

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
751. |
If `A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}]` and `x^(2)=-1` , then show that `(A+B)^(2)=A^(2)+B^(2)`. |
Answer» We have `A=[{:(0,-x),(x,0):}] B=[{:(0,1),(1,0):}]` and `x^(2)=-1` `therefore (A+B)=[{:(0,-2+1),( x+1,0):}]` and `(A+B)^(2)[{:(0,-x+1),(x+1,0):}][{:(0,-x+1),(x+ 1,0):}]` `=[{:(1-x^(2),0),( 0,1-x^(2)):}] ` Also, `A^(2)=A.A=[ {:(0,-x),(x,0):}][{:(0,-x),(x,0):}]=[{:(-x^(2),0),(0,-x^(2)):}]` and `B^(2)=B.B=[{:( 0,1) ,(1,0):}][{:(0,1),(1,0):}]=[{:(1,0),(0,1):}]` Now, `A^(2)+B^(2)=[{:(-x^(2)+1,0),(0,-x^(2)+1):}]=[{:(1-x^(2),0),(0,1-x^(2)):}]` `=(A+B)^(2)` |
|
752. |
If\(\begin{vmatrix}x&3x-y\\zx+z&3y-w\end{vmatrix} = \begin{vmatrix}3&2\\4&7\end{vmatrix}\), then ___________[(x, 3x-y) (zx+z, 3y-w)] = [(3, 2) (4, 7)](a) x = 3, y = 7, z = 1, w = 14 (b) x = 3, y = -5, z = -1, w = -4 (c) x = 3, y = 6, z = 2, w = 7 (d) x = -3, y = -7, z = -1, w = -14 |
Answer» Correct option is : (a) x = 3, y = 7, z = 1, w = 14 |
|
753. |
Let A and B are two matrices such that `AB = BA,` then for every `n in N`A. `A^(n) B = BA^(n)`B. `(AB)^(n) = A^(n)B^(n)`C. `(A+B)^(n) = ""^(n)C_(0) A^(n) + ""^(n)C_(1) A^(n-1) B+...+ ""^(n) C_(n) B^(n) `D. `A^(2n) - B ^(2n) = (A^(n)-B^(n) ) (A^(n)+B^(n))` |
Answer» Correct Answer - A::C::D `because A^(2) B = A (AB) = A(BA) = (AB)A = (BA)A= BA^(2)` Similarly, `A^(3) B = BA^(3) ` In general, `A^(n) B = BA^(n) , AA n ge 1 ` and `(A +B) ^(n) = ""^(n) C_(0)A^(n) + ""^(n)C_(1)A^(n-1) B +""^(n)C_(2) A^(n-2) B^(2) +...+""^(n) C_(n) B^(n)` Also, `(A^(n) - B^(n)) (A^(n) + B^(n) ) = A^(n) A^(n) + A^(n) B^(n) - B^(n) A^(n) - B^(n) B^(n) ` `= A^(2n)-B^(2n) [ because AB = BA]` |
|
754. |
`A=[[2,1],[4,1]]; B=[[3,4],[2,3]]` & `c=[[3,-4],[-2,3]]`, `tr(A)+tr[(ABC)/2]+tr[(A(BC)^2)/4]+tr[(A(BC)^2)/8]+.....oo` is:A. 6B. 9C. 12D. none of these |
Answer» Correct Answer - A `BC=[(3,4),(2,3)][(3,-4),(-2,3)]impliesB=[(1,0),(0,1)]` `implies tr(A)+tr((ABC)/2)+tr((A(BC)^(2))/4)+tr ((A(BC)^(3))/8)+...+ oo` `=tr (A)+tr (A/2)+tr (A/2^(2))+...` `=tr (A)+1/2 tr (A)+1/2^(2) tr (A)...` `=(tr (A))/(1-(1//2))` `=2tr (A)=2(2+1)=6` |
|
755. |
If M is the matrix `[(1,-3),(-1,1)]` then find matrix `sum_(r=0)^(oo) ((-1)/3)^(r) M^(r+1)` |
Answer» Let `N=M-M^(2)/3+M^(3)/9-M^(4)/27 +...` `:. -(MN)/(3) =- M^(2)/3+M^(3)/9-M^(4)/27 ... oo` Subtracting, we get `N+(MN)/3=M` `implies (I+M/3) N=M` `implies (3I+M)N=3M` `implies N=[(3,-9),(-3,3)][(4,-3),(-1,4)]^(-1)` `=1/13 [(3,-9),(-3,3)][(4,-3),(-1,4)]^(-1)` `=1/13 [(3,-27),(-9,3)]` `=3/13 [(1,-9),(-3,1)]` |
|
756. |
If A and B are `3xx3` matrices and `abs(A)ne 0,` which of the following are true?A. `abs(AB)=0rArr abs(B) = 0`B. `abs(AB)=0rArr B = 0`C. `abs(A^(-1) ) = abs(A)^-1`D. `abs(A+A) = 2 abs(A)` |
Answer» Correct Answer - A::C `abs(AB) = 0 rArr abs(A) abs(B) = 0` `therefore abs(B) = 0 " as "abs(A) ne 0` Also, `abs(A^(-1)) = abs(A)^(-1)` |
|
757. |
For suitable matrices A, B, the false statement is ___________(a) (AB)T = AT BT (b) (AT)T = A (c) (A – B)T = AT – BT (d) (A + B)T = AT + BT |
