Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

701.

Find `A^(-1)` if `A=|(0,1,1),(1,0,1),(1,1,0)|` and show that `A^(-1)=(A^(2)-3I)/2`

Answer» We have,
`A[(0,1,1),(1,0,1),(1,1,0)]`
Cofactors are
`A_(11)=-1, A_(12)=1, A_(13)=1`,
`A_(21)=1, A_(22)=-1, A_(23)=1`,
`A_(31)=1, A_(31)=1, A_(32)=1 A_(33)=-1`
`:." adj A"=[(-1,1,1),(1,-1,1),(1,1,-1)]^(T)=[(-1,1,1),(1,-1,1),(1,1,-1)]`
`|A|=0-(-1)+1.1=2`
`:. A^(-1)=("adj A")/(|A|)=1/2 [(-1,1,1),(1,-1,1),(1,1,-1)]`
Now `A^(2)=[(0,1,1),(1,0,1),(1,1,0)][(0,1,1),(1,0,1),(1,1,0)]=[(2,1,1),(1,2,1),(1,1,2)]`
`:. (A^(2)-3I)/2=1/2 {[(2,1,1),(1,2,1),(1,1,2)]-[(3,0,0),(0,3,0),(0,0,3)]}`
`=1/2 |(-1,1,1),(1,-1,1),(1,1,-1)|=A^(-1)`
Hence proved.
702.

Which of the following is incorrect ?A. `A^2-B^2=(A+B)(A-B)`B. `(A^T)^T=A`C. `(AB)^n=A^nB^n" where A, B commute"`D. `(A^(-1))^Tne(A^T)^(-1)`

Answer» Correct Answer - A
703.

Let `A=[[2,0,7] , [0,1,0], [1,-2,1]]` and `B=[[-x,14x,7x] , [0,1,0] , [x,-4x,-2x]]` are two matrices such that `AB=(AB)^(-1)` and `AB!=I` then `Tr((AB)+(AB)^2+(AB)^3+(AB)^4+(AB)^5+(AB)^6)=`

Answer» Correct Answer - `1//5`
We have
`AB=[(5x,0,0),(0,1,0),(0,10x-2,5x)]=[(1,0,0),(0,1,0),(0,0,1)]`
`implies x=1//5`
704.

Let A be a non-singular matrix of order (3 x 3), where |A| = 2. Find |A. adj. A|?

Answer»

|A. adj. A| = |A||adj A| = |A||A|n-1 = |A|1+n-1 = |A|n = 23 = 8

705.

If A is an invertible matrix, then which of the following is correctA. `A^(-1)` is multivaluedB. `A^(-1)` is singularC. `(A^(-1))^T ne (A^T)^(-1)`D. `absA ne 0`

Answer» Correct Answer - D
706.

By the method of matrix inversion, solve the system. `[(1,1,1),(2,5,7),(2,1,-1)][(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))]=[(9,2),(52,15),(0,-1)]`

Answer» Correct Answer - `x_(1)=1, x_(2)=3, x_(3)=5` or `y_(1)=-1, y_(2)=2, y_(3)=1`
We have
`[(1,1,1),(2,5,7),(2,1,-1)] [(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))]=[(9,2),(52,15),(0,-1)]`
`implies AX=B` (1)
Clearly `|A|=-4 ne 0`. Therefore,
`:." adj A"=[(-12,16,-8),(2,-3,1),(2,1,3)]^(T)=[(-12,2,2),(16,-3,-5),(-8,1,3)]`
`:. A^(-1)=("adj. A").(|A|)=(-1)/4 [(-12,2,2),(16,-3,-5),(-8,1,3)]`
Now, `A^(-1)B=(-1)/4 [(-12,2,2),(16,-3,-5),(-8,1,3)][(9,2),(52,15),(0,-1)]`
`=(-1)/4 [(-4,4),(-12,-8),(-20,-4)]=[(1,-1),(3,2),(5,1)]`
From Eq. (1), we get
`X=A^(-1) B`
`implies [(x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))]=[(1,-1),(3,2),(5,1)]`
`implies x_(1)=1, x_(2)=3, x_(3)=5`
or `y_(1)=-1, y_(2)=2, y_(3)=1`
707.

