Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

The horizontal distance between the two towers is \(\frac{{80}}{{\sqrt 3 }}m\) . The angle of depression at the top of the first tower when seen from the top of the second tower is 30°. If the height of the second tower is 250 m, find the height of the first tower.1). 180 m2). 150 m3). 223 m4). 160 m

Answer»
52.

What is the simplified value of \(\sqrt {\frac{{\sec A}}{{\sec A - 1}} + \frac{{\sec A}}{{\sec A + 1}}?} \)1). cosec A2). √2 cosec A3). 2 sec2A4). sec A

Answer»

We can WRITE sec A = 1/ COS A, Now it can be written as

⇒ √{1/(1 - cos A) + 1/(1 + cos A) }

⇒ √[{(1 - cos A) + (1 + cos A) }/{(1 - cos A) (1 + cos A) }]

⇒ √{2/(1 - cos2A) } since we know that 1 - cos2 A = sin2 A

⇒ √2/sin A = √2 COSEC A

∴ Its simplified VALUE is √2 cosec A

53.

1). 193.222). 144.043). 176.124). 161.05

Answer»
54.

What is the simplified value of \(\sqrt {\frac{{sec\;A - 1\;}}{{sec\;A + 1\;}}} ?\)1). cosec A – cot A2). sec A – tan A3). sec 2 A4). sec A cosec A

Answer»

GIVEN: √[(secA – 1)/(secA +1)]

⇒ √[{(1/COSA) – 1}/{(1/cosA) +1}]

⇒ √[(1 - cosA)/(1 + cosA)]

Multiplying (1 - cosA) on both numerator and denominator

⇒ √[(1 – cosA)2/(1 – cos2A)]

⇒ √[(1 – cosA)2/sin2A]

⇒ (1 – cosA)/sinA

⇒ 1/sinA – cosA/sinA

⇒ cosecA – cotA

55.

If sinA/√ (1 – sin2A) = x, then the value of x is?1). tanA2). cotA3). cosecA4). cosA

Answer»

⇒ sinA/√(1 – sin2A) = X

? 1 – sin2A = cos2A

⇒ sinA/√cos2A = x

⇒ sinA/cosA = x

TANA = x
56.

1). 2sinθcosθ2). cos\(\theta\)3). \(\sqrt 2 \)sin4). sin

Answer»
57.

Find the value of (p + q)2, if p + q Cot3 α = Cot α.Cosec α and q = p tan α.1). 1 + Cos α2). 1 + Sin 2α3). 1 – cos 2α4). 1 - Sin α

Answer»

p + q COTα = Cot α.Cosec α

⇒ p + q COSα/Sin3 α = Cos α/Sinα

Putting q = p TAN α in the equation we get

⇒ p + p tan α.(Cosα/Sin3 α) = Cos α/Sinα

Putting tan α = sin α /cos α and simplifying we get

⇒ p(1 + Cosα/Sinα ) = Cos α/Sinα

⇒ p = Cos α

Putting that in q = p tan α we get q = Sin α

Here (p + q)2 = (Sin α + Cos α)2

Using (a + b)2 = a2 + b2 + 2AB we get

(p + q)2 = Sin2 α + Cos2 α + 2 Sin α.Cos α

Using Sin2 α + Cos2 α = 1 and 2 Sin α.Cos α = Sin 2α

We get (p + q)2 = 1 + Sin 2α
58.

Find the Minimum Value of \({\bf{sec}}{\;^2}{\bf{x}}\; + \;{\bf{cosec}}{\;^2}{\bf{x}}\)1). 22). 43). 64). 8

Answer»

$({\bf{sec}}{^2}{\bf{x}} + {\bf{cosec}}{^2}{\bf{x}} = 1{\rm{}} + {\rm{}}{\tan ^2}{\rm{x}} + {\rm{}}1{\rm{}} + {\rm{}}{\COT ^2}{\rm{x}} = {\rm{}}2{\rm{}} + {\rm{}}{\tan ^2}{\rm{x}} + {\rm{}}{\cot ^2}{\rm{x}})$

