

InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
101. |
The inverse of A = \( \begin{bmatrix}0 & 1& 0 \\[0.3em]1 & 0 &0 \\[0.3em]0 & 0 & 1\end{bmatrix}\)[(0,1,0),(1,0,0),(0,0,1)](a) I (b) A (c) A'(d) -I |
Answer» Option : (b) A |
|
102. |
If A is square matrix such that A2 = A, then (I + A)3 – 7A is equal to (A) A (B) I – A (C) I (D) 3A |
Answer» Answer is (C) A2 = A (I + A)3 – 7A = (I + A) (I+A)2 – 7A = (I + A) {(I + A) (I+A)} -7A = (I + A) (I2 + 2A + A2) – 7A [v IA = AI = A] = (I + A) (I+ 2A + A) – 7A (A2= A) = (I + A) (I + 3A) – 7A = I2 + AI + 3IA + 3A2 – 7A = I + A + 3A + 3A – 7A [∵ A2 = A & IA = AI = A] =1 |
|
103. |
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A – 2B is :A. m × 3 B. 3 × 3 C. m × n D. 3 × n |
Answer» (D). 3 × n m = n If A and B are two matrices of order 3 × m and 3 × n respectively and m = n Then, A & B have same orders as 3 × n each, So the order of (5A – 2B) should be same as 3 × n. Option (D) is the answer. |
|
104. |
If \(\begin{bmatrix} 2x+y & 4x \\[0.3em] 5x-7 & 4x \\[0.3em] \end{bmatrix}\) =\(\begin{bmatrix} 7 & 7y-13 \\[0.3em] y & x+6 \\[0.3em] \end{bmatrix}\), then the value of x + y is :A. x = 3, y = 1 B. x = 2, y = 3 C. x = 2, y = 4 D. x = 3, y = 3 |
Answer» (B). x = 2, y = 3 Comparing the equations, 2x + y = 7 & 4x = x + 6 3x = 6, x = 2 2(2) + y = 7 y = 7 – 4 = 3 x = 2 & y = 3 Option (B) is the answer. |
|
105. |
If A is a square matrix such that A2 = A, then (I + A)3 – 7A is equal to :A. A B. I – A C. I D. 3A |
Answer» C. I (I + A)3 = I3 + A3 + 3A2I + 3AI2 (Using the identity of (a + b)3 = a3 + b3 + 3ab (a + b)) (I + A)3 = I + A2(A) + 3AI + 3A [I stands for Identity Matrix] (I + A)3 = I + A2 + 3A + 3A (I + A)3 = 7A + I (I + A)3 – 7A 7A + I – 7A = I Option (C) is the answer. |
|
106. |
If I is the identity matrix and A is a square matrix such A2 = A, then what is the value of (I + A)2 – 3A? |
Answer» We are given that, I is the identity matrix. A is a square matrix such that A2 = A. We need to find the value of (I + A)2 – 3A. We must understand what an identity matrix is. An identity matrix is a square matrix in which all the elements of the principal diagonal are ones and all other elements are zeroes. Take, (I+A)2 – 3A = (I)2+ (A)2 + 2(I)(A) – 3A [∵, by algebraic identity, (x+y)2 = x2 + y2 + 2xy] ⇒(I+A)2 – 3A = (I)(I) + A2 + 2(IA) – 3A By property of matrix, (I)(I) = I IA = A ⇒(I+A)2 – 3A = I + A2 + 2A – 3A ⇒(I+A)2 – 3A = I + A + 2A – 3A [∵, given in question, A2 = A] ⇒ (I+A)2 – 3A = I + 3A – 3A ⇒ (I+A)2 – 3A = I + 0 ⇒ (I+A)2 – 3A = I Thus, The value of (I+A)2 – 3A = I. |
|
107. |
If A is a square matrix such that A2 = I, then (A – I)3 + (A + I)3 – 7A is equal to : A. A B. I – A C. I + A D. 3A |
Answer» (A). A Expansion of the given expression, A3 – I3 + 3AI2 – 3A2I + A3 + I3 + 3AI2 + 3A2I – 7A 2A3 – 7A + 6AI2 2A2A – 7A + 6A 2AI – A {A2 = I} 2A – A A Option (A) is the answer. |
