Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

801.

Find the inverse of matrix`[{:(1," "1,-2),(1," "0," "3),(5," "0," "1):}]`

Answer» `(1)/(2).[{:(1,-1,1),(-8," "6,-2),(5,-3,1):}]`
802.

Find the inverse of matrix`[{:(6,7),(8,9):}]`

Answer» `[{:((-9)/(2),(7)/(3)),(4,-3):}]`
803.

Find the inverse of matrix `[{:(4,0),(2,5):}]`

Answer» `[{:((1)/(4),0),((-1)/(10),(1)/(5)):}]`
804.

Find the determinant of a matrix `[{:(2,-3),(4," "5):}]`

Answer» `[{:((5)/(22),(3)/(22)),((-2)/(11),(1)/(11)):}]`
805.

Find the inverse of matrix `[{:(2,5),(-3,1):}]`

Answer» `(1)/(17).[{:(1,-5),(3," "2):}]`
806.

Find the inverse of matrix`[{:(1," "2),(2,-1):}]`

Answer» `[{:((1)/(5)," "(2)/(5)),((2)/(5),(-1)/(5)):}]`
807.

Find the adjoint of matrix`[{:(1,2),(3,7):}]`

Answer» `[{:(7,-2),(-3," "1):}]`
808.

If matrix `A=[1 2 3]`, write `AA^T`.

Answer» Correct Answer - [14]
809.

Let `A=[3 2 5 4 1 3 0 6 7]`Express `A`as sum oftwo matrices such that one is symmetric and the other is skew symmetric.

Answer» `A=[{:(3,3,(5)/(2)),(3,1,(9)/(2)),((5)/(2),(9)/(2),7):}]+[{:(0,-1,(5)/(2)),(1,0,(-3)/(2)),((-5)/(2),(3)/(2),0):}]`
810.

If `[2 3 5 7] [1-3-2 4]=[-4 6-9x],`write the value of `x`

Answer» Correct Answer - x=13
811.

Expess the matrix A as the sum of a symmetric and a skew-symmetric matrix, where `A=[{:(3,-1,0),(2," "0,3),(1,-1,2):}].`

Answer» `A=[{:(3,(1)/(2),(1)/(2)),((1)/(2),0,1),((1)/(2),1,2):}]+[{:(0,(-3)/(2),(-1)/(2)),((3)/(2),0," "2),((1)/(2),-2," "0):}]`
812.

Express the matrix `A=[{:(-1,5,1),(2,3,4),(7,0,9):}]` as the sum of a symmetric and a skew-symmetric matrix.

Answer» `A=[{:(-1,(7)/(2),4),((7)/(2),3,2),(4,2,9):}]+[{:(0,(3)/(2),-3),((-3)/(2),0," "2),(3,-2," "0):}]`
813.

Express the matrix `A=[{:(2,3),(-1,4):}]` as the sum of a symmetric matrix and a skew-symmetric matrix.

Answer» `A=[{:(2,1),(1,4):}]+[{:(0,2),(-2,0):}]`
814.

Express the matrix `A=[{:(3,-4),(1,-1):}]` as the sum of a symmetric matrix and a skew-symmetric matrix.

Answer» `A=[{:(3,(-3)/(2)),((-3)/(2),-1):}]+[{:(0,(-5)/(2)),((5)/(2),0):}]`
815.

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is A. 9  B. 27 C. 81 D. 512

Answer»

As matrix has total 3× 3 = 9 elements.

As each element can take 2 values (0 or 2)

∴ By simple counting principle we can say that total number of possible matrices = total number of ways in which 9 elements can take possible values = 29 = 512

Clearly it matches with option D.

∴ Option (D) is the only correct answer.

816.

The matrix P = \(\begin{bmatrix} 0 & 0 & 4 \\[0.3em] 0 & 4 & 0 \\[0.3em] 4 & 0 & 0 \end{bmatrix}\) is a A. square matrixB. diagonal matrixC. unit matrixD. none

Answer»

As P has equal number of rows and columns and thus it matches with the definition of square matrix.

The given matrix does not satisfy the definition of unit and diagonal matrices.

∴ Option (A) is the only correct answer.

817.

If the matrix A = \(\begin{bmatrix}5 &2 & x \\[0.3em]y & z &-3 \\[0.3em]4 & t & -7\end{bmatrix}\) is a symmetric matrix, find x, y, z and t.