If A = `[{:(2, 3, -1),(5, 6, 1):}]`, then find (0) -A (b) 3A (c) `(1)/(4)A`.

Answer» (a) -A = `[{:(2, 3, -1),(5, 6, 1):}] = [{:(-1 xx 2, -1 xx 3, -1 xx (-1)),(-1 xx 5, -1 xx 6, -1 xx 1):}] = [{:(-2, -3, 1),(-5, -6, -1):}]`
(b) `3A = 3[{:(2, 3, -1),(5, 6, 1):}] = [{:(3 xx 2, 3 xx 3, 3 xx (-1)),(3 xx 5, 3 xx 6, 3 xx 1):}] = [{:(6, 9, -3),(15, 18, 3):}]`
(c) ` (1)/(4)A = (1)/(4) [{:(2, 3, -1),(5, 6, 1):}] = [{:((1)/(4) xx 2, (1)/(4) xx 3, (1)/(4) xx (-1)), ((1)/(4) xx 5, (1)/(4) xx 6, (1)/(4) xx 1):}] = [{:((1)/(2), (3)/(4), (-1)/(4)), ((5)/(4), (3)/(2), (1)/(4)):}]`
708.

Which of the following is/are incorrect? (i) adjoint of a symmetric matrix is symmetric (ii) adjoint of a unit matrix is a unit matrix (iii) `A (adj A)=(adj A)A=absAI` (iv) adjoint of a diagonal matrix is a diagonal matrixA. (i)B. (ii)C. (iii) and (iv)D. none of these

Answer» Correct Answer - D
709.

If A and B are n-rowed unitary matrices,then AB and BA are also unitary matrices.

Answer» A and B are two orthogonal matrices. Hence,
`A^(T)A=A A^(T)=I` and `B B^(T)=B^(T)B=I`
AB will be orthogonal if
`(AB)^(T) (AB)=(B^(T)A^(T)) (AB)`
`=B^(T) (A^(T)A)B`
`=B^(T) IB`
`=B^(T)B=I`
Similarly, we can show that `(BA)^(T) (BA)=I`. Therefore, Ba is also orthogonal.
710.

Important Class 12 Maths MCQ Questions of Matrices with Answers?

Answer»

Students can practice these questions for the board examination to attain well. The important MCQ Questions are taken as per the syllabus of CBSE board. Important Class 12 Maths MCQ Questions of Matrices with Answers are provided here. These Multiple-choice Questions, which are asked within the previous year’s board examination. 

Practice the important MCQ Questions for Class 12 Maths to score good marks in the board examinations. Be thorough with these MCQ Questions of Matrices, as these objective-type questions are taken from the previous year’s Maths examination papers.

Practice MCQ Question for Class 12 Maths chapter-wise

1. If a matrix has 6 elements, then number of possible orders of the matrix can be

(a) 2
(b) 4
(c) 3
(d) 6

2. Total number of possible matrices of order 2 × 3 with each entry 1 or 0 is

(a) 6
(b) 36
(c) 32
(d) 64

3. The restrictions on n, k and p so that PY + WY will be defined are

(a) k = 3, p = n
(b) k is arbitrary, p = 2
(c) p is arbitrary
(d) k = 2,p = 3.

4. If A is a square matrix such that A2=A, then (I + A)2 – 3A is

(a) I
(b) 2A
(c) 3I
(d) A

5. If the order of matrix A is m×p. And the order of B is p×n. Then the order of matrix AB is ?

(a) n × p
(b) m × n
(c) n × p
(d) n × m

6. Transpose of a rectangular matrix is a

(a) rectangular matrix
(b) diagonal matrix
(c) square matrix
(d) scaler matrix

7. A square matrix in which all elements except at least one element in diagonal are zeros is said to be a

(a) identical matrix
(b) null/zero matrix
(c) column matrix
(d) diagonal matrix

8. If A = [aij]m × n is a square matrix, if:

(a) m < n
(b) m > n
(c) m = n
(d) None of these.