Answer» Correct option is : (a) (AB)T = AT BT (AB)T = BT AT |
|
758. |
If `A=[{:(cos q,sin q),(-sin q, cos q):}]` , then variefy that `A^(2)=[{:( cos 2q, sin 2q),(-sin 2q,cos 2 q):}]` |
Answer» We have, `A=[{:(cos q,sin q),(-sin q,cos q):}]` `therefore A^(2)=A.A=[{:(cos q,sin q),(-sin q,cos q):}].[{:(cos q,sin q),(-sin q,cos q):}]` `[{:(cos^(2)q-sin^(2)q,cos q sin q+sin q cos q),(-sin q cos q-cos q sin q,-sin^(2)q+cos^(2)q):}]` `=[{:(cos2q,2sinq cosq),(-2sinq, cos 2q):}] [because cos^(2) theta-sin^(2) theta=cos2 theta]` `=[{:(cos2q,sin 2q),(-sin2q,cos2q):}][because sin2 theta=2 sin theta-cos theta]` |
|
759. |
If `A=[{:(,1,a),(,0,1):}]` then find `underset(n-oo)(lim)(1)/(n)A^(n)`A. `{:[(0,a),(0,0)]:}`B. `{:[(0,0),(0,0)]:}`C. `{:[(0,1),(0,0)]:}`D. none of these |
Answer» Correct Answer - A | |
760. |
If A is a matrix of order `mxx m` such that `A^(2) +A + 2I = O`, thenA. A is non-singularB. A is symmetricC. `abs(A)ne 0 `D. `A^(-1) = 1/2(A+I)` |
Answer» Correct Answer - A::C::D Here, `A(A + I) = -2I` ...(i) ` rArr abs(A(A +I))=abs(-2I) = (-2)^(m)ne 0 ` Thus, `abs(A) ne 0,` also, `I= -1/2 A(A+I)` [from Eq. (i)] `therefore A^(-1) = -1/2 (A + I)` |
|
761. |
If `A=[{:(1,2),(-1,3):}]B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}]` a=4 and b=-2, then show that (i) (a+b)B=aB+bB (ii) a(C-A)=aC-aA (iii) `(bA)^(T)=bA^(T)` |
Answer» we have, `A=[{:(1,2),(-1,3):}],B=[{:(4,0),(1,6):}]` `C=[{:(2,0),(1,-2):}]` and a=4,b=-2 (i) ` A+(B+C)=[{:( 1,2) ,(-1,3):}]+[{(:(6,0),(2,3):}]=[{:(7,2),(1, 6):}]` and `(A+B)+C= [{:(5,2),( 0,8):}]+[{:(2,0),(1,-2):}]` `=[{:(7,2),(1,6):}]=A+(B+C)` (ii) (BC)`=[{:(4,0) ,(1,5):}][{:(2,0),(1,-2):}]=[{:(8,0),(7,-10):}]` and ` A(BC)=[{:(1,2),(-1, 3):}][{:(8,0),(7,-10):}]` `=[{:(8+14, 0 -20),(-8+21,0-30):}]=[{:(22,-20),(13,3 0):}]` and Also `(AB)=[{:(1,2),(-1,3):}][{:(4,0),(1,5):}]=[{:(6,10),(-1,15):}]` `(AB)C=[{:(6 ,1 0) ,( -1,15):}][{:(2,0),(1,-2):}]` `=[{:(22,-20),(13,-30):}]=A(BC)` (iii) `(a+ b)B=(4-2)[{:(4, 0),(1,5):}]` `=[{:(8,0),(2,10):}]` and `aB=bB=4B-2B` `=[{:(16,0),(4,20):}]-[{:(8,0),(2,10):}]` `=[{:(8, 0),(2,10):}]` `=(a+b)B` (iv) `(C-A)=[{:(2-1,0-2),(1+1,-2-3):}]=[{:(1,-2),(2,-5):}]` and `a(C-A)=[{:(4,-6),(8,-20):}]` Also, `aC=aA=[{:(8,0),(4-8)-[{:(4,8),(-4,12):}]=[{:( 4,-6),(8,-20):}]` (v) `A^(T)=[{:(1,2) ,( -1,3):}]=[{:(1,-1),(2,3):}]` Now, `(A^(T))^(T)= [{:(1,2),( -1,3):}]^(T)` =A (vi) `(bA)^(T)= [{:(-2,-4),(2,-6) :}]^(T)` `=[{:(-2 ,2),(-4,-6):}]` and `A^(T)=[{:(1,-1),(2,3):}]` `bA^(T)=[{:(-2,2),(-4,-6):}]=(bA)^(T)` (vii) `AB=[{:( 1,2),(-1,3):}][{:(4,0),(1,5):}]=[{:(4+2, 0+12),(-4+3,0+15):}]=[{:(6,10),(-1,15):}]` `therefore (AB)^(T)=[{:( 6,-1),( 10,15):}]` Now, `B^(T)A^(T)=[{:(4,1),(0,5):}][{:(1,-1),(2,3):}]=[{:(6,-1),(10,15):}]` `= (AB)^(T)` (viii) `(A-B) =[{:( 1-4,2-0),(-1-1, 3-5):}]=[{:(-3,2),(-2,-2):}]` `(A-B)C=[{:( -3,2),(-2,-2):}][{:(2,0),(1,-2):}]=[{:(4,-4),(1,- 6):}]` and `BC=[{:(4,0),(1,5):}][{:(2,0),(1 ,-2):}]=[{:(8,0),(7,-10):}]` `therefore AC- BC=[{:(4-8,-4 ,-0) ,(1-7,-6+10):}]` `=(A-B)C` (ix) `(A-B)^(T)=[{:(1-4, 2-0),(-1-1,3-5):}]^(T)` `=[{:(-3,-2),(2,-2):}]=(A-B)^(T)` |
