

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
651. |
If `[{:(x, 0), (0, y):}] + [{:(-y, 4),(7, x):}] = [{:(4, 4), (7, 6):}]` then x = ____ and y=___. |
Answer» Correct Answer - 5 and 1 | |
652. |
If `A = [{:(8, -7), (9, -8):}], " then " (A^(2007))^(-1)` =___.A. IB. 2AC. ABD. 2007I |
Answer» Correct Answer - C Calculate `A^(2), " then find " (A^(2007))^(-1)` |
|
653. |
If `A=[(x,-2),(3,7)]` and `A^(-1)=[(7/34,1/17),((-3)/34,2/17)]`,then the value of x isA. 2B. 3C. `-4`D. 4 |
Answer» Correct Answer - d |
|
654. |
If `A={:[(p,-1),(q,1)]:},B={:[(1,-1),(1,2)]:}and(A+B)^(2)=A^(2)+2AB+B^(2)`, then p-q= _______ .A. 2B. -1C. 3D. 1 |
Answer» Correct Answer - B | |
655. |
The value of `|{:("cos"theta, -"sin"theta), ("sin" theta, "cos"theta):}|` =___. |
Answer» Correct Answer - 1 | |
656. |
If `{:((a,3),(4,5)):}{:((3,-2),(b,8)):}={:((30,20),(52,a)):}`, then find 2a+b-c.A. 16B. 15C. 12D. -20 |
Answer» Correct Answer - D | |
657. |
Let `P=[(1,2,1),(0,1,-1),(3,1,1)]`. If the product PQ has inverse `R=[(-1,0,1),(1,1,3),(2,0,2)]` then `Q^(-1)` equalsA. `[(3,2,9),(-1,1,1),(0,1,8)]`B. `[(5,2,9),(-1,1,1),(0,1,7)]`C. `[(2,-1,0),(10,6,3),(8,6,4)]`D. none of these |
Answer» Correct Answer - C `(PQ)^(-1)=R` `implies Q^(-1)xxP^(-1) =R` `implies Q^(-1) =RP=[(-1,0,1),(1,1,3),(2,0,2)][(1,2,1),(0,1,-1),(3,1,1)]` `=[(2,-1,0),(10,6,3),(8,6,4)]` |
|
658. |
If `A=[(2x,0),(x,x)]` and `A^(-1)=[(1,0),(-1,2)]` then x equals toA. 2B. `(1)/(2)`C. 1D. 3 |
Answer» Correct Answer - b |
|
659. |
If K is real number, then `(KA)^(-1)` =____. |
Answer» Correct Answer - I | |
660. |
If `A={:[(-13,24),(-7,13)]:}`, then `A^(8)` = _______ .A. AB. IC. OD. None of these |
Answer» Correct Answer - B `A={:[(-13,24),(-8,13)]:}` `A^(2){:[(-13,24),(-7,13)]:}{:[(-13,24),(-7,13)]:}` `{:[(169-168,-312+312),(91-91,-168+169)]:}={:[(1,0),(0,1)]:}` `A^(2)=I` `(A^(2))^(4)=I^(4)` `A^(8)=I`. |
|
661. |
If `P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]`then `(PQ)^(-1)` equals toA. zero matrixB. `I_(3)`C. diag `[-5, -5, -5]`D. `-(1)/(5)I_(3)` |
Answer» Correct Answer - D |
|
662. |
If `P={:[(2,-1),(-1,3)]:},Q={:[(1,-2),(-3,0)]:}andR={:[(-2,1),(2,-1)]:}`. then find PQ+PR.A. `{:[(1,2),(2,1)]:}`B. `{:[(1,1),(2,2)]:}`C. `{:[(1,0),(0,1)]:}`D. `{:[(-1,-1),(-2,-2)]:}` |
Answer» Correct Answer - D | |
663. |
If `A(x)={:[(e^(x),e^(x)),(e^(-x),e^(-x))]:}` then A(x) A(y)=A. A(x+y)A(x-y)B. A(x+y)+A(x-y)C. A(x+y)-A(x-y)D. A(x+y) |
Answer» Correct Answer - B `A(x)={:[(e^(x),e^(x)),(e^(-x),e^(-x))]:}` `A(y)={:[(e^(y),e^(y)),(e^-y,e^(-y))]:}` `A(x)A(y)={:[(e^(x+y)+e^(x-y),e^(-x)e^(y)+e^(x)e^(-y)),(e^(-x)e^(y)+e^(-x)e^(-y),e^(-x)e^(y)+e^(-x)e^(-y))]:}` `{:[(e^(x+y)+e^(x-y),e^(x+y)+e^(x-y)),(e^(-x+y)+e^(-x-y),e^(-x+y)+e^(-x-y))]:}` `{:[(e^(x+y)+e^(x-y),e^(x+y)+e^(x-y)),(e^(-(x-y))+e^(-(x+y)),e^(-(x-y))+e^(-(x+y)))]:}` =A(x+y)+A(x-y). |
