):}]` `therefore X=[{:(-2,0),(-1 ,-3):}]` From Eq. iv, `[{:(-2,0),(-1,-3):}]+y=[{:(0,1),(1,-1):}]` `therefore Y=[{:(2,1),(2,2):}]` and ` X=[{:(-2,0),(-1, -3):}]` |
|
912. |
Let `K`be a positive real number and`A=[2k-1 2sqrt(k)2sqrt(k)2sqrt(k)1-2k-2sqrt(k)2k-1]a n dB=[0 2k-1sqrt(k)1-2k0 2-sqrt(k)-2sqrt(k)0]`.If det `(a d jA)+det(a d jB)=10^6,t h e n[k]`is equal to.[Note: `a d jM`denotes the adjoint of a square matix `M`and `[k]`denotes the largest integer less than or equal to `K`]. |
Answer» Correct Answer - D `abs(A) = (2k-1)(-1+4k^(2))+ 2sqrt(k) (2sqrt(k)+4ksqrt(k))` `+ 2 sqrt(k)(4ksqrt(k)+2sqrt(k)) (2k-1) (4k^(2)-1)` `+ 4k + 8k^(2) + 8k^(2) + 4k` `=(2k-1)(4k^(2)-1)+8k+16k^(2)` `= 8k^(3) - 4k^(2)-2k + 1 + 8k + 16k^(2)` `=8k^(3) + 12k^(2) + 6k +1` `abs(B) = 0 ` is skew-symmetric matrix of odd order. `rArr (8k^(3) + 12k^(2) + 6k+1)^(2) = (10^(3))^(2)` `rArr (2k+1)^(3) = 10^(3)` `rArr 2k +1 =10` `rArr k = 4.5` `rArr [k] = 4` |
|
913. |
Let P be an odd prime number and `T_(p)` be the following set of `2xx2` matrices : The number of A in `T_(p)` such that the trace of a is not divisible by p but det (A) divisible by p is [Note : The trace of matrix is the sum of its diaginal entries].A. `(p-1) (p^(2)-p+1)`B. `p^(3)-(p-1)^(2)`C. `(p-1)^(2)`D. `(p-1) (p^(2)-2)` |
Answer» Correct Answer - C | |
914. |
The number of `3xx3`matrices `A`whose entries are either `0or1`and for which the system `A[x y z]=[1 0 0]`has exactly two distinct solution isa. 0 b. `2^9-1`c. `168`d. `2`A. oB. `2^(9) -1`C. 168D. 2 |
Answer» Correct Answer - A Three planes cannot meet only at two distinect points. Hence. Number of matrices = 0 |
|
915. |
Let A be the set of all `3xx3` symmetric matrices all of whose either 0 or 1. Five of these entries are 1 and four of them are 0. The number of matrices A in A for which the system of linear equations `A[(x),(y),(z)]=[(1),(0),(0)]` has a unique solution isA. less than 4B. at least 4 but less than 7C. at least 7 but less than 10D. at leat 10 |
Answer» Correct Answer - B `[(0,a,b),(a,0,c),(b,c,1)]` Either `b=0` or `c=0implies |A| ne 0` `implies` two matrices `A=[(0,a,b),(a,1,c),(b,c,0)]` Either `a=0` or `c=0 implies |A| ne 0` `implies` two matrices `A=[(1,a,b),(a,0,c),(b,c,0)]` Either `a=0` or `b=0implies |A| ne 0` `implies` two matrices `A=[(1,a,b),(a,1,c),(b,c,1)]` `a=b=0 implies |A|=0` `a=c=0 implies |A|=0` `b=c=0 implies |A| =0` Therefore, there will be only six matrices. |
|
916. |
Let p be an odd prime number and `T_p` be the following set of 2 x 2 matrices `T_p={A=[(a,b),(c,a)]} , a,b,c in ` {0,1,2,…, p -1} The number of A in `T_p` such that A is either symmetric or skew-symmetric or both and det(A) is divisible by p is: [Note: the trace of a matrix is the sum of its diagonal entries.]A. `2P^(2)`B. `p^(3)-5p`C. `p^(3) 3p`D. `P^(3) = p^(2)` |