|
762. |
If `A^(2) - 3 A + 2I = 0,` then A is equal toA. `I`B. `2I`C. `[[3,-2],[1,0]]`D. `[[3,1],[-2,0]]` |
Answer» Correct Answer - A::B::C::D `because A^(2) - 3 A + 2I = 0` …(i) `rArr A^(2) - 2 AI + 2I^(2) = 0 ` `rArr (A-I) (A -2I) = 0` `therefore A = I or A = 2I` Characteristic Eq. (i) is `lambda^(2) - 3lambda + 2 = 0 rArr lambda = 1,2` It is clear that alternate (c) and (d) have the characteristic equation `lambda^(2) - 3lambda + 2 = 0 `. |
|
763. |
If A and B are two matrices such that their product AB is a null matrix, thenA. det `A ne 0 rArr B` must be a null matrixB. det `B ne 0 rArr A ` must be a null matrixC. alteast one of the two matrices must be singularD. if neither det A nor det B is zero, then the given statement is not possible |
Answer» Correct Answer - C::D `because AB = 0 ` ` rArr abs(AB) = 0 rArr abs(A) abs(B) = 0` or (det A) (det B) = 0 rArr Either det ` A = 0 or det B - 0` Hence, atleast one of the two matrices must be singular otherwise this statement is not possible. |
|
764. |
If the matrix `{:[(a,b),(c,d)]:}` is commutative with matrix `{:[(1,1),(0,1)]:}`, thenA. `a=0,b=c`B. `b=0,c=d`C. `c=0,d=a`D. `d=0,a=b` |
Answer» Correct Answer - C | |
765. |
Matrix m ultiplication is commutative. |
Answer» False Since, `AB neBA` is possible when AB and BA are both defined. |
|
766. |
For what value of x, is the matrix A = \( \begin{bmatrix}0&1 & -2 \\[0.3em]-1 & 0 &3 \\[0.3em]x & -3 &0\end{bmatrix}\) a skew-symmetric matrix? |
Answer» We are given that, A =\( \begin{bmatrix}0&1 & -2 \\[0.3em]-1 & 0 &3 \\[0.3em]x & -3 &0\end{bmatrix}\) is a skew-symmetric matrix. We need to find the value of x. Let us understand what skew-symmetric matrix is. A skew-symmetric matrix is a square matrix whose transpose equals its negative, that, it satisfies the condition A skew symmetric matrix ⇔ AT = - A First, let us find –A. - A =-1 x\( \begin{bmatrix}0&1 & -2 \\[0.3em]-1 & 0 &3 \\[0.3em]x & -3 &0\end{bmatrix}\) ⇒ - A =\( \begin{bmatrix}0&-1 & 2 \\[0.3em]1 & 0 &-3 \\[0.3em]-x & 3 &0\end{bmatrix}\) Let us find the transpose of A. We know that the transpose of a matrix is a new matrix whose rows are the columns of the original. In matrix A, 1st row of A = (0 ,1 ,-2) 2nd row of A = (-1 ,0 ,3) 3rd row of A = (x ,-3,0) In the formation of matrix AT, 1st column of AT = 1st row of A = (0 ,1 ,-2) 2nd column of AT = 2nd row of A = (-1,0, 3) 3rd column of AT = 3rd row of A = (x, -3 ,0) So, AT =\( \begin{bmatrix}0&-1 & x \\[0.3em]1 & 0 &-3 \\[0.3em]-2 & 3 &0\end{bmatrix}\) Substituting the matrices –A and AT , we get - A = AT ⇒ \( \begin{bmatrix}0&-1 & 2 \\[0.3em]1 & 0 &-3 \\[0.3em]-x & 3 &0\end{bmatrix}\)= \( \begin{bmatrix}0&-1 & x \\[0.3em]1 & 0 &-3 \\[0.3em]-2 & 3 &0\end{bmatrix}\) We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 By comparing the corresponding elements of the two matrices, x = 2 Thus, The value of x = 2. |
|
767. |