|
664. |
If `{:[(2,4),(p,1)]:}{:[(-1,2),(3,1)]:}={:[(10,q),(-2,r)]:}`, then pq= _______ .A. 4(r-1)B. 5rC. 4r+2D. r |
Answer» Correct Answer - A Given `{:[(2,4),(p,1)]:}{:[(-1,2),(3,1)]:}={:[(10,q),(-2,r)]:}` `{:[(-2+12,4+4),(-p+3,2p+1)]:}={:[(10,q),(-2,r)]:}` `{:[(10,8),(-p+3,2p+1)]:}={:[(10,q),(-2,r)]:}` `-p+3=-2,q=8,r=2p+1` `-p=-5,r=2(5)+1` `p=5,r=11`. Therefore pq `=pq=5(8)=40=4(r-1)`. |
|
665. |
The matrix `A = [{:(a, d), (c, a):}]` is singular then a =____. |
Answer» Correct Answer - `sqrt(bc)` | |
666. |
If A `= [s 2] " and "B = [(x), (y)]` then AB = _____. |
Answer» Correct Answer - `(sx + 2y)_(1 xx 1)` | |
667. |
If `A={:[(6,-7,1),(3,-2,1)]:}andB={:[(5,1,2),(-4,3,-5)]:}` then find X such that 2A-B+X=O.A. `{:[(7,6,0),(1,3,-5)]:}`B. `{:[(10,1,2),(3,2,1)]:}`C. `{:[(7,7,0),(10,3,5)]:}`D. `{:[(-7,15,0),(-10,7,-7)]:}` |
Answer» Correct Answer - D `A={:[(6,-7,1),(3,-2,1)]:}rArr{:[(12,-14,2),(6,-4,2)]:}` Given that 2A-B+X=O 2A-B+X2A+B=I+B-2A (Adding B and subtracting 2A) X=O+B-2A `O^(1)={:[(0,0,0),(0,0,0)]:}` `B={:[(5,1,2),(-4,3,-5)]:}` `X={:[(0+5-12,0+1+14,0+2-2),(0-4-6,0+3+4,0-5-2)]:}` `={:[(7,15,0),(-10,7,-7)]:}`. |
|
668. |
If A and B commute, then `(A + B)^(2)` =___. |
Answer» Correct Answer - `A^(2) + 2AB + B^(2)` | |
669. |
If A and B are commute then `(A+B)^(2)` =A. `A^(2)+B^(2)`B. `A^(2)+2AB+B^(2)`C. `A^(2)-B^(2)`D. `A^(2)-2AB+B^(2)` |
Answer» Correct Answer - B If A and B are commute, then AB=BA. |
|
670. |
If `A={:((1,-3,4),(2,1,-2)):},B={:((-2,-4,5),(1,-1,3)):}` and 5A-3B+2X=O, then X=A. `{:((-11,3,-5),(-7,-8,19)):}`B. `(1)/(2){:((-11,3,-5),(-7,-8,19)):}`C. `(1)/(2){:((11,-3,5),(7,8,-19)):}`D. None of these |
Answer» Correct Answer - B 2X=3B-5A |
|
671. |
A and B are two square matrices of same order. If `AB =B^(-1), " then " A^(-1)` =____.A. BAB. `A^(2)`C. `B^(2)`D. B |
Answer» Correct Answer - C `AB = B^(-1)` `(AB) B = B^(-1) * B` `AB^(2) =I` `A^(-1) * A * B^(2) = A^(-1) * I` `I * B^(2) = A^(-1)` `therefore A^(-1) = B^(2)`. |
|
672. |
If `{:[(0,3,-5),(-3,0,6),(5,-6,0)]:}` is aA. scalar matrix.B. symmetric matrix.C. skew symmetric.D. diagonal matrix. |
Answer» Correct Answer - C Find `A^(T)and-A`. |
|
673. |
If `A = [[(2, 0)], [(5, -3)]] , B = [(-2, 1), (3, -1)] ` then find the trace of `(AB^T)^T`A. 10B. 14C. `-4`D. `-18` |
