Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

951.

Three students Anil, Nikhil and Sunil went to a stationary shop and purchased some items. Anil purchased 3 books, 2 erasers and 5 scales. Sunil purchased 5 books, 6 scales and 3 erasers whereas Nikhil purchased 2 books, 3 scales and 4 erasers. Represent the given data in the matrix form.

Answer» Correct Answer - `[{:(3,2,5),(5,3,6),(2,4,3):}]`
952.

In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 _________.

Answer»

Clearly A-1 does not exist.

953.

If `A=[[1 ,2,-3],[ 5, 0, 2],[ 1,-1, 1]], B=[[3,-1, 2],[ 4, 2 ,5],[ 2, 0, 3]]`and `C=[[4, 1, 2],[ 0, 3, 2],[ 1,-2, 3]]`, then compute `(A+B)` and `(B - C)`. Also, verify that `A + (B - C) = (A + B) - C`.

Answer» `A = [[1,2,-3],[5,0,2],[1,-1,1]]`
`B = [[3,-1,2],[4,2,5],[2,0,3]]`
`C = [[4,1,2],[0,3,2],[1,-2,3]]`
`=> A+B = [[1,2,-3],[5,0,2],[1,-1,1]]+ [[3,-1,2],[4,2,5],[2,0,3]]= [[4,1,-1],[9,2,7],[3,-1,4]]`
`=> B-C = [[3,-1,2],[4,2,5],[2,0,3]] - [[4,1,2],[0,3,2],[1,-2,3]] = [[-1,-2,0],[4,-1,3],[1,2,0]]`
Now, `A+(B-C) = [[1,2,-3],[5,0,2],[1,-1,1]] + [[-1,-2,0],[4,-1,3],[1,2,0]] = [[0,0,-3],[9,-1,5],[2,1,1]]`
`(A+B)-C = [[4,1,-1],[9,2,7],[3,-1,4]] - [[4,1,2],[0,3,2],[1,-2,3]] = [[0,0,-3],[9,-1,5],[2,1,1]]`
`:. A+(B-C) = (A+B)-C`
954.

Compute the products AB and BA whichever exists in each of the following cases :[a,b] \(\begin{bmatrix} c \\[0.3em] d \\[0.3em] \end{bmatrix}\) + [a b c d] \(\begin{bmatrix} a \\[0.3em] b \\[0.3em] c \\[0.3em] d \end{bmatrix}\)

Answer»

 [a,b] \(\begin{bmatrix} c \\[0.3em] d \\[0.3em] \end{bmatrix}\) + [a b c d] \(\begin{bmatrix} a \\[0.3em] b \\[0.3em] c \\[0.3em] d \end{bmatrix}\)

= [ ac + bd] + [a2 + b2 + c2 + d2]

= [ ac + bd = a2 + b2 + c2 + d2]

Hence,

[a b] \(\begin{bmatrix} c \\[0.3em] d \end{bmatrix}\) + [ a b c d]\(\begin{bmatrix} a \\[0.3em] b \\[0.3em] c \\[0.3em] d \end{bmatrix}\)

= [ ac + bd = a2 + b2 + c2 + d2]

955.

`"If A" = [{:(x^(2), y), (5, -4):}] " and "A=A^(-1), " then find " [{:(x^(3), y+x), (1, 2x^(2) + y):}]^(-1)` (a) `(1)/(41)[{:(8, 1), (-1, 5):}]` (b) `(1)/(41)[{:(5, 8), (1, -1):}]` (c) `[{:(5, 1), (-1, 8):}]` (d) `(1)/(41)[{:(5, 1), (-1, 8):}]`

Answer» (i) `"Use A"= [{:(a, b), (c, d):}] " and "A=A^(-1)`, then a =d and ad-bc=-1.
(ii) Substitute of values of x and y. Find the inverse of that matrix.
956.