Answer»

Given, 

A = \(\begin{bmatrix}5 &2 & x \\[0.3em]y & z &-3 \\[0.3em]4 & t & -7\end{bmatrix}\) is a symmetric matrix.

We know that,

A = [aij]m x n is a symmetric matrix if aij = aji

So,

x = a13 = a31 = 4

y = a21 = a12 = 2

z = a22 = a22 = z

t = a32 = a23 = - 3

Hence, 

X = 4, y = 2, t = - 3 and z can have any value.

818.

If A `=[{:(3,-3,4),(2,-3,4),(0,-1,1):}]`and B is the adjoint of A, find the value of`|AB+2I|`,where l is the identity matrix of order 3.

Answer» `because " "A = [{:(3,-3,4),(2,-3,4),(0,-1,1):}]`
`therefore" " |A| = [{:(3,-3,4),(2,-3,4),(0,-1,1):}]`
`=3(-3+4) + 3(2-0) + 4(-2-0) = 1 ne 0`
`therefore |AB + 2I| = (|A| + 2)^(3)`
` =(1+2)^(3) = 3^(3) =27`
819.

If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?

Answer»

If a matrix is of order m x n elements, it has mn elements. So, if the matrix has 8 elements, we will find the ordered pairs m and n.

mn = 8

Then, ordered pairs m and n can be 

m x n be (8 x 1),(1 x 8),(4 x 2),(2 x 4) 

Now, if it has 5 elements 

Possible orders are (5 x 1), (1 x 5).

820.

Choose the correct answer If A, B are symmetric matrices of same order, then AB – BA is a (A) Skew symmetric matrix (B) Symmetric matrix (C) Zero matrix (D) Identity matrix

Answer» Given:` A_(nXn)=A_(nXn)^T`
`B_(nXn)=B_(nXn)^T`
proof
`(AB-BA)^T=(AB)^T-(BA)^T`
=`B^TA^T-A^TB^T`
=BA-AB
=-(AB-BA)
So, it is a skew symmetric matrix
821.

If A and B are symmetric matrices, prove that AB – BA is a skew symmetric matrix.

Answer» Given
`A^T=A`(1)
`B^T=B`(2)
Proof
`(AB-BA)^T=(AB)^T-(BA)^T`
=`B^TA^T-A^TB^T`
=`-(A^TB^T-B^TA^T)`
=-(AB-BA) From equation (1) and (2)
so, (AB-BA) is a skew symmetric matrix
822.

If A and B are matrices of same order, then (AB’ – BA’) is a A. skew symmetric matrix  B. null matrix C. symmetric matrix D. unit matrix

Answer»

Let C = (AB’ – BA’)

C’ = (AB’ – BA’)’

⇒ C’ = (AB’)’ – (BA’)’

⇒ C’ = (B’)’A’ – (A’)’B’

⇒ C’ = BA’ – AB’

⇒ C’ = -C

∴ C is a skew-symmetric matrix.

Clearly Option (A) matches with our deduction.

∴ Option (A) is the correct.

823.

If A and B are symmetric matrices of the same order, show that (AB – BA) is a skew symmetric matrix.

Answer»

We are given that A and B are symmetric matrices of the same order then, 

we need to show that (AB – BA) is a skew symmetric matrix.

Let us consider P is a matrix of the same order as A and B

And let P = (AB – BA),

we have A = A’ and B = B’

then, P’ = (AB – BA)’

P’ = ((AB)’ – (BA)’) …….using reversal law we have (CD)’=D’C’

P’ = (B’A’ – A’B’)

P’ = (BA – AB)

P’ = -P

Hence, P is a skew symmetric matrix.

824.

For `3xx3`matrices `Ma n dN ,`which of the following statement (s) is (are) NOT correct ?`N^T M N`is symmetricor skew-symmetric,according as `m`is symmetric or skew-symmetric.`M N-N M`is skew-symmetric for allsymmetric matrices `Ma n dNdot``M N`is symmetric for all symmetricmatrices `M a n dN``(a d jM)(a d jN)=a d j(M N)`for all invertible matrices `Ma n dNdot`A. `N^(T) MN` is symmetric or skew-symmetric, according as M is symmetric of skew-symmetricB. `MN-NM` is skew-symmetric for all symmetric matrices M and NC. MN is symmetric for all symmetric matrices M and ND. (adj M) (adj N) = adj (MN) for all invertible matrices M and N