Answer» Correct Answer - B If A is symmetric matrix, then b = c `therefore det (A) = abs((a,b),(b,a))= a^(2) - b^(2) = (a+b) (a-b)` `a, b, c, in {0, 1, 2, 3,..., P-1}` Number of numbers of type `np=1` `np+1=1` `np + 2 =1` ` ………` `……….` `np_(p-1) = 1 AA n in I` Total number of `A= pxx pxxp=p^(3)` Number of A such that det `(A)` divisible by `p` `= (p-1)^(2)+` numbre of A in which `a = 0` `= (p-1)^(2)+ p + p -1 =p^(2)` Required number `= p^(3) - p^(2)` |
|
917. |
Let p be an odd prime number and `T_p`, be the following set of `2 xx 2` matrices `T_p={A=[(a,b),(c,a)]:a,b,c in {0,1,2,.........p-1}}` The number of A in `T_p`, such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p isA. `(p-1)(p^(2)-p+1)`B. `p^(3)-(p-1)^(2)`C. `(p-1)^(2)`D. `(p-1) (p^(2) - 2)` |
Answer» Correct Answer - A If A is symmetric matrix, then b = c `therefore det (A) = abs((a,b),(b,a))= a^(2) - b^(2) = (a+b) (a-b)` `a, b, c, in {0, 1, 2, 3,..., P-1}` Number of numbers of type `np=1` `np+1=1` `np + 2 =1` ` ………` `……….` `np_(p-1) = 1 AA n in I` As Tr (A) not divisible by `p rArr a ne 0 ` det `(A)` is divisible by `p rArr a^(2) - bc` divisible by `p` Number of ways of selection of a, b, c `= (p-1) [(p-1) xx1] = (p-1)^(2)` |
|
918. |
Let p be an odd prime number and `T_p` be the following set of 2 x 2 matrices `T_p={A=[(a,b),(c,a)]} , a,b,c in ` {0,1,2,…, p -1} The number of A in `T_p` such that A is either symmetric or skew-symmetric or both and det(A) is divisible by p is: [Note: the trace of a matrix is the sum of its diagonal entries.]A. `(p-1)^(2)`B. `2(p-1)`C. `(p-1)^(2)+1`D. `2p-1` |
Answer» Correct Answer - D If A is symmetric matrix, then b = c `therefore det (A) = abs((a,b),(b,a))= a^(2) - b^(2) = (a+b) (a-b)` `a, b, c, in {0, 1, 2, 3,..., P-1}` Number of numbers of type `np=1` `np+1=1` `np + 2 =1` ` ………` `……….` `np_(p-1) = 1 AA n in I` as det (A) is divisible by `p rArr` either `a+b` divisible by `p` corresponding number of ways `= (p -1)` [excluding zero] or `(a-b)` is divisible by `p` corresponding number of ways `= p` Total Number of ways ` = 2p -1` |
|
919. |
Let p be an odd prime number and `T_p`, be the following set of `2 xx 2` matrices `T_p={A=[(a,b),(c,a)]:a,b,c in {0,1,2,.........p-1}}` The number of A in `T_p`, such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p isA. `2p^(2)`B. `p^(3)-5p`C. `p^(3)-3p`D. `p^(3)-p^(2)` |
Answer» Correct Answer - D | |
920. |
Let p be an odd prime number and `T_p`, be the following set of `2 xx 2` matrices `T_p={A=[(a,b),(c,a)]:a,b,c in {0,1,2,.........p-1}}` The number of A in `T_p`, such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p isA. `(p-1)^(2)`B. `2(p-1)`C. `(p-1)^(2)+1`D. `2p-1` |
Answer» Correct Answer - D We must have `a^(2)-b^(2)=kp` `implies (a+b) (a-b)=kp` `implies` either `a-b=0` or `a+b` is multiple of p when a=b, number of matrices is p and when `a+b=` multiple of `p implies a, b` has `p-1` `:.` total number of matrices `=p+p-1=2p-1`. |
|
921. |