Now we have to find the minimum value of

$(\begin{array}{l} \RIGHTARROW {\bf{ta}}{{\bf{n}}^2}{\bf{x}} + {\cot ^2}{\bf{x}} = {\LEFT( {\tan {\bf{x}}} \RIGHT)^2} + {\left( {\cot {\bf{x}}} \right)^2} - 2 \times \tan {\bf{x}} \times \\cot {\bf{x}} + 2 \times \tan {\bf{x}} \times \cot {\bf{x}}\\ \Rightarrow {\left( {\tan {\bf{x}} - \cot {\bf{x}}} \right)^2} + 2 = {\left( {\tan {\bf{x}} - \cot {\bf{x}}} \right)^2} + 2\end{array})$

For the value to be minimum, $(\tan {\bf{x}} - \cot {\bf{x}}\; = \;0)$

⇒ Minimum value = 2 + 2 = 4
59.

\(\frac{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin\theta }}} }}\) is equal to1). secθ - tanθ2). cosecθ - cotθ3). secθ - cotθ4). secθ + tanθ

Answer»

$(\FRAC{{\SQRT {1{\rm{\;}} + {\rm{\;sin\THETA }}} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin\theta }}} }} = \frac{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin\theta }}} }} \TIMES \frac{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }}{{\sqrt {1{\rm{\;}} + {\rm{\;sin\theta }}} }} = \frac{{\sqrt {\LEFT( {1{\rm{\;}} + {\rm{\;sin\theta }}} \right)2} }}{{\sqrt {1{\rm{\;}} - {\rm{\;sin}}2{\rm{\theta }}} }} = \frac{{\sqrt {\left( {1{\rm{\;}} + {\rm{\;sin\theta }}} \right)2} }}{{\sqrt {{\rm{cos}}2{\rm{\theta }}} }} = \frac{{1{\rm{\;}} + {\rm{\;sin\theta }}}}{{{\rm{cos\theta }}}} = \frac{1}{{{\rm{cos\theta }}}} + \frac{{{\rm{sin\theta }}}}{{{\rm{cos\theta }}}})$

60.

1). \(\frac{{{h^2}\; + \;{x^2}}}{{4h}}\;metres\)2). \(\frac{{{h^2} - {x^2}}}{{4h}}\;metres\)3). \(\frac{{{h^2}\; + \;{x^2}}}{{2h}}\;metres\)4). \(\frac{{{h^2} - {x^2}}}{{2h}}\;metres\)

Answer»
61.

If cos x = sin y and cot (x ­ – 40°) = tan (50°­ –y), then the value of x and y are1). x = 70°, y = 20°2). x = 75°, y = 15°3). x = 85°, y = 5°4). x = 80°, y = 10°

Answer»

cos X = sin y

⇒ cos x = cos(90° – y)

⇒ x = 90° – y

⇒ x + y = 90°….(1)

COT (x ­ – 40°) = tan (50° ­ – y)

⇒ cot (x – 40°) = cot (90° – (50° – y))

⇒ x – 40° = 40° + y

⇒ x – y = 80°….(2)

SOLVING (1) and (2)

We get, x = 85° and y = 5°
62.

1). 32°2). 76°3). 25°4). 78°

Answer»

The SUM of all the interior angles of a triangle is 180°

⇒ ∠A + ∠B + ∠C = 180°

⇒ x + 4x – 4 + y = 180

5X + y = 184- - - (1)

Also,

∠C - ∠B = 8°

⇒ y – (4x - 4) = 8

⇒ - 4x + y = 4- - - (2)

On SOLVING equations (1) and (2) simultaneously, we get,

 x = 20° and y = 84 °

∴ ∠B = (4 × 20) – 4 = 76°

63.