9. If matrices A and B are inverse of each other then

(a) AB = BA
(b) AB = BA = I
(c) AB = BA = 0
(d) AB = 0, BA = I

10. The diagonal elements of a skew symmetric matrix are

(a) all zeroes
(b) are all equal to some scalar k(≠ 0)
(c) can be any number
(d) none of these

11. If a matrix A is both symmetric and skew-symmetric then matrix A is

(a) a scalar matrix
(b) a diagonal matrix
(c) a zero matrix of order n × n
(d) a rectangular matrix.

12. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is

(a) 27
(b) 18
(c) 81
(d) 512.

13. In matrices, columns are denoted by

(a) A
(b) B
(c) R
(d) C

14. In matrices (AB)−1 equals to

(a) A−1
(b) B−1
(c) A−1 B−1
(d) B - 1 A - 1

15. If A and B are two symmetric matrices of the same order. Then, the matrix AB - BA is equal to

(a) a symmetric matrix
(b) a skew-symmetric matrix
(c) a null matrix
(d) the identity matrix

16. If A is a square matrix, then A – A’ is a

(a) diagonal matrix
(b) skew-symmetric matrix
(c) symmetric matrix
(d) none of these

17. If A is any square matrix, then which of the following is skew-symmetric?

(a) A + AT
(b) A – AT
(c) AAT
(d) ATA

18. For any square matrix A, AAT is a

(a) unit matrix
(b) symmetric matrix
(c) skew-symmetric matrix
(d) diagonal matrix

19. If A is a matrix of order 3 × 4 , then each row of A has

(a) 12 elements
(b) 3 elements
(c) 4 elements
(d) 7 elements

20. If n =p, then the order of the matrix 7X – 5Z is:

(a) p × 2
(b) 2 × n
(c) n × 3
(d) p × n.

Answer:

1. Answer: (b) 4

Explanation: As 6 → 1 × 6, 2 × 3, 3 × 2, 6 × 1.

2. Answer: (d) 64

Explanation: The order of the matrix =2×3

The number of elements =2×3=6

Each place can have either 0 or 1.

Each place can be filled in 2 ways.

Thus, the number of possible matrices
=26 =64

3. Answer: (a) k = 3, p = n

Explanation: In this, order of P=p×k
Order of W=n×3
Order of Y=3×k
Thus, order of PY=p×k, when k=3.
And the order of WY=p×k, where p=n

4. Answer: (a) I

Explanation: (a), as (I + A)2 -3A 

= I2 + IA + AI + A2 – 3A 

= I + A + A + A – 3A=I

5. Answer: (b) m × n

Explanation: If A is matrix of order m×n and B is a matrix of order n×p, then the order of AB is m×p.

6. Answer: (a) rectangular matrix

Explanation: If we exchange the role of the row and column of a matrix then we transpose it. This operation is called transposition and the matrix is called transposition matrix.
If we take a rectangular matrix and transpose it then we get a rectangular matrix.

7. Answer: (d) diagonal matrix

Explanation: A diagonal matrix is a matrix in which all of the elements not on the diagonal of a square matrix are 0.

8. Answer: (c) m = n

Explanation: MatrixA=[aij]m×n square matrix

Number of columns = number of rows

n=m

9. Answer: (b) AB = BA = I

Explanation: We know that if A is a square of order m, and if there exists another square matrix B of the same order m, such that AB=I, then B is said to be the inverse of A. 
In this case, it is clear that A is the inverse of B.
Thus , matrices A and B will be inverses of each other only if AB=BA=I.

10. Answer: (a) all zeroes

Explaination: As in skew symmetric matrix, aij = -aji

⇒ aii = – aii

⇒ 2aii = 0

⇒ aii = 0, i.e. diagonal elements are zeroes.