The statement are True or False:Matrix addition is associative as well as commutative. |
Answer» True 1. A+B=B+A (commutative) 2. (A+B)+C= A+(B+C) (associative) |
|
768. |
State the statement is True or False. If A and B are two square matrices of the same order, then A + B = B + A. |
Answer» True Since, matrix addition is commutative i.e., A + B = B +A, where A and B are two square matrices. |
|
769. |
State the statement is True or False. Matrix addition is associative as well as commutative. |
Answer» True Matrix addition is associative as well as commutative i.e., (A + B) + C = A + (B + C) and A + B = B + A, where A, B and C are matrices of same order. |
|
770. |
State the statement is True or False. Matrix multiplication is commutative. |
Answer» False If AB is defined, it is not necessary that BA is defined. Also if AB and BA are defined, it not”necessary that they have same order. Further if AB and BA are defined and have same order, it is not necessary their corresponding elements are equal. So, in general AB^BA |
|
771. |
State the statement is True or False. A square matrix where every element is unity is called an identity matrix. |
Answer» False Since, in an identity matrix, the diagonal elements are one and rest are all zero. |
|
772. |
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2 ? Give reasons. |
Answer» We are given that, A and B are square matrices of the order 3 × 3. We need to check whether (AB)2 = A2B2 is true or not. Take (AB)2. (AB)2 = (AB)(AB) [∵ A and B are of order (3 × 3) each, A and B can be multiplied; A and B be any matrices of order (3 × 3)] ⇒ (AB)2 = ABAB [∵ (AB)(AB) = ABAB] ⇒ (AB)2 = AABB [∵ ABAB = AABB; as A can be multiplied with itself and B can be multiplied by itself] ⇒ (AB)2 = A2B2 So, note that, (AB)2 = A2B2 is possible. But this is possible if and only if BA = AB. And BA = AB is always true whenever A and B are square matrices of any order. And for BA = AB, (AB)2 = A2B2 |
|
773. |
If \(\begin{bmatrix}2x+y &3y \\[0.3em]0 & 4 \\[0.3em]\end{bmatrix}\)= \(\begin{bmatrix}6&0 \\[0.3em]6 & 4 \\[0.3em]\end{bmatrix}\), then find x. |
Answer» We are given that, \(\begin{bmatrix}2x+y &3y \\[0.3em]0 & 4 \\[0.3em]\end{bmatrix}\)= \(\begin{bmatrix}6&0 \\[0.3em]6 & 4 \\[0.3em]\end{bmatrix}\) We need to find the value of x. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix}2x+y &3y \\[0.3em]0 & 4 \\[0.3em]\end{bmatrix}\)= \(\begin{bmatrix}6&0 \\[0.3em]6 & 4 \\[0.3em]\end{bmatrix}\) Corresponding elements of two elements are equal. That is, 2x + y = 6 …(i) 3y = 0 …(ii) To solve for x, We have equations (i) and (ii). We can’t solve for x using only equation (i) as equation (i) contains x as well as y. We need to find the value of y from equation (ii) first. From equation (ii), 3y = 0 ⇒ y = \(\frac{0}{3}\) ⇒ y = 0 Substituting y = 0 in equation (i), 2x + y = 6 ⇒ 2x + (0) = 6 ⇒ 2x = 6 – 0 ⇒ 2x = 6 ⇒ x = \(\frac{6}{2}\) ⇒ x = 3 Thus, we get x = 3. |
|
774. |
If matrix A = [1 2 3] , write AAT. |