Let a,b, and c be three real numbers satistying `[a,b,c][(1,9,7),(8,2,7),(7,3,7)]=[0,0,0]` If the point `P(a,b,c)` with reference to (E), lies on the plane `2x+y+z=1`, the the value of `7a+b+c` is (A) 0 (B) 12 (C) 7 (D) 6 |
Answer» Correct Answer - D `a+ 8b +7c = 0, 9a + 2b 3c=0` `7a + 7b +7c=0` Solving these equations, we get `b=6a` `rArr c= -7a` Now, `2x + y + z = 0` `rArr 2a + 6 a + (-7a) = 1` `rArr a= 1, b = 6, c=-7` `therefore 7a + b+ c= + 6 - = 6` |
|
922. |
Let a,b, and c be three real numbers satistying `[a,b,c][(1,9,7),(8,2,7),(7,3,7)]=[0,0,0]` Let `omega` be a solution of `x^3-1=0` with `Im(omega)gt0. I fa=2` with b nd c satisfying (E) then the vlaue of `3/omega^a+1/omega^b+3/omega^c` is equa to (A) -2 (B) 2 (C) 3 (D) -3A. -2B. 2C. 3D. -3 |
Answer» Correct Answer - A `because a = 2 ` with b and c satisfying ( E) `therefore 2+ 8b+ 7c = 0, 18 + 2b + 3c = 0` and ` 2+ b + c= 0` we get ` b = 12 and c= -14` Hence, `3/omega^(a) + 1/omega^(b) + 3/omega^(c) = 3/omega^(2) + 1/omega^(12) + 3/omega^(-14) ` `= (3omega)/omega^(3) + 1/1 + 3omega^(14) ` `= 3 omega + 1 + 3omega^(2)` `= 1 + 3(omega+omega^(2))` `= 1+ 3(-1)=-2` |
|
923. |
Let a,b, and c be three real numbers satistying `[a,b,c][(1,9,7),(8,2,7),(7,3,7)]=[0,0,0]`Let b=6, with a and c satisfying (E). If alpha and beta are the roots of the quadratic equation `ax^2+bx+c=0 then sum_(n=0)^oo (1/alpha+1/beta)^n` is (A) 6 (B) 7 (C) `6/7` (D) ooA. 6B. 3C. `6/7`D. `infty` |
Answer» Correct Answer - B `because b= 6, ` with a and c satisgying ( E) `therefore a + 48 + 7 c = 0, 9a + 12 + 3c= 0, a + 6 +c=0` we get `a = 1, c -7` Given, `alpha ,beta` are the roots of `ax^(2) + bx+c=0` `therefore alpha + beta = -b/a = -6, ` `alpha beta = c/a = -7` Now, `1/alpha + 1/beta=(alpha + beta)/(alpha beta) = (-6)/(-7) = 6/7` `therefore sum _(n=0) ^(infty) (1/alpha +1/beta)^(n) = sum _(n=0)^(infty)(6/7)^(n) ` `= 1+ ( 6/7) + (6/7) ^(2) +...infty` `1/(1-6//7)=7` |
|
924. |
Let `M`be a `3xx3`matrix satisfying`M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1 1]=[0 0 12]`Then the sum of the diagonal entries of `M`is _________.A.B.C.D. |
Answer» Let `M =[[a ,b,c],[d,e,f],[g,h,i]]` `M= [[0],[1],[0]]= [[-1],[2],[3]]rArr b =-1, e=2. h = 3` `M [[1],[-1],[0]] = [[1],[1],[-1]] rArr a = 0, d= 3, g= 2` `M [[1],[1],[1]] = [[0],[0],[12]] rArr g+h+i= 12rArri=7` `therefore ` Sum of diagonal elements `= a + e + i = 0 + 2+7=9` |
|
925. |
Let `P=[a_("ij")]` be a `3xx3` matrix and let `Q=[b_("ij")]`, where `b_("ij")=2^(i+j) a_("ij")` for `1 le i, j le 3`. If the determinant of P is 2, then the determinant of the matrix Q isA. `2^(10)`B. `2^(11)`C. `2^(12)`D. `2^(13)` |
Answer» Correct Answer - D `|Q|=|(2^(2)a_(11),2^(3)a_(12),2^(2)a_(13)),(2^(3)a_(21),2^(4) a_(22),2^(5) a_(23)),(2^(4) a_(31),2^(5) a_(32),2^(6) a_(33))|` `=2^(2). 2^(3). 2^(4)|(a_(11),a_(12),a_(13)),(2a_(21),2a_(22),2a_(23)),(2^(2)a_(31),2^(2)a_(32),2^(2) a_(33))|` `=2^(9). 2. 2^(2) |(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33))|` `=2^(12) |P|` `=2^(13)` |