Answer» Correct Answer - C::D
(a) `(N^(T) MN)^(T) = N^(T) M^(T) (N^(T))^(T)=N^(T)M^(T)N=N^(T) MN`
or `-N^(T) MN` According as M is symmetric ro
skew-symmetric.
`therefore` Correct.
(b) `(MN-NM)^(T) = (MN)^(T)- (NM)^(T) =N^(T) M^(T) - M^(T)N^(T) `
`= NM=MN ` [`because`+ M, N are symmetric]
`=-(MN-NM)`
`therefore ` correct
(c) `(MN)^(T) = N^(T) M^(T) = NMneMN` [`because` M, N are symmetric]
`therefore` Incorrect.
(d) `(adj M) (adjN) = adj (NM) ne adj(MN)`
`therefore ` Incorrect.
825.

If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A’ BA is skew symmetric.

Answer»

A matrix is said to be skew-symmetric if A = -A’

Given, B is a skew-symmetric matrix.

∴ B = -B’

Let C = A’ BA …(1)

We have to prove C is skew-symmetric.

To prove: C = -C’

As C’ = (A’BA)’

We know that: (AB)’ = B’A’

⇒ C’ = (A’BA)’ = A’B’(A’)’

⇒ C’ = A’B’A {∵ (A’)’ = A}

⇒ C’ = A’(-B)A

⇒ C’ = -A’BA …(2)

From equation 1 and 2:

We have,

C’ = -C

Thus we say that C = A’ BA is a skew-symmetric matrix.

826.

For `3xx3`matrices `Ma n dN ,`which of the following statement (s) is (are) NOT correct ?`N^T M N`is symmetricor skew-symmetric,according as `m`is symmetric or skew-symmetric.`M N-N M`is skew-symmetric for allsymmetric matrices `Ma n dNdot``M N`is symmetric for all symmetricmatrices `M a n dN``(a d jM)(a d jN)=a d j(M N)`for all invertible matrices `Ma n dNdot`A. `N^(T)MN` is symmetric or skew-symmetric, according as M is symmetric or skew-symmetricB. `MN-NM` is skew0symmetric for all symmetric matrices M and NC. MN is symmetric for all symmetric matrices M and ND. (adj M ) (adj N) = adj (MN) for all inveriblr matrices M and N.

Answer» Correct Answer - C::D
(1) `(N^(T)MN)^(T)=N^(T)M^(T)N=N^(T)MN` if `M` is symmetric and is `-N^(T)MN` if `M` is skew symmetric
(2) `(MN-NM)^(T)=N^(T) M^(T)-M^(T)N^(T)=NM-MN=-(MN-NM)`.
So, `(MN-NM)` is skew symmetric
(3) `(MN)^(T)=N^(T)M^(T)=NM ne MN` if `M` and `N` are symmetric. So, MN is not symmetric
(4) (adj. M) (adj. N) = adj `(NM) ne` adj `(MN)`
827.

A and B are square matrices of order `3xx3` , A is an orthogonal matrix and B is a skew symmetric matrix. Which of the following statement is not trueA. `abs(AB)=1`B. `abs(AB)=0`C. `abs(AB)=-1`D. none of these

Answer» Correct Answer - B
We have,
A an orthogonal matrix `rArr absA=pm1`
B a skew-symmetric matrix of odd order `rArr absB=0`
`:. abs(AB)=absAabsBrArr abs(AB)=(pm1)xx0=0`.
828.

If \(\begin{bmatrix}-2&-3&1\\[0.3em]-y-2&-1&4\end{bmatrix} = \begin{bmatrix}x + 2&-3&1\\[0.3em]5&-1&4\end{bmatrix}\), then find the value of x and y.

Answer»

\(\begin{bmatrix}-2&-3&1\\[0.3em]-y-2&-1&4\end{bmatrix} = \begin{bmatrix}x + 2&-3&1\\[0.3em]5&-1&4\end{bmatrix}\)

On comparing,

x + 2 = -2 ∴ x = -4

– y – 2 = 5 ⇒ y = -7

Hence, x = -4, y = -7

829.

If A and B are symmetric matrices, then ABA isA. symmetric matrixB. skew-symmetric matrixC. diagonal matrixD. scalar matrix

Answer» Correct Answer - A
830.

