Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

101.

The inverse of A = \( \begin{bmatrix}0 & 1& 0 \\[0.3em]1 & 0 &0 \\[0.3em]0 & 0 & 1\end{bmatrix}\)[(0,1,0),(1,0,0),(0,0,1)](a) I (b) A (c) A'(d) -I

Answer»

Option : (b)

102.

If A is square matrix such that A2 = A, then (I + A)3 – 7A is equal to (A) A (B) I – A (C) I (D) 3A

Answer»

Answer is (C)

A2 = A 

(I + A)3 – 7A = (I + A) (I+A)2 – 7A 

= (I + A) {(I + A) (I+A)} -7A 

= (I + A) (I2 + 2A + A2) – 7A 

[v IA = AI = A] 

= (I + A) (I+ 2A + A) – 7A (A2= A) 

= (I + A) (I + 3A) – 7A 

= I2 + AI + 3IA + 3A2 – 7A 

= I + A + 3A + 3A – 7A 

[∵ A2 = A & IA = AI = A] =1

103.

If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A – 2B is :A. m × 3 B. 3 × 3 C. m × n D. 3 × n

Answer»

(D). 3 × n

m = n 

If A and B are two matrices of order 3 × m and 3 × n respectively and m = n 

Then, 

A & B have same orders as 3 × n each, 

So the order of (5A – 2B) should be same as 3 × n. 

Option (D) is the answer.

104.

If \(\begin{bmatrix} 2x+y & 4x \\[0.3em] 5x-7 & 4x \\[0.3em] \end{bmatrix}\) =\(\begin{bmatrix} 7 & 7y-13 \\[0.3em] y & x+6 \\[0.3em] \end{bmatrix}\), then the value of x + y is :A. x = 3, y = 1 B. x = 2, y = 3 C. x = 2, y = 4 D. x = 3, y = 3

Answer»

(B). x = 2, y = 3

Comparing the equations, 

2x + y = 7 & 4x = x + 6 

3x = 6, x = 2 

2(2) + y = 7 

y = 7 – 4 = 3 

x = 2 & y = 3 

Option (B) is the answer.

105.

If A is a square matrix such that A2 = A, then (I + A)3 – 7A is equal to :A. A B. I – A C. I D. 3A

Answer»

C. I

(I + A)3 = I3 + A3 + 3A2I + 3AI2 

(Using the identity of (a + b)3 = a3 + b3 + 3ab (a + b)) 

(I + A)3 = I + A2(A) + 3AI + 3A 

[I stands for Identity Matrix] 

(I + A)3 = I + A2 + 3A + 3A 

(I + A)3 = 7A + I (I + A)3 – 7A 

7A + I – 7A 

= I

Option (C) is the answer.

106.

If I is the identity matrix and A is a square matrix such A2 = A, then what is the value of (I + A)2 – 3A?

Answer»

We are given that, 

I is the identity matrix. 

A is a square matrix such that A2 = A. 

We need to find the value of (I + A)2 – 3A. 

We must understand what an identity matrix is.

An identity matrix is a square matrix in which all the elements of the principal diagonal are ones and all other elements are zeroes.

Take,

(I+A)2 – 3A = (I)2+ (A)2 + 2(I)(A) – 3A 

[∵, by algebraic identity, 

(x+y)2 = x2 + y2 + 2xy] 

⇒(I+A)2 – 3A = (I)(I) + A2 + 2(IA) – 3A

By property of matrix, 

(I)(I) = I 

IA = A 

⇒(I+A)2 – 3A = I + A2 + 2A – 3A 

⇒(I+A)2 – 3A = I + A + 2A – 3A 

[∵, given in question, A2 = A] 

⇒ (I+A)2 – 3A = I + 3A – 3A 

⇒ (I+A)2 – 3A = I + 0 

⇒ (I+A)2 – 3A = I 

Thus, 

The value of (I+A)2 – 3A = I.

107.

If A is a square matrix such that A2 = I, then (A – I)3 + (A + I)3 – 7A is equal to : A. A B. I – A C. I + A D. 3A

Answer»

(A). A

Expansion of the given expression,

A3 – I3 + 3AI2 – 3A2I + A3 + I3 + 3AI2 + 3A2I – 7A 

2A3 – 7A + 6AI

2A2A – 7A + 6A 

2AI – A {A2 = I} 

2A – A

A

Option (A) is the answer.