|
108. |
For what values of `k` the set of equations `2x- 3y + 6z - 5t = 3, y -4z + t=1`, `4x-5y+8z-9t = k` hasA.B.C.D. |
Answer» Correct Answer - `(i) kne 7 (ii) k=7` Given equation can be written as, `2x- 3y+ 6z= 5t +3` ` y-4z=1-t` `4x-5y+8z=9t+k` which is of the form `AX = B` Let C be the augmented matrix, then `C=[A:B][[2,-3,6,vdots,5t+3],[0,1,-4,vdots,1-t],[4,-5,8,vdots,9t+k]]` Applying `R_(3) rarr R_(3) - 2R_(1)`, then `C=[[2,-3,6,vdots,5t+3],[0,1,-4,vdots,1-t],[0,-1,-4,vdots,-t+k-6]]` `C=[[2,-3,6,vdots,5t+3],[0,1,-4,vdots,1-t],[0,0,0,vdots,k-7]]` (i) Fpr no solution `R_(A)neR_(C)` `therefore kne7` (ii) For infinite number of solutions `R_(A)=R_(C)` `therefore k=7` |
|
109. |
If `D=diag [2, 3, 4]`, then `D^(-1)=`A. OB. IC. DD. diag `[(1)/(2), (1)/(3), (1)/(4)]` |
Answer» Correct Answer - D |
|
110. |
If `[{:(x,6),(-1,2w):}]+[{:(" "4,x+y),(z+w," "3):}]=3[{:(x,y),(z,w):}]`, find the values of x, y, z, w. |
Answer» Correct Answer - `x=2,y=4,z=1,w=3` | |
111. |
Given 3[(x, y), (z, w)] = [(x, 6), (-1, 2w)] + [(4, x + y), (z + w, 3)], find the values of x, y, z and w. |
Answer» By definition of equality of matrix as the given matrices are equal, their corresponding elements are equal. Comparing the corresponding elements, we get 3x = x + 4⇒ 2x = 4 ⇒ x = 2 and 3y = 6 + x + y ⇒ 2y = 6 + x ⇒ y = (6 + x)/2 Putting the value of x, we get y = (6 + 2)/2 = 8/2 = 4 Now, 3z = −1 + z + w, 2z = −1 + w z = (-1 + w)/2 .....(ii) Now, 3w = 2w + 3 ⇒ w = 3 Putting the value of w in Eq. (i), we get z = (-1 + 3)/2 = 2/2 = 1 Hence, the values of x, y, z and w are 2, 4, 1 and 3. |
|
112. |
Let P, Q and R be invertible matrices of order 3 such `A=PQ^(-1), B=QR^(-1)` and `C=RP^(-1)`. Then the value of det. `(ABC+BCA+CAB)` is equal to _______. |
Answer» Correct Answer - 27 We have `A=PQ^(-1), B=QR^(-1), C=RP^(-1)` `:. ABC=I, BCA=I, CAB=I` `:.` det. `(ABC+BCA+CAB)=` det. `(3I)=3^(3)xx` det. `(I)=27` |
|
113. |
Find the value of a, b and c from the following equations;\(\begin{bmatrix}{a-b} & {2a+c} \\{2a - b} & {3c+d} \\\end{bmatrix}\) = \(\begin{bmatrix}-1 & 5 \\0 & 13 \\\end{bmatrix}\) |
Answer» \(\begin{bmatrix} {a-b} & {2a+c} \\ {2a - b} & {3c+d} \\ \end{bmatrix} \) = \(\begin{bmatrix} -1 & 5 \\ 0 & 13 \\ \end{bmatrix} \) ⇒ a – b = -1, 2a + c = 5, 2a – b = 0, 3c + d = 13 ⇒ a – b = -1 2a – b = 0 – a = -1 ⇒ a = 1 We have, a – b = -1 ⇒ 1 – b = -1 ⇒ b = 2 ⇒ 2a + c = 5 ⇒ 2 + c = 5 ⇒ c = 3 ⇒ 3c + d = 13 ⇒ 9 + d = 13 ⇒ d = 4. |
|
114. |
1. Consider a 2 × 2 matrix A = [aij], where aij = \(\frac{(i + j)^2}{2}\)2. Write the transpose of A. 3. Show that A is symmetric. |
Answer» 1. A = \(\begin{bmatrix}2 & \frac{9}{8} \\\frac{9}{2} & 8 \\\end{bmatrix}\) 2. AT = \(\begin{bmatrix}2 & \frac{9}{8} \\\frac{9}{2} & 8 \\\end{bmatrix}\) 3. AT = A therefore symmetric matrix. |
|
115. |