If `A=[5a-b3 2]`and A adj `A=AA^T`, then `5a+b`is equal to:(1) `-1`(2) 5(3) 4 (4)13A. -1B. 5C. 4D. 13

Answer» Correct Answer - B
It is given that matrix `{:A=[(5a,-b),(3,2)]:}` satisfies the equation
`A(adj A) =A A^T`
`rArr absAI_2=A A^T`
`rArr (10a+3b){:[(1,0),(0,1)]=[(5a,-b),(3,2)][(5a,3),(-b,2)]:}`
`rArr {:[(10a+3b,0),(0,10a+3b)]=[(25a^2+b^2,15a-2b),(15a-2b,13)]:}`
`rArr 10a+3b=13,15a-2b=0and 25a^2+b^2=10a+3b`
`a=2/5and b=3`
`:. 5a+b=2+3=5`
831.

If `A = [(5a,-b),(3,2)]`and `A adj A=AA^T`, then `5a+b`is equal to:A. 5B. 4C. 13D. `-1`

Answer» Correct Answer - A
A adj `A=A A^(T)`
`implies |A|I=A A^(T)`
`implies (10a+3b) [(1,0),(0,1)]=[(5a,-b),(3,2)][(5a,3),(-b,2)]`
`implies 25a^(2)+b^(2)=10a+3b, 15a-2b=0, 10a+3b=13`
`implies 10a+(3.15a)/2=13`
`implies 65a=2xx13`
`implies a=2/5`
`implies 5a=2`
`implies 2b=6`
`implies b=3`
`:. 5a+b=5`
832.

If `A=[(2,3),(4,6)]` , then `A^(-1)=`A. `[(1,2),(-(3)/(2),2)]`B. `[(2,-3),(4,6)]`C. `[(-2,4),(-3,6)]`D. Does not exist

Answer» Correct Answer - D
833.

If `A=[5a-b3 2]`and A adj `A=AA^T`, then `5a+b`is equal to:(1) `-1`(2) 5(3) 4 (4)13A. 5B. 13C. 4D. -1

Answer» Correct Answer - A
`because A" adj "A = A A^(T)`
`rArr A^(-1) (A" adj " A) = A^(-1) (A A^(T))`
`rArr (A^(-1)A)" adj " A = (A^(-1) A) A^(T)`
`rArr I ( " ADj " A ) = IA^(T)`
or ` " adj " A = A^(T)`
or `[[2,b],[-3,5a]]=[[5a,3],[-b,2]]`
`rArr 5 a = 2 and b = 3`
`therefore 5a + b = 5`
834.

If A = \(\begin{bmatrix} 0 & 2 \\[0.3em] 3& -4 \\[0.3em] \end{bmatrix}\) and kA = \(\begin{bmatrix} 0 & 3a \\[0.3em] 2b & 24 \\[0.3em] \end{bmatrix}\), then the values of k, a, b, are respectivelyA. –6, –12, –18 B. –6, 4, 9 C. –6, –4, –9 D. –6, 12, 18

Answer»

 A = \(\begin{bmatrix} 0 & 2 \\[0.3em] 3& -4 \\[0.3em] \end{bmatrix}\) and kA = \(\begin{bmatrix} 0 & 3a \\[0.3em] 2b & 24 \\[0.3em] \end{bmatrix}\)

\(\begin{bmatrix} 0 & 2k \\[0.3em] 3k & -4k \\[0.3em] \end{bmatrix}\)

Comparing the equations,

-4k = 24 

k = -6 

3k = 2b 

3(-6) = 2b 

2b = -18 

b= - 9 

3a = 2k

3a = 2(-6) 

3a = -12 

a = -4 

Values are,

k = -6, a = -4 & b = -9 

Option (C) is the answer.

835.

 If the matrix A is both symmetric and skew-symmetric, then A is a(a) diagonal matrix(b) zero matrix(c) square matrix(d) scalar matrix

Answer»

(b) Zero matrix

836.

let `z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)]` and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which `P^2=-I` isA. `1/2 abs(a-b)`B. `1/2 abs(a+b)`C. ` abs(a-b)`D. ` abs(a+b)`

Answer» Correct Answer - A
`because Z = (-1+ sqrt(3)i)/2 = omega`
` rArr omega = 1 and 1 + omega + omega ^(2) = 0 `
Now, `P = [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]]`
`therefore P^(2) = [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]] [[(-omega)^(r),omega^(2s)],[omega^(2s), omega^(r)]]`
` =[[omega^(2r)+omega^(4s),omega^(2s)((-omega)^(r)+omega^(r))],[omega^(2s)((-omega)^(r)+omega^(r)), omega^(4s)+omega^(2r)]]`
` =[[omega^(2r)+omega^(4s),omega^(2s)((-omega)^(r)+omega^(r))],[omega^(2s)((-omega)^(r)+omega^(s)), omega^(s)+omega^(2r)]] " " (because omega^(3) = r)`
`because P^(2) = -I= [[-1,0],[0,-1]]` ...(ii)
Form Eqs. (i) and (ii), we get
`omega^(2r) +omega^(s)=-1`
and ` omega^(2s) ((-omega)^(r)+omega^(r))=0`
`rArr r` is odd and `s = r` but not a multiple of 3, Which is possible
`therefore ` only one pair is there.
837.