Compute the following sums :\(\begin{bmatrix}2 & 1 & 3 \\[0.3em]0 & 3 & 5 \\[0.3em]-1 & 2 & 5\end{bmatrix}+​​\)\(\begin{bmatrix}1 & -2 & 3 \\[0.3em]2 & 6 & 1 \\[0.3em]0 & -3 & 1\end{bmatrix}​​\)

Answer»

 \(\begin{bmatrix}2+1 & 1-2 & 3+3 \\[0.3em]0+2 & 3+6 & 5+1 \\[0.3em]-1+0 & 2-3 & 5+1\end{bmatrix}​​\) 

  \(=\begin{bmatrix}3 & -1 & 6 \\[0.3em]2 & 9 & 6 \\[0.3em]-1 & -1 & 6\end{bmatrix}​​\) 

Hence,\(\begin{bmatrix}2 & 1 & 3 \\[0.3em]0 & 3 & 5 \\[0.3em]-1 & 2 & 5\end{bmatrix}+​​\) \(\begin{bmatrix}1 & -2 & 3 \\[0.3em]2 & 6 & 1 \\[0.3em]0 & -3 & 1\end{bmatrix}​​\) =\(\begin{bmatrix}3 & -1 & 6 \\[0.3em]2 & 9 & 6 \\[0.3em]-1 & -1 & 6\end{bmatrix}​​\)

957.

Compute : `2{:[(2,3,4,1),(-5,11,6,7)]:}+5{:[(11,13,-3,4),(5,-3,4,-7)]:}-6{:[(6,12,4,-2),(-3,5,11,7)]:}`.

Answer» Correct Answer - `{:[(23,-1,-31,34),(33,-23,-34,-63)]:}`
958.

If  A = [(2,3),(1,2)], B=[(1,3,2),(4,3,1)], C=[(1),(2)], D=[(4, 6, 8), (5, 7, 9)], then which of the sums A + B, B + C, C + D and B + D is defined?

Answer»

Only B + D is defined since matrices of the same order can only be added.

959.

Solve the simulteneous linear equations 2x-5y =1, 5x + 3y = 18.

Answer» Given system of linear equations can be written in matrix form as shown below:
`[{:(2x-5y), (5x + 3y):}] = [(1),(18)]`
The LHS matrix can be further written as product of two matrices as shown below:
`[{:(2,-5), (5, 3):}][(x),(y)] = [(1),(18)]` or AX =B.
`"Here", A = [{:(2,-5), (5, 3):}]` is called coefficient matrix, X = `[(x),(y)]` is called variable matrix and B = `[(1),(18)]`
is called constant matrix. Now, we need to find value of x and y, i.e., the matrix X.
To find X, pre-multiplying both the sides of Eq. (1) with `A^(-1)`
`rArr A^(-1) (AX) = A^(-1) B`
`"or "(A^(-1)A) X = A^(-1) B ["since"A (BC) = (AB)C]`
`"or " I X = A^(-1) B, [because A^(-1) A= I] "or" X = A^(-1) B, [IX = X]`
`X = A^(-1) B`
So, to find X we have to find inverse of coefficient matrix (i.e., A) and multiply it with B.
`therefore X = [(x), (y)] = [{:(2, -5), (5, 3):}]^(-1)[(1), (18)]`
`= (1)/(2 xx 3-(-5) xx 5)[{:(3, 5), (-5, 2):}][(1), (18)]`
`= (1)/(31)[{:(3 xx 1 + 5 xx 18), (-5 xx 1 + 2 xx 18):}]`
`= (1)/(31)[(93), (31)] = [(3), (1)]`
Thus, X = `[(x), (y)] = [(3), (1)] rArr x = 3, y = 1.`
Thus, in general any system of linear equations px + qy =a, and rx + sy =b can be represented in matrix form (i.e., AX = B) as `[{:(p, q), (r, s):}] [(x), (y)] = [(a), (b)]`.
Here, A is coefficient matrix = `[{:(p, q), (r, s):}]m X " is variables matrix" = [(x), (y)] " and B" = [(a), (b)]` is constant matrix.
`X = A^(-1) B = [{:(p, q), (r, s):}]^(-1) [(a), (b)]`
960.

If `I_3` is the identily matrix of order 3, then `(I_3)^(-1)=`

Answer» Correct Answer - c
961.