Answer» We are given that, A = [1 2 3] We need to compute AAT . We know that the transpose of a matrix is a new matrix whose rows are the columns of the original. So, Transpose of matrix A will be given as AT = \( \begin{bmatrix} 1 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}\) Multiplying A by AT, AAT = [1 2 3]\( \begin{bmatrix} 1 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}\) In multiplication of matrices, [ a11 a12 a13]\( \begin{bmatrix} b_{11} \\[0.3em] b_{21} \\[0.3em] b_{31} \end{bmatrix}\) Dot multiply the matching members of 1st row of first matrix and 1 st column of second matrix and then sum up. (a11 a12 a13)(b11 b21 b31) = a11 × b11 + a12 × b21 + a13 × b31 So, (1 2 3)(1 2 3) = 1 × 1 + 2 × 2 + 3 × 3 ⇒ (1 2 3)(1 2 3) = 1 + 4 + 9 ⇒ (1 2 3)(1 2 3) = 14 Thus, [1 2 3]\( \begin{bmatrix} 1 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}\)= [14] |
|
775. |
Find the value of x if \(\begin{bmatrix} 3x+y& -y \\[0.3em] 2y-x &3\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& 2\\[0.3em] -5 & 3 \\[0.3em] \end{bmatrix}\). |
Answer» We are given that, \(\begin{bmatrix} 3x+y& -y \\[0.3em] 2y-x &3\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& 2\\[0.3em] -5 & 3 \\[0.3em] \end{bmatrix}\) We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} 3x+y& -y \\[0.3em] 2y-x &3\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 1& 2\\[0.3em] -5 & 3 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, 3x + y = 1 …(i) - y = 2 …(ii) 2y – x = - 5 …(iii) 3 = 3 To solve for x and y, We have equations (i), (ii) and (iii). From equation (ii), -y = 2 Multiplying both sides by -1, -1 × -y = - 1 × 2 ⇒ y = - 2 Substituting y = - 2 in either of the equations (i) or (iii), say (i) 3x + y = 1 ⇒ 3x + (-2) = 1 ⇒ 3x – 2 = 1 ⇒ 3x = 1 + 2 ⇒ 3x = 3 ⇒ x = \(\frac{3}{3}\) ⇒ x = 1 Thus, We get x = 1 and y = - 2. |
|
776. |
If A = \(\begin{bmatrix} 4 & 3 \\[0.3em] 1 & 2 \end{bmatrix}\) and B = \(\begin{bmatrix} -4 \\[0.3em] 3 \end{bmatrix},\) write AB. |
Answer» Given, A = \(\begin{bmatrix} 4 & 3 \\[0.3em] 1 & 2 \end{bmatrix}\) and B = \(\begin{bmatrix} -4 \\[0.3em] 3 \end{bmatrix}\) So, AB will be, AB = \(\begin{bmatrix} 4 & 3 \\[0.3em] 1 & 2 \end{bmatrix}\) x \(\begin{bmatrix} -4 \\[0.3em] 3 \end{bmatrix}\) = \(\begin{bmatrix} -16+9 \\[0.3em] -4+6 \end{bmatrix}\) = \(\begin{bmatrix} -7 \\[0.3em] 2 \end{bmatrix}\) |
|
777. |
Find the value of y if \(\begin{bmatrix} x-y& 2 \\[0.3em] x &5\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 2& 2\\[0.3em] 3 & 5 \\[0.3em] \end{bmatrix}\). |
Answer» We are given that, \(\begin{bmatrix} x-y& 2 \\[0.3em] x &5\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 2& 2\\[0.3em] 3 & 5 \\[0.3em] \end{bmatrix}\) We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} x-y& 2 \\[0.3em] x &5\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 2& 2\\[0.3em] 3 & 5 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, x – y = 2 …(i) 2 = 2 x = 3 …(ii) 5 = 5 To solve for x and y, We have equations (i) and (ii). From equation (ii), x = 3 Substituting x = 3 in equation (i), we get 3 – y = 2 ⇒ y = 3 – 2 ⇒ y = 1 Thus, We get x = 3 and y = 1. |