Answer» Correct Answer - B `A = ({:(2, 0), (5, -3):}) B =({:(-2, 1), (3, -1):})` `B^(T) = ({:(-2, 3), (1, -1):})` `A xx B^(T) = ({:(2, 0), (5, -3):}) ({:(-2, 3), (1, -1):})` ` = ({:(-4+10, 6-0), (-10-3, 15+3):}) = ({:(-4, 6), (-13, 18):})` `(AB^(T))^(T) = ({:(-4, -13), (6, 18):})` Trace of `(AB^(T))^(T) = -4 + 18 =14.` |
|
674. |
If `A{:[(1,4,-3),(5,7,9)]:}andB={:[(5,-7),(4,5)]:}`, thenA. AB exists.B. BA exists.C. (A+B) exists.D. (A-B) exists. |
Answer» Correct Answer - B Verify the addition and multiplication rules. |
|
675. |
If the matrix `{:[(a+b,0,0),(0,b+c,0),(0,0,c+a)]:}`, (where a,b,c are positive integers) is a scalar matrix, then the value of (a+b+c) can beA. 6B. 8C. 5D. 7 |
Answer» Correct Answer - A In a scalar matrix, principal diagonal elements are same. |
|
676. |
Find the inverse of the matrix A = `[{:(2, -4), (3, -5):}]`. |
Answer» `|A| = |{:(2, -4),(3, -5):}| = -10 + 12 = 2 ne 0.` `therefore` A is non-singular and `A^(-1)` exists. `therefore A^(-1) = (1)/(ad-ac) [{:(d, -b), (-c, a):}] = (1)/(2) [{:(-5, 4),(-3, 2):}]` `A^(-1) = [{:(-(5)/(2), (4)/(2)), (-(3)/(2), (2)/(2)):}] = [{:(-(5)/(2), 2),(-(3)/(2), 1):}]` |
|
677. |
`"If A" =[{:(p, q),(r, s):}]`, ps = 15 and det A = 21, then find the value of qr. (a) 6 (b) -6 (c) 5 (d) -8 |
Answer» `A = [{:(p, q), (r, s):}]` det A = ps - qr = 21 `rArr qr = ps - 21` qr = 15-21 `rArr qr = -6`. |
|
678. |
`"If A" = ({:(3, -6),(-1, 2):}) " and B" = ({:(2, 6),(1, 3):})` are two matrices, then find AB + BA. (a) I (b) O (c) A (d) B |
Answer» `AB = ({:(3, -6),(-1, 2):}) ({:(2, 6),(1, 3):})` `= ({:(6-6, 18-18),(-2+2, -6+6):}) = ({:(0, 0),(0, 0):})` `BA= ({:(2, 6),(1, 3):})({:(3, -6),(-1, 2):})` `=({:(6-6, -12+12),(3-3, -6+6):}) = ({:(0, 0),(0, 0):})` AB+BA = 0. |
|
679. |
`"If A"= ({:(2, 3),(5, 1):}), B = ({:(a, b),(c, d):})` and AB = -13I, then find the value of a + b - c + d. (a) 5 (b) 3 (c) 2 (d) 1 |
Answer» AB = -13I `({:(2, 3),(5, 1):})({:(a, b),(c, d):}) = -13 ({:(1, 0),(0, 1):})` `({:(2a+ 3c, 2b+3d),(5a+c, 5b+d):}) = ({:(-13, 0),(0, -13):})` `rArr 2a + 3c =- 13 " "(1)` `5a +c = 0 " " (2)` `2a + 3d = 0 " " (3)` `5b +d = -13 " " (4)` Solving Eqs. (1) and (2), we get a = 1 and c=-5. Solving Eqs. (3) and (4), we get b = -3 and d=2. a + b - c + d = 1 - 3 + 5 + 2 = 5. |
|
680. |
`"If" A = ({:(0, 2009),(-2009, 0):}), " then find " [A^(2009) + (A^(T))^(2009)].` (a) `({:(1, 0),(0, 1):})` (b) `({:(0, 0),(0, 0):})` (c) `({:(0, 2009),(-2009, 0):})` (d) None of these |
Answer» Find `A^(2)` then calculate `A^(2009)` | |
681. |
` "If A" = [{:(2, 3),(-1, 4):}] " and B" = [{:(-3, 1),(4, -2):}] " then find" A-B.` |
Answer» ` A -B= [{:(2, 3),(-1, 4):}] - [{:(-3, 1),(4, -2):}]` ` A -B= [{:(2-(-3), 3-1),(-1-4, 4-(-2)):}] = [{:(5, 2),(-5, 6):}]` |
|
682. |