Compute the following sums : \(\begin{bmatrix} 3& -2 \\[0.3em] 1 &4 \\[0.3em] \end{bmatrix}\)\(+\begin{bmatrix} -2&4 \\[0.3em]1 & 3 \\[0.3em] \end{bmatrix} ​​\) 

Answer»

\(=\begin{bmatrix} 3-2& -2+4 \\[0.3em] 1+1 &4+3 \\[0.3em] \end{bmatrix}\)

\(=\begin{bmatrix} 1& 2 \\[0.3em] 2 &7 \\[0.3em] \end{bmatrix}\)

Hence,  \(\begin{bmatrix} 3& -2 \\[0.3em] 1 &4 \\[0.3em] \end{bmatrix}\)\(+\begin{bmatrix} -2&4 \\[0.3em]1 & 3 \\[0.3em] \end{bmatrix} ​​\) = \(\begin{bmatrix} 1& 2 \\[0.3em] 2 &7 \\[0.3em] \end{bmatrix}\)

962.

the matrix S is rotation through an angle `45^(@)` and G is th reflection about the line `y=2x`, then `(SG)^(2)` is equal toA. 7IB. 5IC. 3ID. I

Answer» Correct Answer - D
963.

If `{:[(4,5)]:}{:[(1,6),(x,3)]:}{:[(-2),(3)]:}=[9]`, then the value of x isA. 9B. -9C. 10D. -10

Answer» Correct Answer - C
(i) Evaluate the product in LIIS and equate it to RHS.
(ii) Find the product of first two matrices and then multiply product matrix with third matrix of LHS.
(iii) Equate the above resultant matrix with [9] and find the value of x.
964.

If `A={:[(8),(-1),(-7)]:}andB={:[(2,5,-6)]:}," then find "3A+B^(T)`.A. `{:[(26),(2),(-27)]:}`B. `{:[(36),(4),(-1)]:}`C. `{:[(18),(2),(-9)]:}`D. `{:[(2),(26),(-27)]:}`

Answer» Correct Answer - A
Given that `A={:[(8),(-1),(-7)]:}`
`B=[2" "5" "-6]`
`B^(T)={:[(2),(5),(-6)]:},3A={:[(24),(-3),(-21)]:}`
`3A+B^(T)={:[(24+2),(-3+5),(-6-22)]:}={:[(26),(2),(-27)]:}`
965.

If `A={:[(2,3,5,6),(-1,2,-3,4)]:}andB={:[(4,-5,3,7),(8,-3,-1,2)]:}`, then find `A^(T)+B^(T)and(A+B)^(T)`. What do you notice ?

Answer» Correct Answer - `(A+B)^(T)=(A^(T)+B^(T))`
966.

If `A={:[(6,x),(7,-6)]:}andA^(2)=I`, then x= _______ .A. 5B. `(-5)/(2)`C. -5D. 1

Answer» Correct Answer - C
`A={:[(6,x),(7,-6)]:}`
`A^(2)={:[(6,x),(7,-7)]:}{:[(6,x),(7,-6)]:}`
`={:[(36+7x,6x-6x),(42-42,7x+36)]:}`,
`={:[(36+7x,0),(0,36+7x)]:}`.
Given, `A^(2)=IrArr{:[(36+7x,0),(0,36+7x)]:}`
`={:[(1,0),(0,1)]:}`
`36+7x=1`
`x=-5`.
967.

If `A=[(-2,3),(-1,1)]` then `A^(3) ` is equal toA. 2AB. AC. 2I.D. I

Answer» Correct Answer - D
968.

Find the values of a and b if A = B, where \(A=\begin{bmatrix} a+4& 3b \\[0.3em] 8 & -6 \\[0.3em] \end{bmatrix},\)\(B=\begin{bmatrix} 2a+2&b^2+2 \\[0.3em] 8 & b^2-10 \\[0.3em] \end{bmatrix} ​​\) 

Answer»

Given two matrices are equal.

i.e, A = B.

 \(\begin{bmatrix} a+4& 3b \\[0.3em] 8 & -6 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 2a+2&b^2+2 \\[0.3em] 8 & b^2-10 \\[0.3em] \end{bmatrix} ​​\) 

We know that if two matrices are equal then the elements of each matrices are also equal.

∴ a + 4 = 2a + 2 

⇒ a – 2a = 2 – 4 

⇒ – a = – 2 

⇒ a = 2 … (1) 

And 3b = b2 + 2 

⇒ b2 – 3b + 2 = 0 

⇒ b2 – 2b – b + 2 = 0 

⇒ b(b – 2) – 1(b – 2) = 0 

⇒ (b – 2)(b – 1) = 0 

⇒ b = 2 or 1 … (2) 

And – 6 = b2 – 10 

⇒ b2 = – 10 + 6 

⇒ b2 = – 4 

⇒ b = ±2i

(No real solution)  … (3) 

∴ a = 2, b = 2 or 1

969.

if `|[4,x+2],[2x-3,x+1]|` is a symmetric then `x=`A. 3B. 5C. 2D. 4

Answer» Correct Answer - b
970.