|
778. |
If A =\(\begin{bmatrix}1 \\[0.3em]2 \\[0.3em]3\end{bmatrix}\), write AAT. |
Answer» Given, A =\(\begin{bmatrix}1 \\[0.3em]2 \\[0.3em]3\end{bmatrix}_{3 \times 1}\) Now, Firstly we find the AT AT = [1 2 3]1x3 So, The product AAT will be, AAT = \(\begin{bmatrix}1 \\[0.3em]2 \\[0.3em]3\end{bmatrix}\)[1 2 3] = \(\begin{bmatrix}1 & 2 & 3 \\[0.3em]2 & 4 & 6 \\[0.3em]3 & 6 & 9\end{bmatrix}_{3\times3}\) |
|
779. |
Find the value of x from the following : \(\begin{bmatrix} 2x-y& 5 \\[0.3em] 3 &y\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6& 5\\[0.3em] 3 & -2 \\[0.3em] \end{bmatrix}\). |
Answer» We are given with matrix equation We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} 2x-y& 5 \\[0.3em] 3 &y\\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6& 5\\[0.3em] 3 & -2 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, 2x – y = 6 …(i) 5 = 5 3 = 3 y = - 2 …(ii) To solve for x and y, We have equations (i) and (ii). From equation (ii), y = - 2 Substituting y = - 2 in equation (i), we get 2x – y = 6 ⇒ 2x – (- 2) = 6 ⇒ 2x + 2 = 6 ⇒ 2x = 6 – 2 ⇒ 2x = 4 ⇒ x = \(\frac{4}{2}\) ⇒ x = 2 Thus, We get x = 2 and y = - 2. |
|
780. |
If \(\begin{bmatrix} x+3& 4 \\[0.3em] y-4 & x+y \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 5& 4 \\[0.3em] 3 & 9 \\[0.3em] \end{bmatrix}\), find the value of x and y. |
Answer» We are given with, \(\begin{bmatrix} x+3& 4 \\[0.3em] y-4 & x+y \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 5& 4 \\[0.3em] 3 & 9 \\[0.3em] \end{bmatrix}\) We need to find the values of x and y. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} x+3& 4 \\[0.3em] y-4 & x+y \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 5& 4 \\[0.3em] 3 & 9 \\[0.3em] \end{bmatrix}\) Corresponding elements of two matrices are equal. That is, x + 3 = 5 …(i) 4 = 4 y – 4 = 3 …(ii) x + y = 9 …(iii) To solve for x and y, We have three equations (i), (ii) and (iii). From equation (i), x + 3 = 5 ⇒ x = 5 – 3 ⇒ x = 2 From equation (ii), y – 4 = 3 ⇒ y = 3 + 4 ⇒ y = 7 We need not solve equation (iii) as we have got the values of x and y, Thus, The values of x = 2 and y = 7. |
|
781. |
Write a square matrix which is both symmetric as well as skew-symmetric. |
Answer» We must understand what symmetric matrix is. A symmetric matrix is a square matrix that is equal to its transpose. A symmetric matrix ⇔ A = AT Now, Let us understand what skew-symmetric matrix is. A skew-symmetric matrix is a square matrix whose transpose equals its negative, that, it satisfies the condition A skew symmetric matrix ⇔ A T = - A And, A square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order n. We need to find a square matrix which is both symmetric as well as skew symmetric. Take a 2 × 2 null matrix. Say, A =\( \begin{bmatrix}0 &0 \\[0.3em]0 & 0 \\[0.3em]\end{bmatrix}\) Let us take transpose of the matrix A. We know that, The transpose of a matrix is a new matrix whose rows