Apply the given elementary transformation of the following matrices :A = \(\begin{bmatrix} 1 & 0 \\[0.3em] -1 & 3 \\[0.3em] \end{bmatrix}\), R1 ↔ R2A = [1,0,-1,3], R1 ↔ R2 |
Answer» Given, A = [1,0,-1,3], R1 ↔ R2 A = \(\begin{bmatrix} 1 & 0 \\[0.3em] -1 & 3 \\[0.3em] \end{bmatrix}\) By R1 ↔ R2, we get, A ~ \(\begin{bmatrix} -1 & 3 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\) |
|
116. |
A = [5,4,1,3],C1 ↔ C2; B = [3,1,4,5],R1 ↔ R2.A = \( \begin{bmatrix}5& 4 \\[0.3em]1 & 3 \\[0.3em]\end{bmatrix}\),C1 ↔ C2; B = \( \begin{bmatrix}3& 1 \\[0.3em]4 & 5 \\[0.3em]\end{bmatrix}\), R1 ↔ R2.What do you observe? |
Answer» Given, A = [5,4,1,3],C1 ↔ C2; B = [3,1,4,5],R1 ↔ R2. A = \( \begin{bmatrix} 5& 4 \\[0.3em] 1 & 3 \\[0.3em] \end{bmatrix} \) By C1 ↔ C2, we get, A ~ \( \begin{bmatrix} 4&5 \\[0.3em] 3 & 1 \\[0.3em] \end{bmatrix} \)....(1) B = \( \begin{bmatrix} 3& 1 \\[0.3em] 4 & 5 \\[0.3em] \end{bmatrix} \) By R1 ↔ R2, we get B ~ \( \begin{bmatrix} 4&5 \\[0.3em] 3 & 1 \\[0.3em] \end{bmatrix} \)....(2) From (1) and (2), We observe that the new matrices are equal. |
|
117. |
Apply the given elementary transformation of the following matrices :B = \( \begin{bmatrix}1&-1& 3 \\[0.3em]2& 5 & 4 \\[0.3em]\end{bmatrix}\), R1 → R1 → R2B = [1,-1,3,2,5,4],R1 → R1 → R2 |
Answer» Given, B = [1,-1,3,2,5,4],R1 → R1 → R2 B = \( \begin{bmatrix} 1&-1& 3 \\[0.3em] 2& 5 & 4 \\[0.3em] \end{bmatrix} \), R1 → R1 → R2 gives, B ~ \( \begin{bmatrix} -1&-6& -1 \\[0.3em] 2& 5 & 4 \\[0.3em] \end{bmatrix} \) |
|
118. |
If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ. |
Answer» Let A is a skew – symmetric matrix, then AT = - A …(i) Consider, ⇒ (An)T = λAn [given] ⇒ (AT)n = λAn ⇒ (-A)n = λAn [from (i)] ⇒ (-1)n(A)n = λAn Comparing both the sides, we get λ = (-1)n |
|
119. |
If A =\( \begin{pmatrix} λ& 1 \\[0.3em] -1 & -λ \\[0.3em] \end{pmatrix}\), then A-1 does not exist if λ = ………..((λ,1)(-1,-λ))(a) 0 (b) ± 1 (c) 2 (d) 3 |
Answer» Option : (b) ± 1 |
|
120. |
Find the value of k so that `A^2=8A+kI` where `A=[(1,0),(-1,7)].` |
Answer» We have `A^(2)=[{:(1,0),(-1,7):}][{:(1,0),(-1,7):}]=[{:(1-0,0+0),(-1-7,0+49):}]=[{:(1,0),(-8,49):}],` `(8A+kI)=8.[{:(1,0),(-1,7):}]+k.[{:(1,0),(0,1):}]` `=[{:(8,0),(-8,56):}]+[{:(k,0),(0,k):}]=[{:(8+k," "0),(-8,56+k):}]` `:." "A^(2)=8A+kIimplies[{:(1,0),(-8,49):}]=[{:(8+k," "0),(-8,56+k):}]` `implies" "8+k=1" and "56+k=49impliesimpliesk=-7.` Hence, `k=-7`. |
|
121. |
What is the maximum number of different elements required to form a symmetric matrix of order 12 ? |
Answer» Matrix of order 12 require `12xx12=144` elments. 12 elements for `i=j` `(144-12)/2=66` elements for `I lt j` `:.` Maximum number of different elements required are `66+12=78` |
|
122. |
the maximum number of different elements requried to from a symmetric matrx of order 6 isA. 15B. 17C. 19D. 21 |