11. Answer: c

Explanation: If matrix A is symmetric
AT=A
If matrix A is skew-symmetric
AT=−A
Also, diagonal elements are zero
Now, it is given that a matrix A is both symmetric as well as skew-symmetric
∴A=AT=−A
which is only possible if A is zero matrix
A=[(0,0)(0,0)]=AT=−A

12. Answer: (d) 512

Explanation: The number of possible entries of 3×3 matrix is 9.

Every entry has two choices, 0 or 1

Thus, total number of choices is

2×2×2×2×2×2×2×2×2 = 2= 512

13. Answer: (d) C

14. Answer: (d) B - 1 A - 1  

15. Answer: (b) a skew-symmetric matrix

Explanation: A and B are two symmetric matrices.

A = A’ and B = B’

(AB – BA)’ = (AB)’ – (BA)’ = B’A’ – A’B’

= BA – AB = – (AB – BA)

(AB – BA)’ = – (AB – BA)

AB – BA is a skew-symmetric matrix.

16. Answer: (b) skew-symmetric matrix

Explanation: Let's say that B = A - A', where A is a square matrix. We know that if the transpose is equal to the negative of a matrix, then it is a skew-symmetric matrix.

17. Answer: (b) A – A 

18. Answer: (b) symmetric matrix

Explanation: Let A be any matrix.

Also let B=AAT.

Now BT=(AAT)T=(AT)TAT=AAT=B. [ Since (AT)T=A]

So AAT is a symmetric matrix.

19. Answer: (c) 4 elements

Explanation: Its order is 3*4 which means it has three rows and four columns So every row has four elements.

20. Answer: (b) 2 × n

Explanation: Given, order of X = 2×n
and order of Z = 2×p
Therefore, n=p
Hence the order of 7X−5Z = 2×n.

Click Here to Practice more MCQ Question for Matrices Class 12

711.

If B, C are n rowed matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ϵ N, An+1 = Bn(B + (n + 1)C).

Answer»

Given,

A = B + C, BC = CB and C2 = O. 

We need to prove that,

An+1 = Bn(B + (n + 1)C). 

We will prove this result using the principle of mathematical induction.

Step 1: 

When n = 1, we have An+1 = A1+1 

⇒ An+1 = B1(B + (1 + 1)C) 

∴ An+1 = B(B + 2C)

For the given equation to be true for n = 1,

An+1 must be equal to A2

It is given that,

A = B + C 

And we know, 

A2 = A × A.

⇒ A2 = (B + C)(B + C) 

⇒ A2 = B(B + C) + C(B + C) 

⇒ A2 = B2 + BC + CB + C2 

However, 

BC = CB and C2 = O. 

⇒ A2 = B2 + CB + CB + O 

⇒ A2 = B2 + 2CB 

∴ A2 = B(B + 2C) 

Hence, 

An+1 = Aand the equation is true for n = 1.

Step 2 : 

Let us assume the equation true for some n = k, where k is a positive integer. 

⇒ Ak+1 = Bk (B + (k + 1)C) 

To prove the given equation using mathematical induction, we have to show that,

Ak+2 = Bk+1(B + (k + 2)C). 

We know,

Ak+2 = Ak+1 × A. 

⇒ Ak+2 = [Bk(B + (k + 1)C)](B + C) 

⇒ Ak+2 = [Bk+1 + (k + 1)BkC)](B + C) 

⇒ Ak+2 = Bk+1(B + C) + (k + 1)BkC(B + C) 

⇒ Ak+2 = Bk+1(B + C) + (k + 1)BkCB + (k + 1)BkC2 

However, 

BC = CB and C2 = O. 

⇒ Ak+2 = Bk+1(B + C) + (k + 1)BkBC + (k + 1)Bk

⇒ Ak+2 = Bk+1(B + C) + (k + 1)Bk+1C + O 

⇒ Ak+2 = Bk+1(B + C) + Bk+1[(k + 1)C] 

⇒ Ak+2 = Bk+1[(B + C) + (k + 1)C] 

⇒ Ak+2 = Bk+1[B + (1 + k + 1)C] 

∴ Ak+2 = Bk+1[B + (k + 2)C] 

Hence, 

The equation is true for n = k + 1 under the assumption that it is true for n = k. 