`{:[(-6,5),(-7,6)]^(-1)=:}`A. `{:[(-6,5),(-7,6)]:}`B. `{:[(6,-5),(-7,6)]:}`C. `{:[(6,5),(7,6)]:}`D. `{:[(6,-5),(7,-6)]:}`

Answer» Correct Answer - a
971.

`A_(x)={:[(0,0,x),(0,0,0)]:}` then find the maximum number of possibilities of matrix `B_(x)`, in which x can be placed in `a_(11),a_(21),or a_(31)`, position such `A_(x)B_(x)=O_(2xx1)`.A. 1B. 2C. 3D. Cannot be determined

Answer» Correct Answer - C
Check for the possibilities of `B_(x)` such that `A_(x)B_(x)=O`.
972.

If `{:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=`A. `{:[(1,1),(2,1)]:}`B. `{:[(2//3,1//3),(1//3,2//3)]:}`C. `{:[(1//3,1//3),(2//3,1//3)]:}`D. none of these

Answer» Correct Answer - c
973.

If `A=[(2,2,1),(1,3,1),(1,2,2)]` and the sum of eigen values of A is m anda product of eigen values of A is n, then m+n is equal toA. 10B. 12C. 14D. 16

Answer» Correct Answer - B
974.

Find the values of x and y if : \(\begin{bmatrix} x+10& y^2+2y \\[0.3em] 0 & -4 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 3x+4&3 \\[0.3em] 0 & y^2-5y \\[0.3em] \end{bmatrix} ​​\)

Answer»

Given two matrices are equal.

i.e, A = B.

 \(\begin{bmatrix} x+10& y^2+2y \\[0.3em] 0 & -4 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 3x+4&3 \\[0.3em] 0 & y^2-5y \\[0.3em] \end{bmatrix} ​​\) 

We know that if two matrices are equal then the elements of each matrices are also equal.

∴ x + 10 = 3x + 4 

⇒ x – 3x = 4 – 10 

⇒ – 2x = – 6 ⇒ x = 3  …(1) 

And y2 + 2y = 3 

⇒ y2 + 2y – 3 = 0 

⇒ y2 + 3y – y – 3 = 0 

⇒ y(y + 3) – 1(y + 3) = 0 

⇒ (y + 3)(y – 1) = 0 

⇒ y = – 3 or 1  …(2) 

And y2 – 5y = – 4 

⇒ y2 – 5y + 4 = 0 

⇒ y2 – 4y – y + 4 = 0 

⇒ y(y – 4) – 1(y – 4) = 0 

⇒ (y – 4)(y – 1) = 0 

⇒ y = 4 or 1 …(3) 

∴ The common value is x = 3 and y = 1

975.

If `A-2B={:[(3,6),(7,6)]:}andA-3B={:[(2,6),(7,5)]:}`, then the matrix A isA. `{:[(5,6),(7,8)]:}`B. `{:[(5,8),(7,6)]:}`C. `{:[(6,5),(7,8)]:}`D. `{:[(5,8),(2,6)]:}`

Answer» Correct Answer - A
(i) Multiply A-2B by 3.
(ii) Multiply A-3B by 2, then subtract to get A.
976.

For what value of x and y are the following matrices equal?\(A=\begin{bmatrix}2x+1& 2y \\[0.3em]0 & y^2-2y \\[0.3em]\end{bmatrix},​​\)\(B=\begin{bmatrix}x+3& y^2+2 \\[0.3em]0 & -6 \\[0.3em]\end{bmatrix}​​\)

Answer»

Given two matrices are equal.

i.e, A = B.

 \(\begin{bmatrix}2x+1& 2y \\[0.3em]0 & y^2-2y \\[0.3em]\end{bmatrix}​​\)\(=\begin{bmatrix}x+3& y^2+2 \\[0.3em]0 & -6 \\[0.3em]\end{bmatrix}​​\) 

We know that if two matrices are equal, then the elements of each matrices are also equal.