What is the value of \(\frac{{\left( {cos10^\circ + sin20^\circ } \right)}}{{\left( {cos20^\circ - sin10^\circ } \right)}}?\)1). \(\frac{1}{{\sqrt 3 }}\)2). \(- \frac{1}{{\sqrt 3 }}\)3). \(\sqrt 3\)4). \(- \sqrt 3\)

Answer»

Concept:

$(\begin{ARRAY}{L} \COS \left( {90 - \theta } \right) = \sin \theta \\ \sin \left( {90 - \theta } \right) = \cos \theta \END{array})$

$(\sin A + \sin B = 2\sin \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right))$

$(\sin A - \sin B = 2\sin \left( {\frac{{A - B}}{2}} \right)\cos \left( {\frac{{A + B}}{2}} \right))$

Calculation:

$(\frac{{\cos 10^\circ + \sin 20^\circ }}{{\cos 20^\circ - \sin 10^\circ }} = \frac{{\cos \left( {90^\circ - 80^\circ } \right) + \sin 20^\circ }}{{\cos \left( {90^\circ - 70^\circ } \right) - \sin 10^\circ }})$

$(= \frac{{\sin 80^\circ + \sin 20^\circ }}{{\sin 70^\circ - \sin 10^\circ }} = \frac{{2\sin 50^\circ \cos 30^\circ }}{{2\cos 40^\circ \sin 30^\circ }})$

$(= \frac{{\sin \left( {90^\circ - 40^\circ } \right)\cot 30^\circ }}{{\cos 40^\circ }})$

$(= \frac{{\cos 40^\circ \cot 30^\circ }}{{\cos 40^\circ }} = \cot 30^\circ = \sqrt 3 )$

64.

1). 02). 13). cosec θ4). sec θ

Answer»

[(sec2θ + 1)√(SEC$2$θ – 1)] × 1/2 × (cotθ – tanθ)

$

⇒$ [(sec2θ + 1)√(TAN$2$θ)] × 1/2 × (cosθ/sinθ – sinθ/cosθ)

$

⇒$ [(sec2θ + 1).tanθ] × 1/2 × [(cos2θ – sin2θ) / (sinθ.cosθ)]

$

⇒$ 1/2 × [(sec2θ + 1).tanθ] × [cos2θ/(sinθ.cosθ)]

$

⇒$ 1/2 × [(1 + cos2θ).tanθ] / (sinθ.cosθ)

$

⇒$ 1/2 × [(1 + 2cos2θ – 1) × sinθ/cosθ] / (sinθ.conθ)

$

⇒$ 1/2 × 2cos2θ × sinθ/cosθ × 1/(sinθ.cosθ)

$

⇒$ 1$

65.

If 10tanA.tanB = 9, what is the value of cos(A – B)/cos(A + B)?1). 12). 03). 194). 9/10

Answer»

We know, COS(A – B) = cosAcosB + sinAsinB

And, cos(A + B) = cosAcosB – sinAsinB

Given, tanAtanB = 9/10

cos(A – B)/cos(A + B)

⇒ (cosAcosB + sinAsinB)/(cosAcosB – sinAsinB)

⇒ (1 + tanAtanB)/(1 – tanAtanB)

⇒ (1+ 9/10)/(1 – 9/10)

19

∴ cos (A – B)/cos (A + B) = 19
66.

1). 29/212). 21/293). 21/204). 20/29

Answer»

SINCE we know that COS θ = √(1 - sin2 θ)

⇒ Cos θ = √(1 - 202/292)

⇒ Cos θ = √{(841 - 400)/292}

⇒ Cos θ = √{(212)/292} = 21/29

∴ Cos θ = 21/29

67.

In a right angled triangle if sinB = (5/13) then find the value of tanB + cosecB.​1). 151/652). 181/603). 191/754). None of these

Answer»

GIVEN sinB = (5/13) = Perpendicular/hypotenuse

⇒ We know that (Hypotenuse)2 = (Perpendicular)2 + (BASE)2

⇒ (13)2 = (5)2 + (Base)2

⇒ (Base)2 = (13)2 - (5)2

⇒ (Base)2 = 169 - 25

⇒ (Base)2 = 144

⇒ (Base) = √144

⇒ (Base) = 12

⇒ cosB = Base/hypotenuse = 12/13

⇒ tanB = SIN B/Cos B

⇒ tanB = (5/13)/(12/13)

⇒ tanB = 5/12

⇒ cosecB = (1/Sin B) = (13/5)

⇒ tanB + cosecB = (5/12) + (13/5)

⇒ (25 + 156)/60

⇒ 181/60

∴ Required value is 181/60
68.