If A and B are symmetric matrices of same order, prove that (i) AB + BA is a symmetric matrix. (ii) AB – BA is a skew-symmetric matrix. |
Answer» Given A and B are symmetric matrices ⇒ – AT = A and BT = B (i) To prove AB + BA is a symmetric matrix. Proof: Now (AB + BA)T = (AB)T + (BA)T = BT AT + AT BT = BA + AB = AB + BA i.e. (AB + BA)T = AB + BA ⇒ (AB + BA) is a symmetric matrix. (ii) To prove AB – BA is a skew symmetric matrix. Proof: (AB – BA)T = (AB)T – (BA)T = BT AT – AT BT = BA – AB i.e. (AB – BA)T = – (AB – BA) ⇒ AB – BA is a skew symmetric matrix. |
|
683. |
Let A and B be two symmetric matrices. Prove that AB = BA if and only if AB is a symmetric matrix. |
Answer» Let A and B be two symmetric matrices ⇒ AT = A and BT = B ... (1) Given that AB = BA (2) To prove AB is symmetric: Now (AB)T = BTAT = BA (from(1)) But (AB)T = AB by ... (2) ⇒ AB is symmetric. Conversely let AB be a symmetric matrix. ⇒ (AB)T = AB i.e. BT AT = AB i.e. BA = AB (from (1)) ⇒ AB is symmetric |
|
684. |
If `{:A=[(1,0,0),(0,1,0),(a,b,-1)]:}`, then `A^2` is equal toA. a null matrixB. a unit matrixC. `-A`D. A |
Answer» Correct Answer - B We have, `{:A^2=[(1,0,0),(0,1,0),(a,b,-1)][(1,0,0),(0,1,0),(a,b,-1)]=[(1,0,0),(0,1,0),(0,0,1)]:}`=a unit matrix. |
|
685. |
Find the values of p, q, r and s if \(\begin{bmatrix} p^2 -1 & \ 0 &-31 - q^3 \\[0.3em] 7 &r + 1& 9\\[0.3em] -2 &8 & s - 1 \end{bmatrix}\)= \(\begin{bmatrix} 1& \ 0 &-4 \\[0.3em] 7 &3/2& 9\\[0.3em] -2 &8 & π \end{bmatrix}\) |
Answer» When two matrices (of same order) are equal then their corresponding entries are equal. Here \(\begin{bmatrix} p^2 -1 & \ 0 &-31 - q^3 \\[0.3em] 7 &r + 1& 9\\[0.3em] -2 &8 & s - 1 \end{bmatrix}\)= \(\begin{bmatrix} 1& \ 0 &-4 \\[0.3em] 7 &3/2& 9\\[0.3em] -2 &8 & π \end{bmatrix}\) ⇒ p2 – 1 = 1 ⇒ p2 = 1 + 1 = 2 p = ± √2 -31 – q3 = -4 -q3 = -4 + 31 = 27 q3 = -27 = (-3)3 ⇒ q = -3 r + 1 = 3/2 ⇒ r = 3/2 – 1 = 3 - 2/2 = 1/2 s – 1 = π ⇒ s = – π + 1 (i.e.,) s = 1 – π So, p = ± √2, q = -3, r = 1/2 and s = 1 – π |
|
686. |
Let M be `a3xx3` matrix satisfying `{:M[(0),(1),(0)]=[(1),(-1),(6)]=[(1),(1),(-1)]and","M=[(1),(1),(1)]=[(0),(0),(12)]:}` Then the sum of the diagonal entries of M, isA. 7B. 8C. 9D. 6 |
Answer» Correct Answer - C Let `M={:[(a,b,c),(x,y,z),(l,m,n)]:}`. Then, `{:M[(0),(1),(0)]=[(1),(-1),(6)]rArr [(b),(y),(m)]=[(-1),(2),(3)]rArr b=-1,y=2,m=3:}` `{:M[(1),(-1),(0)]=[(1),(1),(1)]rArr a-b=1,x-y=1,l-m=-1:}` `rArra=0,x=3,l=2` and, `{:M[(1),(1),(1)]=[(0),(0),(12)]rArra+b+c=0,x+y+z=0,l+m+n=12:}` `rArr c=1,z=-1,n=7` `:. " Sum of diagonal elements of "M=a+y+n=0+2+7=9` |
|
687. |
Determine the value of x + y if \(\begin{bmatrix} 2x + y &4x \\[0.3em] 5x - 7 &4x \end{bmatrix}\)= \(\begin{bmatrix} 7 &7x - 13 \\[0.3em] y &x + 6 \end{bmatrix}\) |