∴2x + 1 = x + 3 

⇒2x – x = 3 – 1 

⇒x = 2  …(1)

And 2y = y2 + 2 

⇒ y2 – 2y + 2 = 0

⇒ y = \(\frac{-2±\sqrt{4-8}}{2}\)

⇒ y =  \(\frac{-2±2i}{2}\)

⇒ y =  \(\frac{2(-1±i)}{2}\) 

⇒ y =  -1 ± i

(No real solutions) … (2)

And y2 – 5y = – 6 

⇒ y2 – 5y + 6 = 0 

⇒ y2 – 3y – 2y + 6 = 0

⇒ y(y – 3) – 2(y – 3) = 0 

⇒ (y – 3)(y – 2) = 0 

⇒ y = 3 

or 2  … (3)

∴From the above equations we can say that A and B can’t be equal for any value of y.

977.

Match the following lists :

Answer» `a rarr r, b rarr s, c rarr p, r, d rarr p, q, r, s`.
a. Since A is idempotent, `A^(2)=A^(3)=A^(4)= =A`. Now,
`(A+I)^(n)=I+ .^(n)C_(1)A+ .^(n)C_(2)A^(2)+ +.^(n)C_(n)A^(n)`
`=I+.^(n)C_(1)A+.^(n)C_(2)A+ + .^(n)C_(n)A`
`=I+(.^(n)C_(1)+.^(n)C_(1)+ +.^(n)C_(n))A`
`=I+(2^(n)-1)A`
`implies 2^(n)-1=127`
`implies n=7`
b. We have,
`(I-A) (I+A+A^(2)+ + A^(7))`
`=I+A+A^(2)+ +A^(7)+ (-A-A^(2)-A^(3)-A^(4)-A^(8))`
`=I-A^(8)`
`=I ("if "A^(8)=O)`
c. Here matrix A is skew-symmetric and since
`|A|=|-A^(T)|=(-1)^(n)|A|`, so `|A| (1-(-1)^(n))=0`.
As n is odd, hence `|A|=0`, Hence, A is singular.
d. If A is symmetric, `A^(-1)` is also symmetric for matrix of any order.
978.

Match the following lists :

Answer» `a rarr s, b rarr p, c rarr q, d rarr r`.
a. Since A is idempotent, we have
`A^(2)=A`
`implies A^(3)=A A^(2)=A A=A^(2)=A, A^(4)=A A^(3)=A A=A^(2)=A`
`implies A^(n)=A`
`implies (I-A)^(n)=^(n)C_(0)I-.^(n)C_(1)A+.^(n)C_(2)A^(2)- .^(n)C_(3)A^(3)+`
`= I+(-^(n)C_(1)+ .^(n)C_(2)-^(n)C_(3)+)A`
`=I+[(.^(n)C_(0)-^(n)C_(1)+^(n)C_(3)+)-^(n)C_(0)]A`
`=I-A`
b. A is involuntary. Hence,
`A^(2)=I`
`implies A^(3)=A^(5)= = A` and `A^(2)=A^(4)=A^(6)= =I`
`implies (I-A)^(n)=^(n)C_(0)I-^(n)C_(1)A+ .^(n)C_(2)A^(2)-^(n)C_(3)A^(3)+`
`=^(n)C_(0)I-^(n)C_(1)A+.^(n)C_(1)I-.^(n)C_(3)A+^(n)C_(4)I-`
`=(.^(n)C_(0)+.^(n)C_(2)+.^(n)C_(4)+)I-(.^(n)C_(1)A+.^(n)C_(3)+.^(n)C_(5)+)A`
`=2^(n-1) (I-A)`
`implies [(I-A)^(n)]A^(-1)=2^(n-1) (I-a)A^(-1)=2^(n-1) (A^(-1)-I)`
c. If A is nilpotent of index 2, then
`A^(2)=A^(3)=A^(4)=A^(n)=O`
`implies (I-A)^(n)=^(n)C_(0)I- .^(n)C_(1)A+.^(n)C_(2)A^(2)- .^(n)C_(3)A^(3)+`
`=I-nA+O+O+`
`=I-nA`
d. A is orthogonal. Hence,
`A A^(T)=I`
`implies (A^(T))^(-1) =A`
979.

If `A{:[(1,2,3,5,6),(4,-1,2,-3,1)]:}andB={:[(5,3),(2,1),(-3,5),(4,1),(1,2)]:}`, then find AB and BA.

Answer» Correct Answer - `X={:[(26,37),(1,20)]:},{:[(17,7,21,16,33),(6,3,8,7,13),(17,-11,1,-30,-13),(8,7,14,17,25),(9,0,7,-1,8)]:}`
980.