108.

For what values of `k` the set of equations `2x- 3y + 6z - 5t = 3, y -4z + t=1`, `4x-5y+8z-9t = k` hasA.B.C.D.

Answer» Correct Answer - `(i) kne 7 (ii) k=7`
Given equation can be written as,
`2x- 3y+ 6z= 5t +3`
` y-4z=1-t`
`4x-5y+8z=9t+k`
which is of the form `AX = B`
Let C be the augmented matrix, then
`C=[A:B][[2,-3,6,vdots,5t+3],[0,1,-4,vdots,1-t],[4,-5,8,vdots,9t+k]]`
Applying `R_(3) rarr R_(3) - 2R_(1)`, then
`C=[[2,-3,6,vdots,5t+3],[0,1,-4,vdots,1-t],[0,-1,-4,vdots,-t+k-6]]`
`C=[[2,-3,6,vdots,5t+3],[0,1,-4,vdots,1-t],[0,0,0,vdots,k-7]]`
(i) Fpr no solution
`R_(A)neR_(C)`
`therefore kne7`
(ii) For infinite number of solutions
`R_(A)=R_(C)`
`therefore k=7`
109.

If `D=diag [2, 3, 4]`, then `D^(-1)=`A. OB. IC. DD. diag `[(1)/(2), (1)/(3), (1)/(4)]`

Answer» Correct Answer - D
110.

If `[{:(x,6),(-1,2w):}]+[{:(" "4,x+y),(z+w," "3):}]=3[{:(x,y),(z,w):}]`, find the values of x, y, z, w.

Answer» Correct Answer - `x=2,y=4,z=1,w=3`
111.

Given 3[(x, y), (z, w)] = [(x, 6), (-1, 2w)] + [(4, x + y), (z + w, 3)], find the values of x, y, z and w.

Answer»

By definition of equality of matrix as the given matrices are equal, their corresponding elements are equal. Comparing the corresponding elements, we get

3x = x + 4 2x = 4  x = 2 

and 3y = 6 + x + y  2y = 6 + x 

 y = (6 + x)/2

Putting the value of x, we get

y = (6 + 2)/2 = 8/2 = 4

Now, 3z = −1 + z + w, 2z = −1 + w

z = (-1 + w)/2 .....(ii)

Now, 3w = 2w + 3  w = 3 

Putting the value of w in Eq. (i), we get

z = (-1 + 3)/2 = 2/2 = 1

Hence, the values of x, y, z and w are 2, 4, 1 and 3.

112.

Let P, Q and R be invertible matrices of order 3 such `A=PQ^(-1), B=QR^(-1)` and `C=RP^(-1)`. Then the value of det. `(ABC+BCA+CAB)` is equal to _______.

Answer» Correct Answer - 27
We have `A=PQ^(-1), B=QR^(-1), C=RP^(-1)`
`:. ABC=I, BCA=I, CAB=I`
`:.` det. `(ABC+BCA+CAB)=` det. `(3I)=3^(3)xx` det. `(I)=27`
113.

Find the value of a, b and c from the following equations;\(\begin{bmatrix}{a-b} & {2a+c} \\{2a - b} & {3c+d} \\\end{bmatrix}\) = \(\begin{bmatrix}-1 & 5 \\0 & 13 \\\end{bmatrix}\)

Answer»

 \(\begin{bmatrix} {a-b} & {2a+c} \\ {2a - b} & {3c+d} \\ \end{bmatrix} \) = \(\begin{bmatrix} -1 & 5 \\ 0 & 13 \\ \end{bmatrix} \)

⇒ a – b = -1, 2a + c = 5, 2a – b = 0, 3c + d = 13

⇒ a – b = -1

2a – b = 0

– a = -1

⇒ a = 1

We have, a – b = -1 ⇒ 1 – b = -1 ⇒ b = 2

⇒ 2a + c = 5 ⇒ 2 + c = 5 ⇒ c = 3

⇒ 3c + d = 13 ⇒ 9 + d = 13 ⇒ d = 4.

114.

1. Consider a 2 × 2 matrix A = [aij], where aij = \(\frac{(i + j)^2}{2}\)2. Write the transpose of A. 3. Show that A is symmetric.

Answer»

1. A = \(\begin{bmatrix}2 & \frac{9}{8} \\\frac{9}{2} & 8 \\\end{bmatrix}\)

2. AT = \(\begin{bmatrix}2 & \frac{9}{8} \\\frac{9}{2} & 8 \\\end{bmatrix}\)

3. AT = A therefore symmetric matrix.

115.