Answer» \(\begin{bmatrix} 2x + y &4x \\[0.3em] 5x - 7 &4x \end{bmatrix}\)= \(\begin{bmatrix} 7 &7x - 13 \\[0.3em] y &x + 6 \end{bmatrix}\) ⇒ 2x + y = 7 ... (1) 4x = 7y – 13 ... (2) 5x – 7 = y … (3) 4x = x + 6 ... (4) From (4) 4x – x = 6 3x = 6 ⇒ x = 6/3 = 2 Substituting x = 2 in (1), we get 2(2) + y = 7 ⇒ 4 + y = 7 ⇒ y = 7 – 4 = 3 So x = 2 and y = 3 ∴ x + y = 2 + 3 = 5 |
|
688. |
The value of x for which the metrix product `{:[(2,0,7),(0,1,0),(1,-2,1)][(-x,14x,7x),(0,1,0),(x,-4x,-2x)]:}`equal an identity matrix, isA. `1//2`B. `1//3`C. `1//4`D. `1//5` |
Answer» Correct Answer - D We have, `{:[(2,0,7),(0,1,0),(1,-2,1)][(-x,14x,7x),(0,1,0),(x,-4x,-2x)]=[(1,0,0),(0,1,0),(0,0,1)]:}` `rArr{:[(5x,0,0),(0,1,0),(0,10x-2,5x)]=[(1,0,0),(0,1,0),(0,0,1)]:}` `rArr 5x=1,10x-2=0rArrx=1/5` |
|
689. |
Find the matrix A such that\( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\)A = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) |
Answer» \( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\)A = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) We know that the two matrices are eligible for their product only when the number of columns of first matrix is equal to the number of rows of the second matrix. So, \( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\) is 2 × 2 matrix, and Now, In order to get a 3 × 2 matrix as solution 2 × 2 matrix should be multiplied by 2 × 3 matrix. Hence matrix A is 2 × 3 matrix. Let, A = \( \begin{bmatrix}a &b &c \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) So the given question becomes, \( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\) \( \begin{bmatrix}a &b &c \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) [as cij = ai1b1j + ai2b2j + … + ainbnj] ⇒ \( \begin{bmatrix}a+d &b+e &c+f \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) To satisfy the above equality condition, corresponding entries of the matrices should be equal, i.e., d = 1, e = 0, f = 1 a + d = 3 ⇒ a + 1 = 3 ⇒ a = 2 b + e = 3 ⇒ b + 0 = 3 ⇒ b = 3 c + f = 5 ⇒ c + 1 = 5 ⇒ c = 4 Now, Substituting these values in matrix A, we get A = \( \begin{bmatrix}a &b &c \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) = \( \begin{bmatrix}2 &3 &4 \\[0.3em]1& 0 &1\\[0.3em]\end{bmatrix}\) is the matrix A. |
|
690. |
If `A` is a square matrix of order `3` such that `|A|=5`, then `|Adj(4A)|=`A. `5^(3)xx4^(2)`B. `5^(2)xx4^(3)`C. `5^(2)xx16^(3)`D. `5^(3)xx16^(2)` |
Answer» Correct Answer - C `(c )` `Adj(4A)=4^(2)Adj(A)=16Adj(A)` `implies|Adj4A|=16^(3)=|AdjA|=16^(3)*5^(2)` |
|
691. |