If `A={:[(3,3),(3,3)]:}andB={:[(1,-1),(-1,1)]:}`, then find AB and BA. What do you observe ?

Answer» Correct Answer - `A={:[(0,0),(0,0)]:}`
We can observe that AB=BA=O and none of the two matrices A or B is null matrix.
981.

If `A={:[(5,-6),(2,4)]:}andB=A^(T)," then "A^(T)-B^(T)` is ________ .A. `{:[(0,6),(6,0)]:}`B. `{:[(0,8),(-8,0)]:}`C. `{:[(0,-8),(8,0)]:}`D. `{:[(8,0),(0,8)]:}`

Answer» Correct Answer - B
`A={:[(5,-6),(2,4)]:}`
`B=A^(T)={:[(5,2),(-6,4)]:}`
`A^(T){:[(5,2),(-6,4)]:}:B^(T)={:[(5,-6),(2,4)]:}`
`A^(T)-B^(T)={:[(5-5,2+6),(-6-2,4-4)]:}={:[(0,8),(-8,0)]:}`
982.

Find the matrix X such that – A + 3B + X = 0, where \(\begin{bmatrix}-2&6 \\[0.3em] 5 &8 \end{bmatrix}\) and B = \(\begin{bmatrix}1&2 \\[0.3em] -2 &3 \end{bmatrix}\)

Answer»

Given , –A + 3B + X = 0 

⇒ X = A – 3B

⇒ X = \(\begin{bmatrix}-2&6 \\[0.3em] 5 &8 \end{bmatrix}\) -3\(\begin{bmatrix}1&2 \\[0.3em] -2 &3 \end{bmatrix}\)

\(\begin{bmatrix}-2&6 \\[0.3em] 5 &8 \end{bmatrix}\) - \(\begin{bmatrix} 3 & 6 \\[0.3em] -6 & 9 \end{bmatrix}\) = \(\begin{bmatrix}-2-3 &6-6 \\[0.3em] 5-(-6)&8-9 \end{bmatrix}\) = \(\begin{bmatrix}-5&0 \\[0.3em] 11 &-1 \end{bmatrix}\)

983.

For what values of x and y are the following matrices equal`A=[(2x+1,3y),(0,y^2-5y)] B= [(x+3,y^2+2),(0,-6)] `

Answer» With the given matrices we have,
`2x+1 = x+3 => x = 2`
`3y = y^2+2 =>y^2-3y+2 = 0`
`=>y^2-2y-y+2 = 0`
`=>y(y-2)-1(y-2) = 0`
`=> (y- 2)(y-1) = 0`
`=>y = 2 and y = 1`
`y^2-5y = -6`
`=>y^2-5y+6 = 0`
`=>y2-3y-2y+6 = 0`
`=>(y-3)(y-2) = 0`
`=>y=3 and y = 2`
So, `y=2` is the common solution that satisfies both equation.
`:. y = 2`
So, `x = 2, y =2`
984.

Match the following lists : A. `{:(a,b,c,d),(s,r,q,p):}`B. `{:(a,b,c,d),(s,p,q,r):}`C. `{:(a,b,c,d),(q,p,s,r):}`D. `{:(a,b,c,d),(s,q,r,p):}`

Answer» Correct Answer - C
a. `|M_(r)|=1/(r-1)-1/r`
`lim_(n rarr oo) sum_(r=2)^(n) (1/(r-1)-1/r)`
`=lim_(n rarr oo) [(1/1-1/2)+(1/2-1/3)+...+(1/(n-1)-1/n)]`
`=1-0=1`
b. `(A+B)^(2)=A^(2)+B^(2)`
`implies AB+BA=O`
`implies AB=-BA`
`implies |AB|=|-BA|`
`implies |A||B|=-|B||A|" "` [A and B are odd orderes matrices]
`implies |B|=-|B| (|A|=2)`
`implies |B|=0`
c. `k^(2)=|C|=("det. A")^(2)=^(2) implies k=4`
d. `A^(4)=-4I implies lambda =4`
985.