Apply the given elementary transformation of the following matrices :A = \(\begin{bmatrix} 1 & 0 \\[0.3em] -1 & 3 \\[0.3em] \end{bmatrix}\), R1 ↔ R2A = [1,0,-1,3], R1 ↔ R2

Answer»

Given,

A = [1,0,-1,3], R1 ↔ R2

A = \(\begin{bmatrix} 1 & 0 \\[0.3em] -1 & 3 \\[0.3em] \end{bmatrix}\)

By R1 ↔ R2, we get,

A ~ \(\begin{bmatrix} -1 & 3 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\)

116.

A = [5,4,1,3],C1 ↔ C2; B = [3,1,4,5],R1 ↔ R2.A = \( \begin{bmatrix}5& 4 \\[0.3em]1 & 3 \\[0.3em]\end{bmatrix}\),C1 ↔ C2; B = \( \begin{bmatrix}3& 1 \\[0.3em]4 & 5 \\[0.3em]\end{bmatrix}\), R1 ↔ R2.What do you observe?

Answer»

Given,

A = [5,4,1,3],C1 ↔ C2

B = [3,1,4,5],R1 ↔ R2.

A = \( \begin{bmatrix} 5& 4 \\[0.3em] 1 & 3 \\[0.3em] \end{bmatrix} \)

By C1 ↔ C2, we get,

A ~ \( \begin{bmatrix} 4&5 \\[0.3em] 3 & 1 \\[0.3em] \end{bmatrix} \)....(1)

B = \( \begin{bmatrix} 3& 1 \\[0.3em] 4 & 5 \\[0.3em] \end{bmatrix} \)

By R1 ↔ R2, we get

B ~ \( \begin{bmatrix} 4&5 \\[0.3em] 3 & 1 \\[0.3em] \end{bmatrix} \)....(2)

From (1) and (2),

We observe that the new matrices are equal.

117.

Apply the given elementary transformation of the following matrices :B = \( \begin{bmatrix}1&-1& 3 \\[0.3em]2& 5 & 4 \\[0.3em]\end{bmatrix}\), R1 → R1 → R2B = [1,-1,3,2,5,4],R1 → R1 → R2

Answer»

Given,

B = [1,-1,3,2,5,4],R1 → R1 → R2

B = \( \begin{bmatrix} 1&-1& 3 \\[0.3em] 2& 5 & 4 \\[0.3em] \end{bmatrix} \),

R1 → R1 → R2 gives,

B ~ \( \begin{bmatrix} -1&-6& -1 \\[0.3em] 2& 5 & 4 \\[0.3em] \end{bmatrix} \)

118.

If A is a skew-symmetric and n ∈ N such that (An)T = λAn, write the value of λ.

Answer»

Let A is a skew – symmetric matrix, then

AT = - A …(i)

Consider,

⇒ (An)T = λAn [given] 

⇒ (AT)n = λA

⇒ (-A)n = λAn [from (i)] 

⇒ (-1)n(A)n = λA

Comparing both the sides, we get 

λ = (-1)n

119.

If A =\( \begin{pmatrix} λ& 1 \\[0.3em] -1 & -λ \\[0.3em] \end{pmatrix}\), then A-1 does not exist if λ = ………..((λ,1)(-1,-λ))(a) 0 (b) ± 1 (c) 2 (d) 3

Answer»

Option : (b) ± 1

120.

Find the value of k so that `A^2=8A+kI` where `A=[(1,0),(-1,7)].`

Answer» We have
`A^(2)=[{:(1,0),(-1,7):}][{:(1,0),(-1,7):}]=[{:(1-0,0+0),(-1-7,0+49):}]=[{:(1,0),(-8,49):}],`
`(8A+kI)=8.[{:(1,0),(-1,7):}]+k.[{:(1,0),(0,1):}]`
`=[{:(8,0),(-8,56):}]+[{:(k,0),(0,k):}]=[{:(8+k," "0),(-8,56+k):}]`
`:." "A^(2)=8A+kIimplies[{:(1,0),(-8,49):}]=[{:(8+k," "0),(-8,56+k):}]`
`implies" "8+k=1" and "56+k=49impliesimpliesk=-7.`
Hence, `k=-7`.
121.