Find the value of (tan9° – tan27° – tan63° + tan81°).1). 12). 03). 34). 4

Answer»
69.

is 45°. If the length of the shadow increases by (√3 – 1)x, then the angle of elevation of the sun should become.1). 30°2). 45°3). 60°4). 75°

Answer»
70.

The value of 4cot2 45° - sec230° is1). \(\frac{{ - 1}}{4}\)2). \(\frac{1}{4}\)3). \(\frac{8}{3}\)4). \(\frac{{ - 1}}{2}\)

Answer»

GIVEN,

⇒ 4cot2 45° - sec230 = ?

We know,

⇒ Cot 45 = 1 and sec 30 = 2/ √3

⇒ ? = 4 × 1 - (2/ √3)2

⇒ ? = 4 - 4/3

⇒ ? = 8/3
71.

What is the simplified value of \({\left( {\frac{1}{{cosecA\; + \;CotA}}} \right)^2}\)?1). sec A + tan A2). (1 - cos A)/(1 + cos A)3). (1 - cosec A)/(1 + cosec A)4). sin A

Answer»

COSEC A + Cot A = (1 + Cos A) /SIN A

⇒ 1/( Cosec A + Cot A)2 = (Sin A)2 /(1 + Cos A)2----(1)

⇒ (Sin A)2 = 1 - (COSA)2 = (1 + Cos A)(1 - CosA)

PUTTING in (1) we get,

⇒ (1 - cos A)/(1 + cos A)
72.

What is the minimum value of sin2 θ + cos2 θ + sec2 θ + cosec2 θ + tan2 θ + cot2 θ1). 12). 33). 54). 7

Answer»

We know that sinθ + cos2 θ = 1

Therefore,

(sin2 θ + cos2 θ) + sec2 θ + cosec2 θ + tan2 θ + cot2 θ

⇒ 1 + sec2 θ + cosec2 θ + tan2 θ + cot2 θ

Using A.M ≥ G.M logic for tan2 θ + cot2 θ we get,

⇒ 1 + 2 + $({\sec ^2}{\rm{\theta \;}} + {\rm{\;cose}}{{\rm{c}}^2}{\rm{\;\theta }})$

Changing into sin and cos values

(Because we know maximum and minimum values of Sin θ, Cos θ and by using simple identities we can convert all trigonometric functions into equation with SINE and Cosine.)

$(\Rightarrow {\rm{\;}}1 + {\rm{\;}}2 + \left( {\frac{1}{{{{\cos }^2}{\rm{\theta }}}}} \right) + \left( {\frac{1}{{{{\sin }^2}{\rm{\theta }}}}} \right))$

Solving taking L.C.M

$( \Rightarrow 1 + 2 + \frac{{{{\sin }^2}{\rm{\theta \;}} + {\rm{\;}}{{\cos }^2}{\rm{\theta }}}}{{{{\sin }^2}{\rm{\theta \;}}.{{\cos }^2}{\rm{\theta }}}})$ ------ Equation (1)

But we already know two things

Min. value of (sin θ cos θ)n = (½)n

Apply them into Equation (1), and we get

⇒ 1 + 2 + (sin2 θ + cos2 θ)/( sin2 θ . cos2 θ) = 1 + 2 + (1/1/4) = 1 + 2 + 4 = 7
73.

What is the simplified value of \({\left[ {\frac{{co{s^2}\theta }}{{1\; + \;\sin \theta }} - \frac{{si{n^2}\theta }}{{1\; + \;\cos \theta }}} \right]^2}\)?1). sinθ2). 1 – sin2θ3). 1 + sin2θ4). 1 – sinθ

Answer»

Since all the options have sinθ in them, we can CONCLUDE by seeing that they all give DIFFERENT VALUES.