Answer» Correct Answer - D | |
123. |
Construct a `3xx2` matrix whose elements are given by `a_(ij)=(2i-j).` |
Answer» `A=[{:(1,9),(3,2),(5,4):}]` | |
124. |
Construct a `2xx2`matrix `A=[a_(i j)]`whose elements aregiven by `a_(i j)=((i+2j)^2)/2`. |
Answer» `[{:((9)/(2),(25)/(2)),(8,16):}]` | |
125. |
If `A=diag [a,b,c]` then show that `A^n=diag[a^n,b^n,c^n]` for all `n in N.` |
Answer» We shall prove the result by mathematical induction. When n=1, we have `A^(1)=" diag "[a^(1),b^(1),c^(1)]=" diag "[a, b, c]=A.` So, the result is true for n=1. Let it be true for n=m, so that `A^(m)=" diag "[a^(m),b^(m),c^(m)]" "...(i)` `:." "A^(m+1)=A.A^(m)` `=" diag "[a,b,c]." diag "[a^(m),b^(m),c^(m)]`[using (i)] `=[{:(a,0,0),(0,b,0),(0,0,c):}].[{:(a^(m),0,0),(0,b^(m),0),(0,0,c^(m)):}]` `=[{:(a^(m+1),0,0),(0,b^(m+1),0),(0,0,c^(m+1)):}]=" diag "[a^(m+1),b^(m+1),c^(m+1)].`This shows that the result is true for `n=(m+1)`, whenever it is true for n=m, Hence, by the principle of mathematical iduction, the result is true for all `n inN.` |
|
126. |
If `A=[{:(2,1),(0,4):}]" and B=[{:(3,4,5),(1,2,3):}]` then A and B are matrices of order `2xx2` and `2xx3` respectively. |
Answer» So, A and B are not comparable. Hence, `A+B` is not defined. |
|
127. |
The order of matrix `A+B^(T)` is `4xx3`, then the order of matrix B is _________ . |
Answer» Correct Answer - `3xx4` | |
128. |
Construct a `4xx3` matrix whose elements are `a_(ij)=(i)/(j).` |
Answer» `[{:(1,(1)/(2),(1)/(3)),(2,1,(2)/(3)),(3,(3)/(2),1),(4,2,(4)/(3)):}]` | |
129. |
If order of matrix A is `4xx3` and AB is `4xx5`, then the order of matrix B is _________ . |
Answer» Correct Answer - `3xx5` | |
130. |
If `A`is any `mxxn`such that `A B`and `B A`are both defined showthat `B`is an `nxxm`matrix. |
Answer» Since AB is defined, we have number of rows in B=numbers of columns in A=n. Again, since BA is defined, we have number of columns in B= number of rows in A=m. Hence, the order of B is `nxxm`. |
|
131. |
If A and B are matrices such that AB and A + B both are defined, thenA. A and B can be any two matricesB. A and B are square matrices not necessarily of the same orderC. A, B are square matries of the same orderD. number of columns of A is same as the number of rows of B |
Answer» Correct Answer - C | |
132. |
`A , B`are two matrices suchthat `A B`and `A+B`are both defined; showthat `A , B`are square matrices ofthe same order. |
Answer» Since `(A+B)` is defined, it follows that both A and B are of the same order, say `(mxxn)`. Thus, order of A is `mxxn`. But, AB is defined. So, number of columns in A=number of rows in B. Consequently, n=m. `:.` A and B are square matrices of the same order. |
|
133. |
If `A_(2xx3), B_(4xx3)` and `C_(2xx4)` are three matrices, then which of the following is/are defined?A. `AC^(T)B`B. `B^(T)C^(T)A`C. `AB^(T)C`D. `A^(T)BC` |