What is the maximum number of different elements required to form a symmetric matrix of order 12 ?

Answer» Matrix of order 12 require `12xx12=144` elments. 12 elements for `i=j`
`(144-12)/2=66` elements for `I lt j`
`:.` Maximum number of different elements required are `66+12=78`
122.

the maximum number of different elements requried to from a symmetric matrx of order 6 isA. 15B. 17C. 19D. 21

Answer» Correct Answer - D
123.

Construct a `3xx2` matrix whose elements are given by `a_(ij)=(2i-j).`

Answer» `A=[{:(1,9),(3,2),(5,4):}]`
124.

Construct a `2xx2`matrix `A=[a_(i j)]`whose elements aregiven by `a_(i j)=((i+2j)^2)/2`.

Answer» `[{:((9)/(2),(25)/(2)),(8,16):}]`
125.

If `A=diag [a,b,c]` then show that `A^n=diag[a^n,b^n,c^n]` for all `n in N.`

Answer» We shall prove the result by mathematical induction.
When n=1, we have
`A^(1)=" diag "[a^(1),b^(1),c^(1)]=" diag "[a, b, c]=A.`
So, the result is true for n=1.
Let it be true for n=m, so that
`A^(m)=" diag "[a^(m),b^(m),c^(m)]" "...(i)`
`:." "A^(m+1)=A.A^(m)`
`=" diag "[a,b,c]." diag "[a^(m),b^(m),c^(m)]`[using (i)]
`=[{:(a,0,0),(0,b,0),(0,0,c):}].[{:(a^(m),0,0),(0,b^(m),0),(0,0,c^(m)):}]`
`=[{:(a^(m+1),0,0),(0,b^(m+1),0),(0,0,c^(m+1)):}]=" diag "[a^(m+1),b^(m+1),c^(m+1)].`This shows that the result is true for `n=(m+1)`, whenever it is true for n=m,
Hence, by the principle of mathematical iduction, the result is true for all `n inN.`
126.

If `A=[{:(2,1),(0,4):}]" and B=[{:(3,4,5),(1,2,3):}]` then A and B are matrices of order `2xx2` and `2xx3` respectively.

Answer» So, A and B are not comparable.
Hence, `A+B` is not defined.
127.

The order of matrix `A+B^(T)` is `4xx3`, then the order of matrix B is _________ .

Answer» Correct Answer - `3xx4`
128.

Construct a `4xx3` matrix whose elements are `a_(ij)=(i)/(j).`

Answer» `[{:(1,(1)/(2),(1)/(3)),(2,1,(2)/(3)),(3,(3)/(2),1),(4,2,(4)/(3)):}]`
129.

If order of matrix A is `4xx3` and AB is `4xx5`, then the order of matrix B is _________ .

Answer» Correct Answer - `3xx5`
130.

If `A`is any `mxxn`such that `A B`and `B A`are both defined showthat `B`is an `nxxm`matrix.

Answer» Since AB is defined, we have
number of rows in B=numbers of columns in A=n.
Again, since BA is defined, we have
number of columns in B= number of rows in A=m.
Hence, the order of B is `nxxm`.
131.

If A and B are matrices such that AB and A + B both are defined, thenA. A and B can be any two matricesB. A and B are square matrices not necessarily of the same orderC. A, B are square matries of the same orderD. number of columns of A is same as the number of rows of B

Answer» Correct Answer - C
132.

`A , B`are two matrices suchthat `A B`and `A+B`are both defined; showthat `A , B`are square matrices ofthe same order.

Answer» Since `(A+B)` is defined, it follows that both A and B are of the same order, say `(mxxn)`.
Thus, order of A is `mxxn`.
But, AB is defined.
So, number of columns in A=number of rows in B.
Consequently, n=m.
`:.` A and B are square matrices of the same order.
133.

If `A_(2xx3), B_(4xx3)` and `C_(2xx4)` are three matrices, then which of the following is/are defined?A. `AC^(T)B`B. `B^(T)C^(T)A`C. `AB^(T)C`D. `A^(T)BC`

Answer» Correct Answer - B
Given A is `2 xx 3` matrix
B is `4 xx 3` matrix
C is ` 2 xx 4` matrix.
`C^(T) " is " 4 xx 2 ` matrix
`therefore C^(T)B` is not possible
`C^(T) = 4 xx 2 A = 2 xx 3`
`therefore C^(T)A` is a matrix of order `4 xx3`
`B^(T)` is of order ` 3 xx 4, C^(T)A` is of order ` 4 xx 3`
`B^(T)(C^(T)A)` is a matrix of order ` 3 xx 3`
Option (b) follows.
134.