Putting θ = 45°

We get the values of options as :

(1) 1/√2

(2) 0

(3) 2

(4) (√2 – 1)/√2

Value asked in question = [(1/2)/(1 + (1/√2)) – (1/2)/(1 + (1/√2))]2 = 0

∴ the answer is (2)

74.

1). 12). 03). 34). 4

Answer»

⇒ 2ycos θ = x sin θ----(1)

⇒ Now SQUARING on both side

⇒ 4y2cos2 θ = x2 sin2 θ----(2)

⇒ 2xsec θ – y COSEC θ = 3

⇒ 2x/cos θ – y/sin θ = 3

⇒ 2x sin θ – y cos θ = 3sin θcos θ

⇒ from equation 1 put ycos θ = xsin θ/2

⇒ 2x sin θ – x sin θ/2 = 3 sin θ cos θ

⇒ 3 sin θ = 6 sin θ cos θ

⇒ x = 2cos θ----(3)

⇒ Now, x2 + 4y2

⇒ (2cos θ)2 + x2 sin2 θ/cos² θ

⇒ 4cos2 θ + 4 cos2 θ sin2 θ/cos2 θ

∴ 4(cos2 θ + sin2 θ) = 4

75.

A pole broken by the storm of wind and its top struck the ground at an angle of 30° and at a distance of 20 m from the foot of the pole. The height of the pole before it was broken was1). 20 √3 m2). \(\frac{{40\sqrt 3 }}{3}m\)3). 60 √3 m4). \(\frac{{100\sqrt 3 }}{3}m\)

Answer»
76.

1). 45°2). 60°3). 15°4). 30°

Answer»

⇒ tan (A + B) = √3

⇒ tan (A + B) = tan 60°

⇒ A + B = 60°------ 1

⇒ tan (A - B) = 1/√3

⇒ tan (A - B) = tan 30°

⇒ A – B = 30°------ 2

⇒ Adding equation 1 and 2 we get

2A = 90°

⇒ A = 45°

PUTTING the VALUE of A in equation 1 we get

⇒ A + B = 60°

⇒ 45° + B = 60°

∴ ∠B = 15°

77.

If sec θ + tan θ = 2, then sec θ is equal to1). \(\frac{7}{4}\)2). \(\frac{7}{2}\)3). \(\frac{5}{2}\)4). \(\frac{5}{4}\)

Answer»

We KNOW that,

Sec2 θ – tan2 θ = 1

Using (a2 B2) = (a – b)(a +b), we GET

(Sec θ + tan θ)(Sec θ - tan θ) = 1

Given, sec θ + tan θ = 2 . . . . . . . eq (i)

⇒ (Sec θ – tan θ) = 1/2 ....... eq (ii)

Now, adding eq (i) and (ii), we get

⇒ 2 Sec θ = 2 + ½

⇒ 2Sec θ = 5/2

⇒ secθ = 5/4
78.

If \(tan\theta = \frac{p}{q}\), then the value of \(\frac{{{\rm{psec\theta }} - {\rm{qcosec\theta }}}}{{{\rm{psec\theta }} + {\rm{qcosec\theta }}}}\) -1). \(\frac{{{\rm{p}} - {\rm{q}}}}{{{\rm{p}} + {\rm{q}}}}\)2). \(\frac{{{{\rm{q}}^2} - {{\rm{p}}^2}}}{{ - {{\rm{q}}^2} + {{\rm{p}}^2}}}\)3). \(\frac{{{{\rm{p}}^2} - {{\rm{q}}^2}}}{{{{\rm{q}}^2} + {{\rm{p}}^2}}}\)4). 1

Answer»

<P>$(\FRAC{{{\rm{psec\theta }} - {\rm{qcosec\theta }}}}{{{\rm{psec\theta }} + {\rm{cosec\theta }}}} = \frac{{\frac{p}{{cos\theta }} - \frac{Q}{{sin\theta }}}}{{\frac{p}{{cos\theta }} + \frac{q}{{sin\theta }}}})$

$(= \frac{{ptan\theta- q}}{{ptan\theta + q}})$(by MULTIPLYING sinθ)

$(= \frac{{p \times \frac{p}{q} - q}}{{p \times \frac{p}{q} + q}} = \frac{{{p^2} - {q^2}}}{{{p^2} + {q^2}}})$

79.