Therefore, 

By the principle of mathematical induction, the equation is true for all positive integer values of n. 

Thus, 

An+1 = Bn(B + (n + 1)C) for every n ϵ N.

712.

What is the value of |3I3|, where I3 is the identity matrix of order 3?

Answer»

The given matrix is of order 3 x 3, therefore |3I3| = 33|I3| = 27 |I3| = 27 x 1 = 27 

713.

the matrix `A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1,` isA. symmetric matrixB. skew-symmetric matricC. hermitainD. skew-hermitain

Answer» Correct Answer - D
714.

If `[(1,3,3),(1,4,4),(1,3,4)][(x),(y),(z)]=[(12),(15),(13)]` , then the values of `x, y,z` respectively areA. `1, 2,3`B. `3, 2, 1`C. `2, 2, 1`D. `1, 1, 2`

Answer» Correct Answer - b
715.

The inverse of `[(1,2,4),(3,-19,7),(2,4,8)]` isA. `[(1,1,1),(3,9,7),(2,1,8)]`B. `[(1,1,1),(19,7,8),(2,1,3)]`C. `[(3,1,4),(1,2,3),(4,5,8)]`D. does not exist

Answer» Correct Answer - d
716.

If `[{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}]`, then `[{:(x),(y),(z):}]` is equal toA. `[(1),(1),(1)]`B. `[(1),(-2),(3)]`C. `[(1),(-2),(1)]`D. `[(1),(2),(-3)]`

Answer» Correct Answer - d
717.

If A is a square matrix of order 3 such that |adj A|= 64, then find |A|.

Answer»

We know that |adj A| = |A|n–1

n is order of the matrix

∴ 64 = |A|2

⇒ |A| = ± 8.

718.

If A is a matrix of order 3 × 3, then find (A2)–1.

Answer»

(A2)–1 = (A.A)–1  [ ∵ (AB)–1 = B–1 A–1 ]

= A–1.A–1 

= (A–1)2

719.

If A2 – A + I = 0, then find the inverse of A.

Answer»

We have,

A2 – A + I = 0

Pre-multiply both sides, by A–1, we get

A–1AA – A–1A + AI = 0

⇒ A – I + A–1 = 0

⇒ A–1 = I – A

720.

The solutiion of `(x,y,z)` the equation `[(-1,0,1),(-1,1,0),(0,-1,1)][(x),(y),(z)]=[(1),(1),(2)]` is `(x,y,z)`A. `(1, 1, 1)`B. `(0, -1, 2)`C. `(-1, 2, 2)`D. `(-1, 0, 2)`

Answer» Correct Answer - d
721.

If A is square matrix of order 3 such that |adj A| = 81, then find |A|.

Answer»

Since

|adj A| = |A|n – 1, where n is order of matrix A

⇒ 81 =  |A|3 – 1

⇒ 81 = |A|2

∴ |A| = ± 9

722.

If `[(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)]`, then `(x, y, z)` is equal toA. `(1, 6, 6)`B. `(1, -6, 6)`C. `(1, 1, 6)`D. `(6, -1, 1)`

Answer» Correct Answer - d
723.

If A is non-singular square matrix such that A-1 = \(\begin{bmatrix} 5 &amp;3 \\[0.3em] -2 &amp; -1 \\[0.3em] \end{bmatrix}\) then find (AT )–1.

Answer»

We have,

(AT)-1 = (A-1)T

\(\begin{bmatrix} 5 &3 \\[0.3em] -2 & -1 \\[0.3em] \end{bmatrix}^T\)

\(\begin{bmatrix} 5 &-2 \\[0.3em] 3 & -1 \\[0.3em] \end{bmatrix}.\)

724.