Answer» Correct Answer - B Given A is `2 xx 3` matrix B is `4 xx 3` matrix C is ` 2 xx 4` matrix. `C^(T) " is " 4 xx 2 ` matrix `therefore C^(T)B` is not possible `C^(T) = 4 xx 2 A = 2 xx 3` `therefore C^(T)A` is a matrix of order `4 xx3` `B^(T)` is of order ` 3 xx 4, C^(T)A` is of order ` 4 xx 3` `B^(T)(C^(T)A)` is a matrix of order ` 3 xx 3` Option (b) follows. |
|
134. |
`A , B`are two matrices suchthat `A B`and `A+B`are both defined; showthat `A , B`are square matrices ofthe same order.A. the order of A and B are not same necessarily,B. No. of columns in `A=No.` of rows in B.C. A and B are square matrices of same order.D. No. of rows in A=No. Of columns in B. |
Answer» Correct Answer - C N/a |
|
135. |
If [2 1 3] `[{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}]`=A, then find the value of A. |
Answer» We have `[2 1 3] [ {:(-1,0,-1),(-1, 1,0),(0,1,1):}][{:(1),(0),(-1):}]=A` `therefore [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}]=[-2-1+0 0+1+3-2+0+3]` Now, `[-341] [{:(1),(0),(-1):}]=A` `A=[ -341 ] [{:(1),(0),(-1):}]` `=[-3+0-1]=[-4]` |
|
136. |
If `A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}]` and `C=[{:(1,0),(-1,0):}]`, verfity (i) A(B+C)=AB+AC. |
Answer» We have, `A=[{:(1,2),(-2,1):}]B=[{:(2,3),(3,-4):}]` and `C=[{:(1,0),(-1,0):}]` (i) `(AB)=[{:(1,2),(-2,1):}][{:(2,3),(3,-4):}]=[{:(2+6,3-8),(-4+3,-6-4):}]=[{:(8,-5) ,(-1-,-10):}]` and `(AB)C=[{:(8,-5),(-1,-10),(-1 ,- 10):}][{:(1,0),(-1,0):}]` `=[{:( 8+5,0),(-1,+10,0):}]=[{:(13,0),(9,0):}]` Again, `(BC)=[{:(2,3),(3,-4):}][ {:(-1,0),(7,0):}]` and `A(BC)=[{:(1,2),(-2,1):}][{:(-1,0),(7,0):}]` `=[{:(-1+14,0),(+2+7,0):}]=[{:(13,0),(9,0):}]` `therefore (AB)C=A(BC)` (ii) `(B+C)=[{:(2,3),(3,-4):}]+[{:(1,0),(-1,0):}]=[{:(3,3),(2,-4):}]` and `AB=[{:( 1,2),(-2,1):}][{:(3,3),(2,-4):}]` `=[{:(3+4,3-8),(-6+2,-6-4):}][{:(2,3),(3,-4):}]` `=[{:(2+6 ,3-8),(-4+3,-6-4):}]=[{:(8,-6),(-1,-10):}] ` and `AC=[{:( 1,2),(-2,1):}][{:(1, 0),(-1,0):}]=[{:(1-2,0),(-2-1,0):}]=[{:(-1,0),(-3,0):}]` `therefore AB+AC=[{:( 8,-5),(- 1,-10):}]+[{:(-1,0),(-3,0):}]` `rArr AB+AC=[{:(7,-5),(-4,-10):}]` From Eqs. iii and iv `A(B+C)=AB+AC` |
|
137. |
If `P=[{:(x,0,0),(0,y,0),(0,0,z):}]` and `Q=[{:(a,0,0),(0,b,0),(0,0 ,c):}]` then prove that `PQ=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]=QP`. |
Answer» `PQ=[{:( x,0,0),(0,y,0),(0,0,z):}][{:(a,0,0),(0,b,0),(0,0, c):}]=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]` and `QP=[{:(a,0,0),(0,b,0),(0,0,c):}] [{:(x,0,0),(0,y,0),(0,0,y):}]=[{:(ax ,0,0),(0,by,0),(0,0,zc):}]` Thus, we see that `PQ=QP` |
|
138. |
If `[1" "x" "1][{:(1,2,3),(4,5,6),(3,2,5):}][{:(" "1),(-2),(" "3):}]=O,` find x. |
Answer» Correct Answer - `x=(-5)/(3)` | |
139. |
If `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)]` and `P=S ("adj.A") S^(T)`, then find matrix `S^(T) P^(10) S`. |