Maximum value of (6sinθ + 8cosθ) is –1). 142). 13). 104). 28

Answer»

We know that,

Maximum value of,(a sinθ + b cosθ) is √(a2 + b2)

∴ maximum value of (6sinθ + 8cosθ) is

= √(62 + 82) = √(36 + 64) = √(100) = 10
80.

What is the value of (2sec 45o + tan 30o)?1). (2√6 + 1)/√32). √33). (2√2 + 3)/√64). (9 + 2√3)/9

Answer»

Since, we know that SEC 45 = √2 and tan 30 = 1/√3, PUT this in the REQUIRED equation

⇒ 2 sec 45o + tan 30o = 2 × √2 + 1/√3 = (2√6 + 1)/√3

∴ The VALUE of 2 sec 45o + tan 30o is (2√6 + 1)/√3

81.

What is the simplified value of (cosA + sinA)(cotA + tanA)?1). secA + cosecA2). sinA + cosA3). tanA + cotA4). secA – cosecA

Answer»

GIVEN: (cosA + SINA)(cotA + tanA)

⇒ (cosA + sinA)[(cosA) / (sinA) + (sinA) / (cosA)]

⇒ (cosA + sinA)[(cos2A) + (sin2A) / (sinA)(cosA)]

⇒ (cosA + sinA)[1/ (sinA)(cosA)]

⇒ 1/sinA + 1/cosA

⇒ cosecA + SECA

82.

In a triangle ABC, ∠A = y, ∠B = x and ∠C = y + 20. If 2x – y = 20, then the triangles is:1). Right-angled2). Obtuse-angled3). Equilateral4). Acute angled

Answer»

SUM of angles = 180°

y + x + y + 20 = 180

x + 2y = 160----(1)

2x – y = 20----(2)

From (1) and (2)

x = 40° and y = 60°

The angles are 40°, 60° and 80°

The triangle is an ACUTE ANGLED triangle
83.

Find the Minimum value of 8 tan 2x + 7 cot 2x1). 3√562). 2√563). √564). 8√28

Answer»

We have, $(8\;{\bf{ta}}{{\bf{N}}^2}{\bf{x}}\; + \;7{\cot ^2}{\bf{x}}\; = \;{\left( {\sqrt 8 \tan {\bf{x}}} \right)^2}\; + \;{\left( {\sqrt 7 \cot {\bf{x}}} \right)^2} - 2\; \times \;\sqrt 8 \tan {\bf{x}}\; \times \;\sqrt 7 \cot {\bf{x}}\; + \;2\; \times \;\sqrt 8 \tan {\bf{x}}\; \times \;\sqrt 7 \cot {\bf{x}})$

 $(\Rightarrow \;{\left( {\sqrt 8 \tan {\bf{x}} - \sqrt 7 \cot {\bf{x}}} \right)^2}\; + \;2\sqrt {8\; \times \;7} \; = \;{\left( {\sqrt 8 \tan {\bf{x}} - \sqrt 7 \cot {\bf{x}}} \right)^2}\; + \;2\sqrt {56} )$

For the value to be minimum, $(\sqrt 8 \tan {\bf{x}} - \sqrt 7 \cot {\bf{x}}\; = \;0)$

⇒ Minimum value = 2√56
84.