If \(A=\begin{bmatrix} a &amp; 0 &amp; 0 \\[0.3em] 0 &amp; a &amp; 0 \\[0.3em] 0 &amp; 0 &amp; a \end{bmatrix}\) ,find the value of |adj A|.

Answer»

|adj A| = |A|2

[ ∵ |adj A| = |A|n-1, where n is the order of matirx.]

\(=\begin{bmatrix} a & 0 & 0 \\[0.3em] 0 & a & 0 \\[0.3em] 0 & 0 & a \end{bmatrix}^2\)

= (a3)2

= a6

[∵ Determinant of a triangular matrix is equal to the product of its diagonal elements].

725.

If `[(1,1),(-1,1)] [(x),(y)]=[(2),(4)]`, then the values of x and respectively areA. `-3, -1`B. `1, 3`C. `3, 1`D. `-1, 3`

Answer» Correct Answer - d
726.

If A and B are non-singular square matrices of the same order, then write the relationship between adj AB, adj A and adj B.

Answer»

The relation is adj AB = (adj B) (adj A)

727.

If `A[(1,2,2),(-2,-1,-1),(1,-4,-4)]`, then the sum of the elements of `A^(-1)` is

Answer» Correct Answer - a
728.

IF `A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=`A. `[(4,2,3),(-1,4,2),(1,2,1)]`B. `[(-4,2,3),(-1,-4,2),(1,2,-1)]`C. `[(-4,-1,1),(2,-4,2),(3,2,-1)]`D. `[(-1,-2,1),(4,-2,-3),(1,4,-2)]`

Answer» Correct Answer - b
729.

If A and adj A are non-singular square matrices of order n, then adj `(A^(-1))=`A. `(adj A)^(T)`B. `adj (adj (A))`C. `1/|A| A`D. `|A|*A`

Answer» Correct Answer - C
730.

If `A=[(2,2),(-3,2)], B=[(0,-1),(1,0)]` then `(B^(-1)A^(-1))^(-1)` is equal toA. `[(2,-2),(2,3)]`B. `[(2,2),(-2,3)]`C. `[(2,-3),(2,2)]`D. `[(1,-1),(-2,3)]`

Answer» Correct Answer - a
731.

If `A and B`are square matrices of the same order and `A`is non-singular, then for a positive integer `n ,(A^(-1)B A)^n`is equal toA. `A^(-n)B^(n)A^(n)`B. `A^(n)B^(n)A^(-n)`C. `A^(-1)B^(n)A`D. `n(A^(-1)BA)`

Answer» Correct Answer - C
732.

If A is a non-singlular square matrix of order n, then the rank of A isA. equal to nB. less than nC. greater than nD. none of these

Answer» Correct Answer - A
733.

If A is a matrix such that there exists a square submatrix of order r which is non-singular and eveny square submatrix or order r + 1 or more is singular, thenA. rank (A) = r + 1B. rank (A) = rC. rank (A) gt rD. `"rank "(A)lt r+1`

Answer» Correct Answer - B
734.

Let for any matrix `M,M^(-1)` exists, which of the followint is not true?A. `(M^(-1))=(M)^(-1)`B. `(M^(2))^(-1)=(M^(-1))^(2)`C. `(M^(-1))^(-1)=(M^(-1))^(1)`D. `(M^(-1))^(-1)=M`

Answer» Correct Answer - c
735.

If A = [aij] is a skew-symmetric matrix, then write the value of \(\displaystyle\sum_{i}a_{ij}.\)

Answer»

Given : 

A = [aij] is a skew – symmetric matrix

⇒ aij = - aji …(i)

[for all values of i, j]

For diagonal elements,

⇒ aii = - aii 

[for all values of i] 

⇒ aii + aii = 0 

⇒ 2aii = 0 

⇒ aii = 0 …(ii)

Now,

\(\displaystyle\sum_{i}\)\(\displaystyle\sum_{j} a_{ij}=\) a11 + a12 + a13...+ a21 + a22 + a23 ... + a31 + a32 + a33 ...

= 0 + a12 + a13 +...+ (- a12) +0 + a23 +... + (-a13) + (-a23) + 0...