|
926. |
State, true or false. If false, give a reason. The matrices A2 × 3 and B2 × 3 are conformable for subtraction. |
Answer» Answer is True |
|
927. |
State whether the statements is true or false: Matrix subtraction is associative. |
Answer» Answer is False |
|
928. |
Let `omega!=1`be cube root of unity and `S`be the set of all non-singular matrices of the form `[1a bomega1comega^2theta1],w h e r e`each of `a ,b ,a n dc`is either `omegaoromega^2dot`Then the number of distinct matrices in the set `S`isa. 2 b. `6`c. `4`d. `8`A. 2B. 6C. 4D. 8 |
Answer» Correct Answer - A For being nonsingular, `|(1,a,b),(omega,1,c),(omega^(2),omega,1)| ne 0` or `ac omega^(2)-(a+c) omega+1 ne 0` Hence, number of possible triplets of (a, b, c) is 2. i.e., `(omega, omega^(2), omega)` and `(omega, omega, omega)`. |
|
929. |
A rectangular arrangement of number in rows and columns is called _______ |
Answer» Correct Answer - a matrix | |
930. |
If A is a matrix of order 3 x 4 and B is a matrix of order 4 x 3, then find order of matrix (AB). |
Answer» Order of matrix AB is 3 x 3 |
|
931. |
If [(2x+y, 3y)(0,4)] = [(6,0)(0,4)] then find the value of x. |
Answer» 3y = 0 y = 0 2x+y = 6 2x = 6 x = 3 |
|
932. |
Let m and N be two 3x3 matrices such that MN=NM. Further if `M!=N^2` and `M^2=N^4` then which of the following are correct.A. determinant of `(M^(2)+ MN^(2))` is 0B. there is a `3xx3` non-zero matrix `U` such that `(M^(2) + MN^(2)) U` is the zero matrixC. determinant of`(m^(2) + MN^(2)) ge 1`D. for a `3xx3` matrix `U` if `(M^(2)+MN^(2))U` equals the zero matrix, then `U` is the zero matrix |
Answer» Correct Answer - A::B Given, `MN = NM, M ne N^(2) and M^(2) = N^(4) ` Then, `M^(2) = N^(2)` lt brgt `rArr (M+N^(2)) (M-N^2) = 0` `therefore M+N^(2) = 0 " " [because M ne N^(2)]` `rArr abs( M+ N^(2)) = 0` (a) `abs( M^(2)+ MN^(2)) = abs(M) abs( M+ N^(2)) = 0` `therefore` Option (a) is correct. `( M^(2)+ MN^(2))U = M( M+ N^(2))U = 0` `therefore` Option (b) is correct. (c) `becauseabs( M^(2)+ MN^(2)) =0` from opttion (a) `therefore abs(M^(2) +MN^(2))cancel(ge) 1` `therefore` OPtion (c ) is incorrect. (d)If ` AX = 0 and abs(A) = 0` then X can be non-zero. |
|
933. |
If A is `2 xx 2` square matrix, such that det A = 9, then det (9A) =______.A. `(1)/(3^(30))`B. 9C. 81D. 729 |
Answer» Correct Answer - D If A is an `n xx n` matrix, then `|kA| = k^(n)|A|.` |
|
934. |
If K`in R_(0)`, then det `(K I_(0))` is equal toA. `k^(n-1)`B. `k^(n(n-1))`C. `k^n)`D. k |
Answer» Correct Answer - B | |
935. |
If det (A) = 5, then find det (15A) where A is of order `2 xx 2`A. 225B. 75C. 375D. 1125 |
Answer» Correct Answer - D `"det"(Ka) = k^(2)|A| ("where A is " 2 xx 2 " matrix")`. |
|
936. |