are the columns of the original. So, AT=\( \begin{bmatrix}0 &0 \\[0.3em]0 & 0 \\[0.3em]\end{bmatrix}\) Since, A = AT . ∴ A is symmetric. Take the same matrix and multiply it with -1. - A = -1 x\( \begin{bmatrix}0 &0 \\[0.3em]0 & 0 \\[0.3em]\end{bmatrix}\) ⇒ - A = -\( \begin{bmatrix}0 &0 \\[0.3em]0 & 0 \\[0.3em]\end{bmatrix}\) ⇒ - A = \( \begin{bmatrix}0 &0 \\[0.3em]0 & 0 \\[0.3em]\end{bmatrix}\) Let us take transpose of the matrix –A. So, - AT=\( \begin{bmatrix}0 &0 \\[0.3em]0 & 0 \\[0.3em]\end{bmatrix}\) Since, AT = -A ∴ A is skew-symmetric. Thus, A (a null matrix) is both symmetric as well as skew-symmetric. |
|
782. |
If A and B are two square matrices of the same order, then A+B=B+A. |
Answer» True, Since matrix addition is commutative i.e., A+B=B+A where A and B are two square matrices. |
|
783. |
If A and B are two m atrices of the same order, then A-B=B-A. |
Answer» False Since, the addition of two matrices of same order are commutative. |
|
784. |
If A dn B be `3xx3` matrices the AB=0 implies (A) `A=0 or B=0` (B) `A=0 and B=0` (C) `|A|=0 or |B|=0` (D) `|A|=0 and |B|=0` |
Answer» False Since, for two non-zero matrices A and B of same order, it can be possible that AB=0= null matrix |
|
785. |
Let A; B; C be square matrices of the same order n. If A is a non singular matrix; then `AB = AC` then `B = C` |
Answer» If AB=AC=0 then it can be possible that B and C are two non-zero matrices such that `BneC` `therefore A.B=0=A.C` Let `A=[{:(1,0),(0,0):} ]B=[{:(0,0),(1,3):}]` and `C=[{:(0,0),(3,1):}]` `therefore AB=[{:(1,0),(0,0):}][{:(0,0),(1,3):}]=[{:(0,0),(0,0):}]` and `AC=[{:(1,0),(0, 0):}][{:(0,0),(1,3):}]=[{:(0,0),(0,0):}]` and `AC=[{:(1,0),(0,0):}][{:(0,0),(3,1):}]=[{:(0,0),(0,0):}]` `rArr AB=AC` but `BneC` |
|
786. |
The trace of the matrix`A=[1-5 7 0 7 9 11 8 9]`is(a) 17(b) 25 (c) 3 (d) 12A. 17B. 25C. 3D. 12 |
Answer» Correct Answer - A | |
787. |
Transpose of a column matrix is a column matrix. |
Answer» False, Transpose of a column matrix is a row matrix. |
|
788. |
show that the characterstic roots of an idempotent matrix are either zero or unity. |
Answer» Let A be an idempotent matrix, then `A^(2)=A` If `lambda` be an eigen value of the matrix A correspondin to eigen vector X,so that `AX=lambdaX` where `X!=0` from Eq. (ii) , `A(AX)=A(lambdaX)` `rArr (A A)X=lambda(AX)` ` rArr A^(2)x=lambda (lambdaX)` `rArr AX = lambda^(2)X` `rArr lambdaX=lambda^(2)X` `rArr (lambda-lambda^(2))X=0` `rArr lambda-lambda^(2)=0` `therefore lambda=0` or lambda=1` |
|
789. |
If A and P are the square matrices of the same order and if P be invertible, show that the matrices A and `P^(-1)` have the same characteristic roots. |
Answer» Let `P^(-1)AP=B` `therefore " " |B-lambdaI|=|P^(-1)AP-lambdaI|` `=|P^(-1)AP-P^(-1)lambdaP|` `=|P^(-1)(A-lambdaI)p|` `=P^(-1)||A-lambdaI||P|` `=(1)/(|P|)|A-lambda||P|=|A-lambdaI|` |
|
790. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2.(A – B)2 = A2 – 2A . B + B2 |
Answer» False. Laws of algebra for factorization and expansion are not applicable to matrices. |