[from (i) and (ii)]

= 0 

Thus,

 \(\displaystyle\sum_{i}\)\(\displaystyle\sum_{j} a_{ij}=0\) 

Hence Proved.

736.

For any square matrix write whether AAT is symmetric or skew-symmetric.

Answer»

Here, 

We have any square matrix 

To Find : AAT is symmetric or skew – symmetric

Proof : Firstly, we take the transpose of AAT, so we get 

(AAT)T = (AT)T AT

[∵ (AB)T = BTAT

⇒ (AAT)T = AA

[∵ (AT)T = A] 

∴ AAT is a symmetric matrix

737.

The statement are True or False:AA’ is always a symmetric matrix for any square matrix A.

Answer»

True

(AA’)’=(A’)’A’

As we know (A) = A

(AA’)’=AA’ (Condition of symmetric matrix)

738.

The statement are True or False:If A is skew symmetric matrix, then A2 is a symmetric matrix.

Answer»

True

For skew symmetric matrix A’=-A

⇒ (A2)’=(AA)’=A’A’

⇒ A’A’=(-A)(-A)=A2

⇒ (A2)’=A2 (symmetric matrix)

739.

If A; B are invertible matrices of the same order; then show that `(AB)^-1 = B^-1 A^-1`

Answer» True
we kn ow that , if A and B are inversible matrices of the same order, then
`(AB)^(-1)=(BA)^(-1) [becauseAB=BA]`
Here, `(AB)-^(-1)=(AB)^(-1)`
`rArr B^(-1)A^(-1)=A^(-1)B^(-1)`
740.

If the matrices, A, B and `(A+B)` are non-singular, then prove that `[A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1)`.

Answer» `[A(A+B)^(-1) B]^(-1) =B^(-1) ((A+B)^(-1))^(-1) A^(-1)`
`=B^(-1) (A+B)A^(-1)`
`=(B^(-1) A+B^(-1)B) A^(-1)`
`=(B^(-1)A+I)A^(-1)`
`=B^(-1) A A^(-1)+IA^(-1)`
`=B^(-1)I+A^(-1)`
`=B^(-1)+A^(-1)`
741.

The statement are True or False:(AB)–1 = A–1.B–1, where A and B are invertible matrices satisfying cumulative property with respect to multiplication.

Answer»

False

∵ If A and B are invertible matrices then,

⇒ (AB)-1=B-1A-1

742.

If `B`is an idempotent matrix, and `A=I-B ,`then`A^2=A`b. `A^2=I`c. `A B=O`d. `B A=O`A. `A^(2) = A`B. `A^(2) = I`C. `AB=O`D. `BA= O`

Answer» Correct Answer - A::C::D
`because A = I - B`
`rArr A^(2) =I^(2) + B^(2) - 2 B= I - B = A ` [ `because` B is idempotent ]
and `AB= B- B^(2) = B - B= 0 ` [ nill matrix]
and `BA = B- B^(2) = B - B = 0 ` [ null matrix]
743.

If \(\begin{vmatrix}5&amp;7\\x&amp;1\\2&amp;6\end{vmatrix} - \begin{vmatrix}1&amp;2\\-3&amp;5\\2&amp;y\end{vmatrix} = \begin{vmatrix}4&amp;5\\4&amp;-4\\0&amp;4\end{vmatrix} \)then ______[(5, 7) (x, 1) (2, 6)] - [(1, 2) (-3, 5) (2, y)] = [(4, 5) (4, -4) (0, 4)](a) x = 1, y = -2 (b) x = -1, y = 2 (c) x = 1, y = 2 (d) x = -1, y = -2

Answer»

Correct option is : (c) x = 1, y = 2

744.

If `A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}]`and `B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}]`, then `(A+B)^(2)=`A. `A`B. `B`C. `I`D. `A^(2)+B^(2)`

Answer» Correct Answer - D
`(d)` `AB=BA=[{:(0,0,0),(0,0,0),(0,0,0):}]=0`
745.