`A , B`are two matrices suchthat `A B`and `A+B`are both defined; showthat `A , B`are square matrices ofthe same order.A. the order of A and B are not same necessarily,B. No. of columns in `A=No.` of rows in B.C. A and B are square matrices of same order.D. No. of rows in A=No. Of columns in B.

Answer» Correct Answer - C
N/a
135.

If [2 1 3] `[{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}]`=A, then find the value of A.

Answer» We have `[2 1 3] [ {:(-1,0,-1),(-1, 1,0),(0,1,1):}][{:(1),(0),(-1):}]=A`
`therefore [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}]=[-2-1+0 0+1+3-2+0+3]`
Now, `[-341] [{:(1),(0),(-1):}]=A`
`A=[ -341 ] [{:(1),(0),(-1):}]`
`=[-3+0-1]=[-4]`
136.

If `A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}]` and `C=[{:(1,0),(-1,0):}]`, verfity (i) A(B+C)=AB+AC.

Answer» We have, `A=[{:(1,2),(-2,1):}]B=[{:(2,3),(3,-4):}]` and `C=[{:(1,0),(-1,0):}]`
(i) `(AB)=[{:(1,2),(-2,1):}][{:(2,3),(3,-4):}]=[{:(2+6,3-8),(-4+3,-6-4):}]=[{:(8,-5) ,(-1-,-10):}]`
and `(AB)C=[{:(8,-5),(-1,-10),(-1 ,- 10):}][{:(1,0),(-1,0):}]`
`=[{:( 8+5,0),(-1,+10,0):}]=[{:(13,0),(9,0):}]`
Again, `(BC)=[{:(2,3),(3,-4):}][ {:(-1,0),(7,0):}]`
and `A(BC)=[{:(1,2),(-2,1):}][{:(-1,0),(7,0):}]`
`=[{:(-1+14,0),(+2+7,0):}]=[{:(13,0),(9,0):}]`
`therefore (AB)C=A(BC)`
(ii) `(B+C)=[{:(2,3),(3,-4):}]+[{:(1,0),(-1,0):}]=[{:(3,3),(2,-4):}]`
and `AB=[{:( 1,2),(-2,1):}][{:(3,3),(2,-4):}]`
`=[{:(3+4,3-8),(-6+2,-6-4):}][{:(2,3),(3,-4):}]`
`=[{:(2+6 ,3-8),(-4+3,-6-4):}]=[{:(8,-6),(-1,-10):}] `
and `AC=[{:( 1,2),(-2,1):}][{:(1, 0),(-1,0):}]=[{:(1-2,0),(-2-1,0):}]=[{:(-1,0),(-3,0):}]`
`therefore AB+AC=[{:( 8,-5),(- 1,-10):}]+[{:(-1,0),(-3,0):}]`
`rArr AB+AC=[{:(7,-5),(-4,-10):}]`
From Eqs. iii and iv
`A(B+C)=AB+AC`
137.

If `P=[{:(x,0,0),(0,y,0),(0,0,z):}]` and `Q=[{:(a,0,0),(0,b,0),(0,0 ,c):}]` then prove that `PQ=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]=QP`.

Answer» `PQ=[{:( x,0,0),(0,y,0),(0,0,z):}][{:(a,0,0),(0,b,0),(0,0, c):}]=[{:(xa,0,0),(0,yb,0),(0,0,zc):}]`
and `QP=[{:(a,0,0),(0,b,0),(0,0,c):}] [{:(x,0,0),(0,y,0),(0,0,y):}]=[{:(ax ,0,0),(0,by,0),(0,0,zc):}]`
Thus, we see that `PQ=QP`
138.

If `[1" "x" "1][{:(1,2,3),(4,5,6),(3,2,5):}][{:(" "1),(-2),(" "3):}]=O,` find x.

Answer» Correct Answer - `x=(-5)/(3)`
139.

If `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)]` and `P=S ("adj.A") S^(T)`, then find matrix `S^(T) P^(10) S`.