There are 25 software engineers and 10 testers in Infosys and 15 software engineers and 8 testers in Wipro. In both the companies, a software engineer is paid Rs. 5000 per month and a tester is paid Rs 3000 per month. Find the total amount paid by each of the companies per month by representing the data in matrix form.A. `((155000), (99000))`B. `((23000), (24000))`C. `((50000), (30000))`D. `((155000), (100000))` |
Answer» Correct Answer - A Write the given data in matrix form. |
|
937. |
Check whether the following matrices are in vertible or not :\( \begin{bmatrix} 1 & 2 \\[0.3em] 3 & 3 \\[0.3em] \end{bmatrix}\)[1,2,3,3] |
Answer» Given, [1,2,3,3] Let A =\( \begin{bmatrix} 1 & 2 \\[0.3em] 3 & 3 \\[0.3em] \end{bmatrix}\) Then, |A| = \( \begin{vmatrix} 1 & 2 \\[0.3em] 3 & 3 \\[0.3em] \end{vmatrix}\) = 3 – 6 = -3 ≠ 0. ∴ A is a non-singular matrix. Hence, A-1 exist. |
|
938. |
Check whether the following matrices are in vertible or not :\( \begin{bmatrix} 2 & 3 \\[0.3em] 10 & 15 \\[0.3em] \end{bmatrix}\)[2,3,10,15] |
Answer» Given, [2,3,10,15] Let A =\( \begin{bmatrix} 2 & 3 \\[0.3em] 10 & 15 \\[0.3em] \end{bmatrix}\) Then, |A| = \( \begin{vmatrix} 2 & 3 \\[0.3em] 10 & 15 \\[0.3em] \end{vmatrix}\) = 30 – 30 = 0. ∴ A is a singular matrix. Hence, A-1 does not exist. |
|
939. |
Check whether the following matrices are in vertible or not :\( \begin{bmatrix} 1 & 1 \\[0.3em] 1 & 1 \\[0.3em] \end{bmatrix}\)[1,1,1,1] |
Answer» Given, [1,1,1,1] Let A = \( \begin{bmatrix} 1 & 1 \\[0.3em] 1 & 1 \\[0.3em] \end{bmatrix}\) Then, |A| = \( \begin{vmatrix} 1 & 1 \\[0.3em] 1 & 1 \\[0.3em] \end{vmatrix}\) = 1 – 1 = 0. ∴ A is a singular matrix. Hence, A-1 does not exist. |
|
940. |
Convert [1,-1,2,3] into an identity matrix by suitable row transformations. |
Answer» Let A = [1,-1,2,3] = \( \begin{bmatrix}1 & -1 \\[0.3em]2 &3 \\[0.3em]\end{bmatrix}\) By R2 – 2R1, we get, A ~ \( \begin{bmatrix}1 & -1 \\[0.3em]0 &5 \\[0.3em]\end{bmatrix}\) By (\(\frac{1}{5}\)) R2, we get, A ~ \( \begin{bmatrix}1 & -1 \\[0.3em]0 &1 \\[0.3em]\end{bmatrix}\) By R1 + R2, we get, A ~ \( \begin{bmatrix}1 & 0 \\[0.3em]0 &1 \\[0.3em]\end{bmatrix}\) This is an identity matrix. |
|
941. |
Check whether the following matrices are in vertible or not :\( \begin{bmatrix}1 & 0 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\)[1,0,0,1] |
Answer» Given, [1,0,0,1] Let A =\( \begin{bmatrix}1 & 0 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\) Then, |A| = \( \begin{vmatrix}1 & 0 \\[0.3em]0 & 1 \\[0.3em]\end{vmatrix}\) = 1 – 0 = 1 ≠ 0. ∴ A is a non-singular matrix. Hence, A-1 exists. |
|
942. |
If A =\( \begin{bmatrix} 1 & 0 & 0 \\[0.3em] 2 & 1 & 0 \\[0.3em] 3 &3 &1 \end{bmatrix}\)then reduce it to I3 by using column transformations.[1,0,0,2,1,0,3,3,1] |