Answer» `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2 sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))]` `=[("sin "15^(@),cos 15^(@)),(-"cos "15^(@),sin 15^(@))]` `:. SS^(T)=S^(T)S=I` Now, `S^(T) P^(10) S=S^(T)(S ("adj. A")S^(T))^(10)S` `=S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(9)S` `=I ("adj. A")S^(T) (S("adj. A")S^(T))^(9)S` `=("adj. A")S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(8) S` `=("adj. A")^(2)S^(T) (S("adj. A")S^(T))^(8)S` ... ... `=("adj. A")^(10)` `A=[(1,0),(-1,1)]` `:.` adj. `A=[(1,0),(1,1)]` `:. ("adj. A")^(2)=[(1,0),(1,1)][(1,0),(1,1)]=[(1,0),(2,1)]` `:. ("adj. A")^(3)=[(1,0),(3,1)]` And so on. `:. ("adj. A")^(10)=[(1,0),(10,1)]=S^(T) P^(10) S` |
|
140. |
If `A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2))` then find the values of a and b. |
Answer» Correct Answer - a=1, b=4. | |
141. |
Let `A` be a square matrix of order 3 such that adj. (adj. (adj. A)) `=[(16,0,-24),(0,4,0),(0,12,4)]`. Then find (i) `|A|` (ii) adj. A |
Answer» We know that adj. (adj. A) `=|A|^(n-2)A`, where n is order of matrix. `:.` adj. (adj. (adj. A))`=|"adj. A"|^(n-2)` adj. A `=(|A|^(n-1))^((n-2))` adj. A For `n=3`, adj. (adj. (adj. A))`=|A|^(2)` adj. `A=[(16,0,-24),(0,4,0),(0,12,4)]` `:. |A|^(6)|"adj. A"|=256` `implies |A|^(6)|A|^(2)=2^(8)` `implies |A|=2` `implies` adj. `A=1/4 [(16,0,-24),(0,4,0),(0,12,4)]=[(4,0,-6),(0,1,0),(0,3,1)]` |
|
142. |
Find the matrix A such that `A.[{:(2,3),(4,5):}]=[{:(0,-4),(10," "3):}].` |
Answer» `A=[{:(-8,4),(-19,12):}]` | |
143. |
If `A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)]` and `C=[(-1,-2,-2),(2,1,2),(2,2,3)]` then find the value of tr. `(A+B^(T)+3C)`. |
Answer» Correct Answer - 17 tr. `(A+B^(T)+3C)=`tr. `(A)+` tr. `(B^(T))+` tr. `(3C)` `=(1+1+3)+(1-1+3)+3(-1+1+3)` `=17` |
|
144. |
If `A=[[3,-5],[-4,2]]`, find `A^2-5A-14I`. |
Answer» `A^2=A*A=[[3,-5],[-4,2]][[3,-5],[-4,2]]` `=[[29,-25],[-30,24]]` `A^2-5A-14I` `=[[29,-25],[-2-,24]]-[[15,-25],[-20,10]]-[[14,0],[0,14]]` `=[[0,0],[0,0]]` Zero matrix. |
|
145. |
Find the matrix A such that `[[5-7,],[-2,3]]A=[[-16,-6],[7,2]]`. |
Answer» `A=[{:(1,-4),(3,-2):}]` | |
146. |
The value of for which the system of equations `ax +y+z=0,x+ay+z=0,x+y+z=0` possess a non-null solution isA. 1B. 2C. `-1`D. `-2` |
Answer» Correct Answer - A |
|
147. |
There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subjects – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. i. Find the increase in sales in Rupees from July to August 2017. ii. If both book shops got 10% profit in the month of August 2017, find the profit for each bookseller in each subject in that month. |