If cos x = sin y and cot (x - ­35°) = tan (35°­ - y), then the value of x and y are1). x = 90°, y = 0°2). x = 75°, y = 15°3). x = 85°, y = 5°4). x = 80°, y = 10°

Answer»

cos x = sin y

⇒ cos x = cos(90° – y)

⇒ x = 90° – y

⇒ x + y = 90°….(1)

cot (x­ - 35°) = TAN (35°­ - y)

⇒ cot (x – 35°) = cot (90° – (35° - y))

⇒ x – 35° = 55° + y

⇒ x – y = 90°….(2)

Solving (1) and (2)

We GET,

x = 90° and y = 0°

85.

If sinθ + cosθ = √3 cos (90 - θ), then what is the value of tanθ?1). √3 - 12). √3 + 13). (√3 + 1)/24). (√3 - 1)/2

Answer»

sinθ + cosθ = √3 COS (90 - θ)

sinθ + cosθ = √3 sinθ

cosθ = √3 sinθ - sinθ

cosθ = sinθ (√3 - 1)

∴ tanθ = 1/(√3 - 1) = (√3 + 1)/2
86.

Value of the expression \(\frac{{3{\rm{sin}}72^\circ }}{{{\rm{cos}}18^\circ }} - \frac{{{\rm{sec}}32^\circ }}{{{\rm{cosec}}58}}\) is1). -22). 13). 24). 3

Answer»

$(\FRAC{{3{\rm{sin}}72^\circ }}{{{\rm{COS}}18^\circ }} - \frac{{{\rm{sec}}32^\circ }}{{{\rm{cosec}}58}})$

$( \Rightarrow \frac{{3{\rm{sin}}\left( {90^\circ {\rm{\;}} - {\rm{\;}}18^\circ } \right)}}{{{\rm{cos}}18^\circ }} - \frac{{{\rm{sec}}\left( {90^\circ {\rm{\;}} - {\rm{\;}}58^\circ } \right)}}{{{\rm{cosec}}58^\circ }} = \frac{{3\cos 18^\circ }}{{{\rm{cos}}18^\circ }} - \frac{{{\rm{cosec}}58^\circ }}{{{\rm{cosec}}58^\circ }})$

⇒ 3 × 1 - 1 = 2

87.

If cot2A = x, then x is1). cosec2A - 12). (cosec2A + 1)/2cotA3). (cot2A + 1)/2cotA4). 2cotA/(1 + cot2A)

Answer»

X = cot2A

since cot2A = cos2A/sin2A = (1 – sin2A)/sin2A = cosec2A – 1
88.

Find sin(90° - θ)1). cos 90°2). ½3). 14). Cos θ

Answer» SIN (90°- θ) = COS θ
89.

What is the value of cot 11π/6?1). -√32). -13). √34). -1/2

Answer»

COT(11π/6)

⇒ cot(2π – π/6)

⇒ -cot(π/6)? cot is NEGATIVE in FOURTH quadrant.

∴ - √3 

90.

If A = 30°, B = 60° and C = 135°, then what is the value of sin3A + cos3B + tan3C – 3sin A cos B tan C?1). 02). 13). 84). 9

Answer»

To find : sin3(30°) + cos3(60°) + tan3(135°) – 3sin (30°) cos (60°) tan (135°)

⇒ (1/2) 3 + (1/2) 3 + (-1) 3 – 3 X (1/2) x (1/2) x (-1)

⇒ 1/8 + 1/8 -1 + 3/4

⇒ 1/4 – 1 + 3/4

⇒ 0

91.

What is the simplified value of \(\sqrt {\frac{{(cosec\;A)}}{{(cosec\;A) - 1}} + \frac{{(cosec\;A)}}{{(cosec\;A) + 1}}} \)1). √(2) secA2). √(2cosecA)3). sec 2A4). 2secA

Answer»

Given: $(\sqrt {\FRAC{{cosec\;A}}{{cosec\;A - 1}} + \frac{{cosec\;A}}{{cosec\;A + 1}}?} )$

Substituting cosecA = 1/sinA

⇒ √{[(1/sinA) / (1/sinA – 1)] + [1/sinA/ (1/sinA + 1)]}

⇒ √{[1/(1 – sinA)] + [1/(1 + sinA)]}

⇒ √{[1 + sinA + 1 – sinA]/[1 – sin2A]}

⇒ √{[2/[1 – sin2A]}

⇒ √{[2/cos2A}

⇒ √{[2sec2A}

⇒ √(2) secA

∴ the CORRECT option is 1) 

92.