If `A={:[(1,4),(-2,5)]:}andB={:[(-6,-1),(-8,2)]:}`, then AB + BA = ________ .A. `{:[(-42,22),(40,10)]:}`B. `{:[(-42,-22),(-40,-10)]:}`C. `{:[(-42,22),(-40,10)]:}`D. `{:[(42,22),(40,10)]:}`

Answer» Correct Answer - B
Given `A={:[(1,4),(-2,5)]:}andB={:[(-6,-1),(-8,2)]:}`
`AB={:[(1,4),(-2,5)]:}{:[(-6,-1),(-8,2)]:}`
`={:[(1xx-6+4xx-8,1xx-1+4xx2),(-2x-6+5x-8,-2xx-1+5xx2)]:}`
`={:[(-6-32,-1+8),(+12-40,2+10)]:}={:[(-38,7),(-28,12)]:}`.
`BA={:[(-6,-1),(-8,2)]:}{:[(1,4),(-2,5)]:}`
`={:[(-6+2,-24-5),(-8-4,-32+10)]:}`
`={:[(-4,-29),(-12,-22)]:}`.
`AB+BA={:[(-38-4,7-29),(-28-12,12-22)]:}`
`={:[(-42,-22),(-40,-10)]:}`.
986.

The order of the matrix \(\begin{bmatrix} -1 \\[0.3em] 3 \\[0.3em] 4 \end{bmatrix}\) is :(a) 1 × 3 (b) 3 × 1 (c) 1 × 1 (d) 3 × 3

Answer»

(b) Since there are 3 rows and 1 column, the order is 3 × 1.

987.

Consider a matrix `A=[a_("ij")]` of order `3xx3` such that `a_("ij")=(k)^(i+j)` where `k in I`. Match List I with List II and select the correct answer using the codes given below the lists. A. `{:(a,b,c,d),(r,p,s,q):}`B. `{:(a,b,c,d),(s,p,q,r):}`C. `{:(a,b,c,d),(r,p,q,s):}`D. `{:(a,b,c,d),(q,p,r,s):}`

Answer» Correct Answer - C
Let `A=[A_("ij")]_(3xx3)`, where `a_("ij")=(k)^(i+j)`
So, `A=[(k^(2),k^(3),k^(4)),(k^(3),k^(4),k^(5)),(k^(4),k^(5),k^(6))]`
a. If A is singular, then `|A|=0`
`implies k^(2).k^(3).k^(4) |(1,1,1),(k,k,k),(k^(2),k^(2),k^(2))|=0`,
`implies k in I`
b. If A is null matrix, then `k in {0}`
c. There is no value of `k` for `A` to be skew-symmetric matrix which is not null-matrix.
`:. k in phi`
d. If `A^(2)=3A`, then
`[(k^(2),k^(3),k^(4)),(k^(3),k^(4),k^(5)),(k^(4),k^(5),k^(6))][(k^(2),k^(3),k^(4)),(k^(3),k^(4),k^(5)),(k^(4),k^(5),k^(6))]=[(3k^(2),3k^(3),3k^(4)),(3k^(3),3k^(4),3k^(5)),(3k^(4),3k^(5),3k^(6))]`
`implies [(k^(4)+k^(6)+k^(8),k^(5)+k^(7)+k^(9),k^(6)+k^(8)+k^(10)),(k^(5)+k^(7)+k^(9),k^(6)+k^(8)+k^(10),k^(7)+k^(9)+k^(11)),(k^(6)+k^(8)+k^(10),k^(7)+k^(9)+k^(11),k^(8)+k^(10)+k^(12))]`
`=[(3k^(2),3k^(3),3k^(4)),(3k^(3),3k^(4),3k^(5)),(3k^(4),3k^(5),3k^(6))]`
`implies k in {-1, 0, 1}`
988.

If `A={:[(2,1),(0,3)]:}andf(x)=x^(2)-4x+3`, then find f(A).A. `{:[(-1,1),(0,0)]:}`B. `{:[(0,0),(1,-1)]:}`C. `{:[(0,1),(2,3)]:}`D. `{:[(0,0),(1,2)]:}`

Answer» Correct Answer - A
Given `A={:[(2,1),(0,3)]:}`
`f(x)=x^(2)-4x+3`
`f(A)=A^(2)-4A+3I`
`A^(2)={:[(2,1),(0,3)]:}{:[(2,1),(0,3)]:}`
`{:[(4+0,2+3),(0+0,0+9)]:}`
`{:[(4,5),(0,9)]:}`
`4A={:[(8,4),(0,12)]:}`
`3I={:[(3,0),(0,3)]:}`
`A^(2)-4A+3I={:[(4-8+3,5-4+0),(0-0+0,9-12+3)]:}`
`={:[(-1,1),(0,0)]:}`.
989.