|
791. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2.A2 – B2 = (A + B) (A – B) |
Answer» False. Laws of algebra for factorization and expansion are not applicable to matrices. |
|
792. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2. (A – B) . C = A . C – B . C |
Answer» True. Multiplication of matrices is distributive over subtraction. |
|
793. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2.A. (B – C) = A . B – A . C |
Answer» True. Multiplication of matrices is distributive over subtraction. |
|
794. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2.(A + B) . C = A . C + B . C |
Answer» True. Multiplication of matrices is distributive over addition. |
|
795. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2.(B . C). A = B . (C . A) |
Answer» True. Multiplication of matrices is associative. |
|
796. |
State with reason whether the statement is true or false. A, B and C are matrices of order 2 × 2.A + B = B + A |
Answer» True. Addition of matrices is commutative. |
|
797. |
The rank of a null matrix is |
Answer» Correct Answer - C | |
798. |
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A? |
Answer» AB = BA = B We know that AI = IA = I, where I is the identity matrix. Hence, B is the identity matrix. |
|
799. |
The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs 8.30, Rs 3.45 and Rs 4.50 each respectively. Find the total amount the store will receive from selling all the items. |
Answer» Given, The details of stock of various types of books. Physics : 10 dozen books Chemistry : 8 dozen books Mathematics : 5 dozen books Hence, the number of dozens of books available in the store can be represented in matrix form with each column corresponding to a different subject as - X = [10 8 5] The price of each of the items is also given. Cost of one physics book = Rs 8.30 ⇒ Cost of one dozen physics books = 12 × Rs 8.30 ∴ Cost of one dozen physics books = Rs 99.60 Cost of one chemistry book = Rs 3.45 ⇒ Cost of one dozen chemistry books = 12 × Rs 3.45 ∴ Cost of one dozen chemistry books = Rs 41.40 Cost of one mathematics book = Rs 4.50 ⇒ Cost of one dozen mathematics books = 12 × Rs 4.50 ∴ Cost of one dozen mathematics books = Rs 54 Hence, the cost of purchasing a dozen books of each subject can be represented in matrix form with each row corresponding to a different subject as – Y =\(\begin{bmatrix} 99.60 \\[0.3em] 41.60 \\[0.3em] 54 \end{bmatrix}\) Now, The amount received by the store upon selling all the available books can be found by taking the product of the matrices X and Y. XY = [10 8 5] \(\begin{bmatrix} 99.60 \\[0.3em] 41.60 \\[0.3em] 54 \end{bmatrix}\) ⇒ XY = [10 × 99.60 + 8 × 41.40 + 5 × 54] ⇒ XY = [996 + 331.20 + 270] ∴ XY = [1597.20] Thus, The total amount the store will receive from selling all the items is Rs 1597.20. |
|
800. |
Find the inverse of matrix`[{:(1, -3, " "1),(8, " "2 ," " 0),(-3, " " 2, " " 1):}]` |
Answer» `(-1)/(5).[{:(2,0,-3),(1,-1," "0),(-2,-1," "2):}]` | |