If `A=[{:(1, 1, 1),(1, 2, "-3"),(2,"-1",3):}]` , then adj A isA. `[{:(3, "-9", "-5"),("-4", 1, 3),("-5",4,1):}]`B. `[{:(3, "-4", "-5"),("-9", 1, 4),("-5",3,1):}]`C. `[{:("-3", 4, 5),(9, "-1", "-4"),(5,"-3","-1"):}]`D. `[{:(3, "-9","-5"),(4, "-1", 3),("-5",4,1):}]`

Answer» Correct Answer - B
838.

If `A={:[(a,0,0),(0,a,0),(0,0,a)],:}" then: "|A|*|adj.A|=`A. `a^(3)`B. `a^(6)`C. `a^(9)`D. `a^(27)`

Answer» Correct Answer - C
839.

Let `p=[(3,-1,-2),(2,0,alpha),(3,-5,0)],` where `alpha in RR.` Suppose `Q=[q_(ij)]` is a matrix such that `PQ=kl,` where `k in RR, k != 0 and l` is the identity matrix of order 3. If `q_23=-k/8 and det(Q)=k^2/2,` thenA. `alpha0,k=8`B. `4alpha-k+8=0`C. `det(PadjQ)=2^9`D. `det(Q adjP)2^13`

Answer» Correct Answer - B::C
We have,
`PQ =kl and det (Q) =k^2/2`
`rArr det(PQ)=det(kI) and det (Q)=k^2/2`
`rArr det (P) det(Q) =k^3and det (Q) =k^2/2`
`rArr k^2/2det(P) =k^3and det(Q) =k^2/2`
`rArr det (P) =2k and det (Q) =k^2/2`
Again, PQ = kI
`rArr Q=P^(-1) (kI) =kP^(-1)`
`rArr Q=k(1/absPadjP)`
`rArr Q=k(1/(2k) adjP)`
`rArr Q=1/2adjP`
`rArr q_23 =1/2(adjP) _23 =1/2" cofactor " P_32 =-1/2{:abs((3,-2),(2,alpha)):}`
`rArr =-k/8=-1/2(3alpha +4)`
`rArr k=12alpha +16 ...(i)`
Now, `det (P) =2K`
`rArr {:abs((3,-1,-2),(2,0,alpha),(3,-5,0))=2k:}`
`rArr 15 alpha-3alpha+20=2k`
`rArr k=6alpha+10`
Solving (i) and (ii), we get : `alpha=-1 k=4`.
`:. 4alpha-k+8=-4-4+8=0`
So, option (b) is correct.
Now,
`det(P(adjQ)) =abs(PadjQ)=absPabs(adjQ)`
`=2kabs(Q)^2=2k(k^2/2)^2=1/2k^5=2^9`
and,
`det (Q(adjP))= abs(QadjP)=absQ abs(adjP)`
`=absQabs(P)^2=k^2/2xx(2k)^2=2k^4=2xx(4)^45=2xx(4)^4=2^9`
So, option (c) is correct.
840.

Let `p=[(3,-1,-2),(2,0,alpha),(3,-5,0)],` where `alpha in RR.` Suppose `Q=[q_(ij)]` is a matrix such that `PQ=kl,` where `k in RR, k != 0 and l` is the identity matrix of order 3. If `q_23=-k/8 and det(Q)=k^2/2,` thenA. `alpha = 0, k=8`B. `4alpha -k + 8 =0`C. `det (padj(Q) ) = 2^(9)`D. `det (Qadj(P) ) = 2^(13)`