If A and B are squar matrices of order 3 such that |A|=-1, |B|=3 then |3AB| is equal to |
Answer» `|3AB|=>3^n|AB|` `3^3|A||B|=>27(-1)*3` `|3AB|=-81` order=3. |
|
692. |
Find the matrix A such that\( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\)A = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) |
Answer» \( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\)A = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) We know that the two matrices are eligible for their product only when the number of columns of first matrix is equal to the number of rows of the second matrix. So, \( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\) is 2 × 2 matrix, and Now, In order to get a 3 × 2 matrix as solution 2 × 2 matrix should be multiplied by 2 × 3 matrix. Hence matrix A is 2 × 3 matrix. Let, A = \( \begin{bmatrix}a &b &c \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) So the given question becomes, \( \begin{bmatrix}1 & 1 \\[0.3em]0 & 1 \\[0.3em]\end{bmatrix}\) \( \begin{bmatrix}a &b &c \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) [as cij = ai1b1j + ai2b2j + … + ainbnj] ⇒ \( \begin{bmatrix}a+d &b+e &c+f \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) = \( \begin{bmatrix}3 &3 & 5 \\[0.3em]1& 0 &1 \\[0.3em]\end{bmatrix}\) To satisfy the above equality condition, corresponding entries of the matrices should be equal, i.e., d = 1, e = 0, f = 1 a + d = 3 ⇒ a + 1 = 3 ⇒ a = 2 b + e = 3 ⇒ b + 0 = 3 ⇒ b = 3 c + f = 5 ⇒ c + 1 = 5 ⇒ c = 4 Now, Substituting these values in matrix A, we get A = \( \begin{bmatrix}a &b &c \\[0.3em]d& e &f \\[0.3em]\end{bmatrix}\) = \( \begin{bmatrix}2 &3 &4 \\[0.3em]1& 0 &1\\[0.3em]\end{bmatrix}\) is the matrix A. |
|
693. |
Without using the concept of the inverse of a matrix, find the matrix \( \begin{bmatrix} x & y \\[0.3em] z & u\\[0.3em] \end{bmatrix}\) such that : \( \begin{bmatrix} 5 & -7 \\[0.3em] -2 & 3\\[0.3em] \end{bmatrix}\)\( \begin{bmatrix} x & y \\[0.3em] z & u\\[0.3em] \end{bmatrix}\)=\( \begin{bmatrix} -16 & -6 \\[0.3em] 7 & 2\\[0.3em] \end{bmatrix}\) |
Answer» Given, Multiplying we get, \( \begin{bmatrix}5x-7z & 5y-7u \\[0.3em]-2x+3z & -2y+3u\\[0.3em]\end{bmatrix}\)= \( \begin{bmatrix}-16 & -6 \\[0.3em]7 & 2\\[0.3em]\end{bmatrix}\) From above we can see that, 5x – 7z = – 16 …(1) –2x + 3z = 7 ….(2) 5y – 7u = – 6 …..(3) –2y + 3u = 2 ……(4) Now, We have to solve these equations to find values of x, y, z and u Multiplying eq (1) by 2 and eq (2) by 5 and adding the equations we get, 10x – 14z + 10x + 15z = – 32 + 35 Z = 3 Putting this value in eq (1) we get, 5x – 21 = – 16 5x = 5 x = 1 Now, Multiplying eq (3) by 2 and eq (4) by 5 and adding we get, 10y – 14u + 10y + 15u = – 12 + 10 u = – 2 Putting value of u in equation (3) we get, 5 y + 14 = – 6 5 y = – 20 y = – 4 Therefore now we have, \( \begin{bmatrix}x & y \\[0.3em]z & u\\[0.3em]\end{bmatrix}\)= \( \begin{bmatrix}1 &-4 \\[0.3em]3 &-2\\[0.3em]\end{bmatrix}\) |