Answer» Given, [1,0,0,2,1,0,3,3,1] |A| =\( \begin{vmatrix}1 & 0 & 0 \\[0.3em]2 & 1 & 0 \\[0.3em]3 &3 &1\end{vmatrix}\) = 1(1 – 0) – 0 + 0 = 1 ≠ 0 ∴ A is a non-singular matrix. Hence, The required transformation is possible. Now, A = \( \begin{bmatrix}1 & 0 & 0 \\[0.3em]2 & 1 & 0 \\[0.3em]3 &3 &1\end{bmatrix}\) By C1 – 2C2, we get, A ~\( \begin{bmatrix}1 & 0 & 0 \\[0.3em]0 & 1 & 0 \\[0.3em]-3 &3 &1\end{bmatrix}\) By C1 + 3C3 and C2 – 3C3, we get, A ~\( \begin{bmatrix}1 & 0 & 0 \\[0.3em]0 & 1 & 0 \\[0.3em]0 &0 &1\end{bmatrix}\) = I3. |
|
943. |
Show that the two matrices A, `P^(-1) AP` have the same characteristic roots. |
Answer» Let `P^(-1) AP=B` `:. B-lambdaI=P^(-1) AP-lambdaI` `=P^(-1) AP-P^(-1) lambdaIP` `=P^(-1) (A-lambdaI)P` `implies |B-lambda I|=|P^(-1)||A-lambdaI||P|` `=|A-lambdaI||P^(-1)||P|` `=|A-lambdaI||P^(-1) P|` `=|A-lambdaI||I|=|A-lambdaI|` Thus, the two matrices A and B have the same characteristic determinants and hence the same characteristic equations and the same characteristic roots. the same thing may also be seen in another way. Now, `AX=lambdaX` `implies P^(-1) AX=lambdaP^(-1) X` `implies (P^(-1) AP) (P^(-1)X)=lambda(P^(-1) X)` |
|
944. |
If A is symmetric as well as skew-symmetric matrix, then A isA. diagonal matrixB. null matrixC. triangular materixD. none of these |
Answer» Correct Answer - B Let `A=[a_("ij")]`. Since a is skew-symmetric, we have `a_(ii)=0` and `a_("ij")=-a_("ij") (i ne j)` A is symmetric as well, so `a_("ij")=a_("ji")` for all `i` and `j`. `:. A_("ij")=0` for all `i ne j` Hence, `a_("ij")=0` for all `i` and `j`, i.e., A is a null matrix. |
|
945. |
If A and B are square matrices of the same order such that `A B=B A`, then show that `(A+B)^2=a^2+2A B+B^2` |
Answer» False For two square matrices of same order it is not always true that AB=BA. |
|
946. |
If `A`and `B`are square matrices ofthe same order such that `A B=B A`, then show that `(A+B)^2=A^2+2A B+B^2`.A. `AB = I`B. `BA=I`C. `AB=BA`D. none of these |
Answer» Correct Answer - C | |
947. |
If `A`and `B`are symmetric matricesof the same order, write whether `A B-B A`is symmetric orskew-symmetric or neither of the two.A. symmetric matrixB. skew-symmetric matrixC. null matrixD. unit matrix |
Answer» Correct Answer - B | |
948. |
If A and B are symmetric matrices of the same order, write whether AB – BA is symmetric or skew-symmetric or neither of the two. |
Answer» A and B are symmetric matrices, ∴ A’ = A and B’ = B …(i) Consider, (AB – BA)’ = (AB)’ – (BA)’ [(a – b)’ = a’ – b’] = B’A’ – A’B’ [(AB)’ = B’A’] = BA – AB [from (i)] = - (AB – BA) ∴ (AB – BA)’ = - (AB – BA) Hence, (AB – BA) is a skew symmetric matrix. |
|
949. |
Find AT , if A = \(\begin{vmatrix}1&3\\-4&5\end{vmatrix}\)A = [(1, 3) (-4, 5)] |
Answer» A = \(\begin{vmatrix}1&3\\-4&5\end{vmatrix}\) AT= \(\begin{vmatrix}1&-4\\3&5\end{vmatrix}\) |
|
950. |
Find AT , if A = \(\begin{vmatrix}2&-6&1\\-4&0&5\end{vmatrix}\)A = [(2, -6, 1) (-4, 0, 5)] |
Answer» A= \(\begin{vmatrix}2&-6&1\\-4&0&5\end{vmatrix}\) AT=\(\begin{vmatrix}2&-4\\-6&0\\1&5\end{vmatrix}\) |
|