Answer» Correct Answer - B::C
`because PQ = kI rArr (P.Q)/k = I rArr P^(-1) = Q/k" " ...(i)`
Also `abs(P) = 12 alpha +20 " " (ii)`
and `" "`given ` q_(23) = (-k)/8`
Comoaring the third element of `2^(nd)` row no both sides,
we get `1/((12alpha + 20))(-(3alpha + 4)) = 1/k xx (-k)/8`
`rArr 24 alpha + 32= 12 alpha + 20`
` alpha = -1` ...(iii)
From (ii), `abs(P)=8` ...(iv)
Also `PQ= kI`
`rArrabs(PQ) = abs(kI)`
`rArr abs(P) abs(Q) = k^(3)`
`rArr 8xx (k^(2))/2 = k^(3) " " (because abs(P) = 8, abs(Q) = k^(2)/2)`
`therefore k= 4 " " ...(v)`
(b) `4 alpha - k + 8 = -4 -4 + 8 = 0`
(c) `det(P " adj" (Q)) = abs(P) abs("adj" Q) = abs(P) abs(Q)^(2) = 8xx8^(2) = 2^(9)`
(d) `det(Q " adj" (P)) = abs(Q) abs("adj" P) = abs(Q) abs(P)^(2) = 8xx8^(2) = 2^(9)`
841.

Fill in the blanks:If A is skew symmetric, then kA is a ______. (k is any scalar)

Answer»

A skew symmetric matrix.

Given A’=-A

⇒ (kA)’=k(A)’=k(-A)

⇒ (kA)’=-(kA)

842.

Matrices a and B satisfy `AB=B^(-1)`, where `B=[(2,-1),(2,0)]`. Find (i) without finding `B^(-1)`, the value of K for which `KA-2B^(-1)+I=O`. (ii) without finding `A^(-1)`, the matrix X satifying `A^(-1) XA=B`.

Answer» (i) `AB=B^(-1)` or `AB B=B^(-1)B` or `AB^(2)=I`
Now, `KA-2B^(-1)+I=O`
or `KAB-2B^(-1)B+IB=O`
or `KAB-2I+B=O`
or `KAB^(2)-2B+B^(2)=O`
or `KI-2B+B^(2)=O`
or `K[(1,0),(0,1)]-2[(2,-1),(2,0)]+[(2,-1),(2,0)][(2,-1),(2,0)] =[(0,0),(0,0)]`
or `[(K,0),(0,K)]-[(4,-2),(4,0)]+[(2,-2),(4,-1)]=[(0,0),(0,0)]`
or `[(K-2,0),(0,K-2)]=[(0,0),(0,0)]`
ot `K=2`
(ii) `A^(-1)XA=B`
or `A A^(-1)XA=AB`
or `IXA=AB`
or `XAB=AB^(2)`
or `XAB=I`
or `XAB^(2)=B`
or `XI=B`
or `X=B`
843.

A=`[{:(0,3),(2,0):}] and A^(-1)=lambda` (adj, A) then `lambda` is equal toA. `(-1)/(6)`B. `(1)/(3)`C. `(-1)/(3)`D. `(1)/(6)`

Answer» Correct Answer - a
844.

If A is an invertible square matrix; then `adj A^T = (adjA)^T`A. `2absA`B. `2absAI`C. null matrixD. unit matrix

Answer» Correct Answer - C
845.

If `A={:[(4,2),(5,3)]:}" then :"|adj(adjA)|=`A. 1B. 2C. 3D. 4

Answer» Correct Answer - B
846.

If `k` is a scalar and `l` is a unit matrix of order 3 then `adj(kl)` is equal toA. `k^(3)I`B. `k^(2)I`C. `-k^(3)I`D. `-k^(2)I`

Answer» Correct Answer - b
847.

If x is square materix of order `3xx3` and `lambda` is a scalar, then adj `(lambda X)` is equal toA. `lambda adj X`B. `lambda ^(3) adj X`C. `lambda ^(2)adj X`D. `lambda ^(4) adj X`

Answer» Correct Answer - c
848.

If A and B are square matrices of the same order, then (i) (AB)=......... (ii) (KA)=.......... (where, k is any scalar) (iii) [k(A-B)]=......

Answer» (AB)=BA
(ii) (KA)=kA
[k(A-B)]=k(A-B)
849.

If `{:A=[(1,x),(x^7,4y)]a,B=[(-3,1),(1,0)]and adjA+B=[(1,0),(0,1)]:}`, then the values of x and y are respectivelyA. (1,1)B. (-1,1)C. (1,0)D. none of these

Answer» Correct Answer - A
850.

If `A=[(a,b),(c,d)]`, then `adj(adjA)` is equal toA. adj AB. AC. `A^(T)`D. `-A`

Answer» Correct Answer - B