Answer» `S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2 sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))]`
`=[("sin "15^(@),cos 15^(@)),(-"cos "15^(@),sin 15^(@))]`
`:. SS^(T)=S^(T)S=I`
Now,
`S^(T) P^(10) S=S^(T)(S ("adj. A")S^(T))^(10)S`
`=S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(9)S`
`=I ("adj. A")S^(T) (S("adj. A")S^(T))^(9)S`
`=("adj. A")S^(T)S("adj. A") S^(T) (S("adj. A")S^(T))^(8) S`
`=("adj. A")^(2)S^(T) (S("adj. A")S^(T))^(8)S`
...
...
`=("adj. A")^(10)`
`A=[(1,0),(-1,1)]`
`:.` adj. `A=[(1,0),(1,1)]`
`:. ("adj. A")^(2)=[(1,0),(1,1)][(1,0),(1,1)]=[(1,0),(2,1)]`
`:. ("adj. A")^(3)=[(1,0),(3,1)]`
And so on.
`:. ("adj. A")^(10)=[(1,0),(10,1)]=S^(T) P^(10) S`
140.

If `A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2))` then find the values of a and b.

Answer» Correct Answer - a=1, b=4.
141.

Let `A` be a square matrix of order 3 such that adj. (adj. (adj. A)) `=[(16,0,-24),(0,4,0),(0,12,4)]`. Then find (i) `|A|` (ii) adj. A

Answer» We know that adj. (adj. A) `=|A|^(n-2)A`, where n is order of matrix.
`:.` adj. (adj. (adj. A))`=|"adj. A"|^(n-2)` adj. A
`=(|A|^(n-1))^((n-2))` adj. A
For `n=3`,
adj. (adj. (adj. A))`=|A|^(2)` adj. `A=[(16,0,-24),(0,4,0),(0,12,4)]`
`:. |A|^(6)|"adj. A"|=256`
`implies |A|^(6)|A|^(2)=2^(8)`
`implies |A|=2`
`implies` adj. `A=1/4 [(16,0,-24),(0,4,0),(0,12,4)]=[(4,0,-6),(0,1,0),(0,3,1)]`
142.

Find the matrix A such that `A.[{:(2,3),(4,5):}]=[{:(0,-4),(10," "3):}].`

Answer» `A=[{:(-8,4),(-19,12):}]`
143.

If `A=[(1,2,3),(2,1,2),(2,2,3)]B=[(1,2,2),(-2,-1,-2),(2,2,3)]` and `C=[(-1,-2,-2),(2,1,2),(2,2,3)]` then find the value of tr. `(A+B^(T)+3C)`.

Answer» Correct Answer - 17
tr. `(A+B^(T)+3C)=`tr. `(A)+` tr. `(B^(T))+` tr. `(3C)`
`=(1+1+3)+(1-1+3)+3(-1+1+3)`
`=17`
144.

If `A=[[3,-5],[-4,2]]`, find `A^2-5A-14I`.

Answer» `A^2=A*A=[[3,-5],[-4,2]][[3,-5],[-4,2]]`
`=[[29,-25],[-30,24]]`
`A^2-5A-14I`
`=[[29,-25],[-2-,24]]-[[15,-25],[-20,10]]-[[14,0],[0,14]]`
`=[[0,0],[0,0]]`
Zero matrix.
145.

Find the matrix A such that `[[5-7,],[-2,3]]A=[[-16,-6],[7,2]]`.

Answer» `A=[{:(1,-4),(3,-2):}]`
146.

The value of for which the system of equations `ax +y+z=0,x+ay+z=0,x+y+z=0` possess a non-null solution isA. 1B. 2C. `-1`D. `-2`

Answer» Correct Answer - A
147.

There are two book shops owned by Suresh and Ganesh. Their sales (in Rupees) for books in three subjects – Physics, Chemistry and Mathematics for two months, July and August 2017 are given by two matrices A and B. i. Find the increase in sales in Rupees from July to August 2017. ii. If both book shops got 10% profit in the month of August 2017, find the profit for each bookseller in each subject in that month.

Answer»

i. Increase in sales in rupees from July to August 2017 

For Suresh: 

Increase in sales for Physics books = 6650 – 5600= ₹ 1050 Increase in sales for Chemistry books = 7055 – 6750 = ₹ 305 Increase in sales for Mathematics books = 8905 – 8500 = ₹ 405

For Ganesh: 

Increase in sales for Physics books = 7000 – 6650 = ₹ 350 Increase in sales for Chemistry books = 7500 – 7055 = ₹ 445 Increase in sales for Mathematics books = 10200 – 8905 = ₹ 1295 

ii. Both book shops got 10% profit in the month of August 2017. 