Answer» i. Increase in sales in rupees from July to August 2017 For Suresh: Increase in sales for Physics books = 6650 – 5600= ₹ 1050 Increase in sales for Chemistry books = 7055 – 6750 = ₹ 305 Increase in sales for Mathematics books = 8905 – 8500 = ₹ 405 For Ganesh: Increase in sales for Physics books = 7000 – 6650 = ₹ 350 Increase in sales for Chemistry books = 7500 – 7055 = ₹ 445 Increase in sales for Mathematics books = 10200 – 8905 = ₹ 1295 ii. Both book shops got 10% profit in the month of August 2017. For Suresh: Profit for Physics books = 6650x10/ 100 = ₹ 665 Profit for Chemistry books = 7055 x 10/100 = ₹ 705.50 Profit for Mathematics books = 8905x10/100 = ₹ 890.50 For Ganesh: Profit for Physics books = 7000x10/ 100 = ₹ 700 Profit for Chemistry books = 7500x10/ 100 = ₹ 750 Profit for Mathematics books = 10200x10/ 100 = ₹ 1020 |
|
148. |
If `A=[{:(1,5),(7,12):}]` and `B=[{:(9,1),( 7,8):}]` then find a matrix C such that `3A+5B+2C` is a null matrix. |
Answer» We have, `A=[{:(1, 5),(7,12):}]` and `B=[{:(9,1),(7,8):}]` Let `C=[{:(a,b),(c,d):}] therefore 3A+5B+2C =0` `rArr [{:(3,15),(21,36):}]+[{:(45 ,5),(35,40):}]+[{:(2a,2b),(2c,2d):}]=[{:(0,0),(0,0):}]` `rArr [{:(48,2a,20+2b) ,(56+2c, 76+2d):}]=[{:(0,0),(0,0):}]` `rArr 2a+4B=0rArra=-24` Also, `20+2b=0rArrb=-10` `56 +2c=0rArrc=-28` and `76+2d=0rArrd=-38` `therefore C=[{:(-24,-10),(-28,-38):}]` |
|
149. |
If \(\begin{bmatrix} a+b&2 \\[0.3em] 5 & b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6&5 \\[0.3em] 2 & 2 \\[0.3em] \end{bmatrix}\), then find a. |
Answer» We are given that, \(\begin{bmatrix} a+b&2 \\[0.3em] 5 & b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6&5 \\[0.3em] 2 & 2 \\[0.3em] \end{bmatrix}\) We need to find the value of x. We know by the property of matrices, \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\) This implies, a11 = b11, a12 = b12, a21 = b21 and a22 = b22 So, if we have \(\begin{bmatrix} a+b&2 \\[0.3em] 5 & b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6&5 \\[0.3em] 2 & 2 \\[0.3em] \end{bmatrix}\) Corresponding elements of two elements are equal. That is, a + b = 6 …(i) b = 4 …(ii) To solve for a, We have equations (i) and (ii). We can’t solve for a using only equation (i) as equation (i) contains a as well as b. We need to find the value of b from equation (ii) first. From equation (ii), b = 4 Substituting the value of b = 4 in equation (i), a + b = 6 ⇒ a + 4 = 6 ⇒ a = 6 – 4 ⇒ a = 2 Thus, We get a = 2. |
|
150. |
if \(\begin{vmatrix}2a+b&3a-b\\c+2d&2c-d\end{vmatrix}=\begin{vmatrix}2&3\\4&-1\end{vmatrix}\), find a, b, c and d.[(2a+b, 3a-b) (c+2d) (2c-d)] = [(2, 3) (4, -1)] |
Answer» \(\begin{vmatrix}2a+b&3a-b\\c+2d&2c-d\end{vmatrix}=\begin{vmatrix}2&3\\4&-1\end{vmatrix}\) ∴ By equality of matrices, we get 2a + b = 2 ….(i) 3a – b = 3 ….(ii) c + 2d = 4 ….(iii) 2c – d = -1 ….(iv) Adding (i) and (ii), we get 5a = 5 ∴ a = 1 Substituting a = 1 in (i), we get 2(1) + b = 2 ∴ b = 0 By (iii) + (iv) x = 2, we get 5c = 2 ∴ c = 2/5 Substituting c = 2/5 in (iii), we get 2/5 + 2d =4 ∴ 2d = 4 - 2/5 ∴ 2d = 18/5 ∴ d = 9/5 |
|