If `y={:((4,-2),(3,0)):}andf(y)=y^(2)-y-6`, find f(y).A. `{:((0,6),(9,12)):}`B. `{:((0,6),(9,-12)):}`C. `{:((0,-6),(9,-12)):}`D. `{:((0,6),(9,-12)):}`

Answer» Correct Answer - C
990.

If `{:[(1,-1,2),(3,a,1)]:}{:[(-1),(3),(2)]:}={:[(b),(14)]:}`, then find (a+b).

Answer» Correct Answer - 5
991.

Which of the following pair of matrices are equal ?

Answer»

(c) For equality of matrices, the order should be same and corresponding elements should be equal.

992.

If matrix A is given by `A=[[6,11] , [2,4]]` then determinant of `A^(2005)-6A^(2004)` isA. `2^(2006)`B. `(-11)2^(2005)`C. `-2^(2005).7`D. `(-9) 2^(2004)`

Answer» Correct Answer - B
`|A^(2005)-6A^(2004)|=|A|^(2004)|A-6I|`
`=2^(2004)|(0,11),(2,-2)|=(-22) 2^(2004)=(-11) (2)^(2005)`
993.

If `P={:[(-1,0),(2,-1)]:}andf(x)=x^(2)-2x+2`, then find f(P).

Answer» Correct Answer - `f(P)={:[(5,0),(-8,5)]:}`
994.

A square matrix A has 9 elements. What is the possible order of A ? (a) 1 × 9 (b) 9 × 9 (c) 3 × 3 (d) 2 × 7

Answer»

(c) The factors of 9 are 1, 3 and 9 so, the possible orders of a matrix containing 9 elements is 1 ×9, 9 × 1, 3 ×3. In a square matrix the number of rows is equal to the number of columns so the required order is 3 × 3.

995.

If `B-A^(T)={:[(3,4,-2),(5,-3,7)]:}andB^(T)+A={:[(2,0),(5,-1),(3,4)]:}`, then find Matrix A.A. `{:[(1//2,-3//2),(1//2,1),(-5//2,3//2)]:}`B. `{:[(1//2,3//2),(1//2,1),(-5//2,3//2)]:}`C. `{:[(-1//2,-5//2),(1//2,1),(5//2,-3//2)]:}`D. `{:[(1//2,3//2),(1//2,1),(-5//2,3//2)]:}`

Answer» Correct Answer - C
(i) Transpose `B^(T)+A={:[(2,0),(5,-1),(3,4)]:}` and add it to the other equation.
(ii) `(B-A^(T))^(T)=B^(T)-A`.
(iii) Subtract `(B^(T)-A)" from "B^(T)+A`.
996.

If `A={:[(-10,11),(6,-3)]:}={:[(-32,46)]:}`, then find A.

Answer» Correct Answer - [5 3]
997.

If `P={:[(2005,2004),(2004,2005)]:}`, then find X such that PX=XP=P.

Answer» Correct Answer - `{:[(1,0),(0,1)]:}`
998.

The matrix \(\begin{bmatrix}-12\\[0.3em]10\\[0.3em]13\\[0.3em]4\end{bmatrix}\) is a :(a) square matrix (b) row matrix (c) column matrix (d) null matrix

Answer»

(c) column matrix 

999.

If `A={:[(-5,3),(2,1),(1,5)]:}andB={:[(14,-13),(1,3),(14,-3)]:}`, then find the matrix X such that AX = B.

Answer» Correct Answer - `{:[(-1,2),(3,-1)]:}`
1000.

If `A=((p,q),(0,1))`, then show that `A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(0,1))`

Answer» `A^(2)=((p,q),(0,1))((p,q),(0,1))`
`=((p^(2),pq+q),(0,1))=((p^(2), q(p+1)),(0,1))`
`A^(3)=A.A^(2)`
`=((p,q),(0,1))((p^(2), pq+q),(0,1))=((p^(3),p^(2)q+pq+q),(0,1))=((p^(3), q(p^(2)+p+1)),(0,1))`
Similarly,
`A^(4)=((p^(4), q(p^(3)+p^(2)+p+1)),(0,1))` and so on.
`:. A^(8)=((p^(8), q(p^(7)+p^(8)+...+1)),(0,1))=((p^(8),q((p^(8)-1)/(p-1))),(0,1))`