For Suresh:

Profit for Physics books = 6650x10/ 100 = ₹ 665

Profit for Chemistry books = 7055 x 10/100 = ₹ 705.50

Profit for Mathematics books = 8905x10/100 = ₹ 890.50

For Ganesh:

Profit for Physics books = 7000x10/ 100 = ₹ 700

Profit for Chemistry books = 7500x10/ 100 = ₹ 750

Profit for Mathematics books = 10200x10/ 100 = ₹ 1020

148.

If `A=[{:(1,5),(7,12):}]` and `B=[{:(9,1),( 7,8):}]` then find a matrix C such that `3A+5B+2C` is a null matrix.

Answer» We have, `A=[{:(1, 5),(7,12):}]` and `B=[{:(9,1),(7,8):}]`
Let `C=[{:(a,b),(c,d):}] therefore 3A+5B+2C =0`
`rArr [{:(3,15),(21,36):}]+[{:(45 ,5),(35,40):}]+[{:(2a,2b),(2c,2d):}]=[{:(0,0),(0,0):}]`
`rArr [{:(48,2a,20+2b) ,(56+2c, 76+2d):}]=[{:(0,0),(0,0):}]`
`rArr 2a+4B=0rArra=-24`
Also, `20+2b=0rArrb=-10`
`56 +2c=0rArrc=-28`
and `76+2d=0rArrd=-38`
`therefore C=[{:(-24,-10),(-28,-38):}]`
149.

If \(\begin{bmatrix} a+b&2 \\[0.3em] 5 & b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6&5 \\[0.3em] 2 & 2 \\[0.3em] \end{bmatrix}\), then find a.

Answer»

We are given that,

\(\begin{bmatrix} a+b&2 \\[0.3em] 5 & b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6&5 \\[0.3em] 2 & 2 \\[0.3em] \end{bmatrix}\)

We need to find the value of x. 

We know by the property of matrices,

 \(\begin{bmatrix} a_{11}& a_{12} \\[0.3em] a_{21} & a_{22} \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} b_{11}& b_{12} \\[0.3em] b_{21} & b_{22} \\[0.3em] \end{bmatrix}\)

This implies, 

a11 = b11

a12 = b12

a21 = b21 and 

a22 = b22 

So, if we have

 \(\begin{bmatrix} a+b&2 \\[0.3em] 5 & b \\[0.3em] \end{bmatrix}\)= \(\begin{bmatrix} 6&5 \\[0.3em] 2 & 2 \\[0.3em] \end{bmatrix}\)

Corresponding elements of two elements are equal.

That is,

a + b = 6 …(i)

b = 4 …(ii) 

To solve for a, 

We have equations (i) and (ii).

We can’t solve for a using only equation (i) as equation (i) contains a as well as b. 

We need to find the value of b from equation (ii) first.

From equation (ii),

b = 4

Substituting the value of b = 4 in equation (i),

a + b = 6 

⇒ a + 4 = 6 

⇒ a = 6 – 4 

⇒ a = 2 

Thus, 

We get a = 2.

150.

if \(\begin{vmatrix}2a+b&3a-b\\c+2d&2c-d\end{vmatrix}=\begin{vmatrix}2&3\\4&-1\end{vmatrix}\), find a, b, c and d.[(2a+b, 3a-b) (c+2d) (2c-d)] = [(2, 3) (4, -1)]

Answer»

\(\begin{vmatrix}2a+b&3a-b\\c+2d&2c-d\end{vmatrix}=\begin{vmatrix}2&3\\4&-1\end{vmatrix}\)

∴ By equality of matrices, we get  2a + b = 2 ….(i) 

3a – b = 3 ….(ii)

c + 2d = 4 ….(iii) 

2c – d = -1 ….(iv) 

Adding (i) and (ii), we get 5a = 5 

∴ a = 1 Substituting a = 1 in (i), we get 2(1) + b = 2 

∴ b = 0 

By (iii) + (iv) x = 2, we get 5c = 2

∴ c = 2/5

Substituting c = 2/5 in (iii), we get 2/5 + 2d =4

∴ 2d = 4 - 2/5

∴ 2d = 18/5

∴ d = 9/5