|
694. |
Which of the following is an orthogonal matrix ?A. `[(6//7,2//7,-3//7),(2//7,3//7,6//7),(3//7,-6//7,2//7)]`B. `[(6//7,2//7,3//7),(2//7,-3//7,6//7),(3//7,6//7,-2//7)]`C. `[(-6//7,-2//7,-3//7),(2//7,3//7,6//7),(-3//7,6//7,2//7)]`D. `[(6//7,-2//7,3//7),(2//7,2//7,-3//7),(-6//7,2//7,3//7)]` |
Answer» Correct Answer - A Matrix `[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))]` is orthogonal if `sum a_(i)^(2)=sum b_(i)^(2)=sun c_(i)^(2)=1, sum a_(i)b_(i)=sum b_(i)b_(i)=sum c_(i)a_(i)=0` |
|
695. |
If `A=[(0,x),(y,0)]` and `A^(3)+A=O` then sum of possible values of xy is |
Answer» Correct Answer - B `A^(3)+A=O` `implies A(A^(2)+I)=O` `implies |A(A^(2)+I)|=0` `implies |A|=0` or `|A^(2)+I|=0` If `|A|=0`, then `xy=0` `A^(2)+I=[(0,x),(y,0)][(0,x),(y,0)]+[(1,0),(0,1)]` `=[(xy,0),(0,xy)]+[(1,0),(0,1)]` `=[(xy+1,0),(0,xy+1)]` `|A^(2)+I|=0` `implies (xy+1)^(2)=0` `implies xy=-1` So, sum of possible values of `xy` is `-1`. |
|
696. |
If `A ,B ,A+I ,A+B`are idempotent matrices, then `A B`is equal toA. `BA`B. `-BA`C. `I`D. `O` |
Answer» Correct Answer - B Given `A, B, A + I, A+B` are idempotent. Hence, `A^(2)=A, B^(2)=B, (A+I)^(2)=A+I` and `(A+B)^(2)=A+B` `implies A^(2)+B^(2)+AB+BA=A+B` `implies A+B+AB+BA=A+B` `implies AB+BA=O` |
|
697. |
The value of x for which the matrix `|(-x,x,2),(2,x,-x),(x,-2,-x)|` will be non-singular, areA. `-2le x le2`B. for all x other than 2 and -2C. `xge2`D. `xle-2`0 |
Answer» Correct Answer - B | |
698. |
Let A and B be matrices of order `3 xx 3.` If `AB = 0,` then which of the following can be concluded?A. `A=Oand B=O`B. `absA=OandabsB=O`C. either absA=Oor absB=O`D. `A=Oor B=O` |
Answer» Correct Answer - C | |
699. |
How many different diagonal matrices of order n can be formed which are idempotent ? |
Answer» Correct Answer - `2^(n)` Matrix A is diagonal matrix. `:. A`=dia. `(a_(1), a_(2), ..., a_(n))` `implies A^(2)=` dia. `((a_(1))^(2), (a_(2))^(2),..,(a_(n))^(2))` since A involuntary, we have `:. A^(2)=A` `implies (a_(1))^(2)=a_(1), (a_(2))^(2)=a_(2), ..., (a_(n))^(2)=a_(2),...,(a_(n))^(2)=a_(n)`. `implies a_(1), a_(2), ..., a_(n)=0, 1`. Thus, number of required matrix A is `2xx2xx2xx...n` times `=2^(n)` |
|
700. |
For what value of x, matrix [(3 - 2x, x + 1), (2, 4)] is singular? |
Answer» For a singular matrix |A| = 0 12 - 8x - 2x - 2 = 0 - 10x = - 10 x = 1 |
|