If A is a non-singular matrix, thenA. `A^(-1)` is a non-singular matrix, thenB. `A^(-1)`is skew-symmetric if A is symmetricC. `abs(A^-1) = abs(A)`D. `abs(A^-1) = abs(A)^(-1)`

Answer» Correct Answer - A::D
`because abs(A) ne 0 rArr A^(-1) `
is also symmetric, if A is symmetric
and `abs(A^(-1)) = 1/abs(A) = abs(A) ^(-1)`
746.

If A and B are square matrices of same order such that `AB=O` and `B ne O`, then prove that `|A|=0`.

Answer» We have `AB=O`
`:. |AB|=0`
`implies |A||B|=0`
`implies |A|=0` or `|B|=0`
Now, let `|A| ne 0`, then `A^(-1)` exists.
Thus, from `AB=O`,
`A^(-1) AB=A^(-1)O`
`:. IB=O`
or `B=O`
But it is given that `B ne O`, then `|A|=0`.
747.

If A + B = \(\begin{vmatrix}7&amp;4\\8&amp;9\end{vmatrix} and\, A-B =\begin{vmatrix}1&amp;2\\0&amp;3\end{vmatrix} \) then the value of A is ________A+B = [(7, 4) (8,9)] and A-B = [(1, 2) (0, 3)](a) \(\begin{vmatrix}3&amp;1\\4&amp;3\end{vmatrix} \)(b) \(\begin{vmatrix}4&amp;3\\4&amp;6\end{vmatrix} \)(c) \(\begin{vmatrix}6&amp;2\\8&amp;6\end{vmatrix} \)(d) \(\begin{vmatrix}7&amp;6\\8&amp;12\end{vmatrix} \)

Answer»

Correct option is : (b) \(\begin{vmatrix}4&3\\4&6\end{vmatrix} \)

748.

Verify that `A^(2)=I`, when `A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]`

Answer» we have `A=[{:(0,1,-1),(4,-3,4),(3,-3,4):}]`
`A^(2)=[{:(0,1,-1),(4,-3,4),(4,-3,4):}][{:(0,1,-1),(4,-3,4),(3,-3,4):}]`
` =[{:(1,0,0),(0,1,0),(0,0,1):}]=I`
749.

If `A=[a b c d]`(where `b c!=0`) satisfies the equations `x^2+k=0,t h e n``a+d=0`b. `K=-|A|`c. `k=|A|`d. none of theseA. `a+d=0`B. `k=-|A|`C. `k=|A|`D. none of these

Answer» Correct Answer - C
We have,
`A^(2)=[(a,b),(c,d)][(a,b),(c,d)]=[(a^(2)+bc,ab+db),(ac+cd,bc+d^(2))]`
As A satisfies `x^(2)+k=0`, we have
`A^(2)+kI=O`
or `[(a^(2)+bc+k,(a+d)b),((a+d)c,bc+d^(2)+k)]=[(0,0),(0,0)]`
or `a^(2)+bc+k=0, bc+d^(2)+k=0`
and `(a+d)b=(a+d) c=0`
As `bc ne 0, b ne 0, c ne 0`, so
`a+d=0`
or `a=-d`
Also,
`k=-(a^(2)+bc)`
`=-(d^(2)+bc)`
`=-((-ad)+bc)`
`=|A|`
750.

Let `p` be a non singular matrix, and `I + P + p^2 + ... + p^n = 0,` then find `p^-1`.

Answer» We have, `I+p++p^(2)+...+p^(n)=O` ...(1)
Since p is non-sigular matrix, p is invertible. Multiplying both sides of (1) by `p^(-1)`, we get
`implies =^(-1)I+p^(-1)p+p^(-1)p^(2)+...+p^(-1) p^(n)=p^(-1)O`
`implies p^(-1)+I+p+p^(2)+...+p^(n-1)=O`
`implies p^(-1)=-(I+p+p^(2)+...+p^(n-1))`
`implies p^(-1)=- (-p^(n))=p^(n)`