What is the value of (tan30o + √3/2)?1). (4 + √3)/22). 5/2√3 3). (4 + √3)/2√34). (√3 + 1)/√3

Answer»

∴ (tan30o + √3/2) = 1/√3 + √3/2 = (2 + 3)/2√3 = 5/2√3

93.

What is the value of tan 6° tan 36° tan 84° tan 54° tan 45°?1). 1/22). 1/√23). 14). 1/3

Answer»

GIVEN,

TAN 6° tan 36° tan 84° tan 54° tan 45°

⇒ tan 6° tan 36° tan (90° - 6°) tan (90° - 36°) tan 45°

⇒ tan 6° tan 36° COT 6° cot 36° tan 45°[? tan (90 - θ) = cot θ]

⇒ tan 6° tan 36° × (1/tan 6°) × (1/tan 36°) tan 45°

⇒ tan 45°

⇒ 1
94.

If tanθ.cos60° = √3/2, then the value of sin (θ – 15°) is1). √3/22). 1/23). 14). 1/√2

Answer»
95.

Find the minimum value of (asec2 θ + bcosec2 θ).1). (a + b)2). (a + b) + 2√ab3). 2√ab4). 1

Answer»

The given FUNCTION can be written as?

a(1 + tan2 θ) + b(1 + cot2 θ)

= a + b + atan2 θ + bcot2 θ

= (a + b) + (atan2 θ + bcot2 θ)

Now, formula for FINDING min value of (atan2 θ + bcot2 θ) = 2√ab

∴ Minimum value of the given expression = (a + b) + 2√ab
96.

If 7 sin2θ + 3 cos2θ = 4, and θ is a positive acute angle, then tan θ is equal to 1). 1/32). 1/73). \(\frac{1}{{\sqrt 3 }}\)4). \(\sqrt 3\)

Answer»

We know, SIN2θ + cos2θ = 1

Given,

7 sin2θ + 3 cos2θ = 4

⇒ 4sin2θ + 3(sin2θ + cos2θ) = 4

⇒ 4sin2θ + 3 = 4

⇒ sin2θ = ¼

⇒ sinθ = ½ or -1/2

Given, θ is a POSITIVE ACUTE angle

∴ sinθ = 1/2

As, sin 30° = ½

∴ sinθ = sin 30°

⇒ θ = 30°

We have to find the value of tanθ

= tan30°

= 1/√3
97.

The angles of elevation of the top of a tower 72 metre high from the top and bottom of a building are 30° and 60° respectively. What is the height (in metres) of building?1). 422). 20√33). 24√34). 48

Answer»
98.

1). 12). 7/153). 3/54). 0

Answer»

⇒ Let x = $(\frac{{\SQRT {1 - sin{\RM{\THETA }}} }}{{\sqrt {1 + sin{\rm{\theta }}} }})$

⇒ Multiplying NUMERATORAND denominator by √(1 - sinθ) we get

⇒ x = (1 - sinθ)/√(1 - sin2 θ)

⇒ x = (1 - sinθ)/√(cos2 θ)

⇒ x = SEC θ - tan θ

whentan θ = (8/15)

according to Pythagorean theorem:

Sec θ = 17/15

so,

⇒ x = (17/15) - (8/15)

∴ x = 9/15 = 3/5

99.

If Sin θ = 12/13, then what is the value of Cot θ?1). 13/122). 5/133). 5/124). 13/5

Answer»

GIVEN SIN θ = 12/13, so Cosec θ = 13/12

COT θ can be given as

⇒ Cot θ = √(cosec2 θ - 1) = √(132/122 - 1) = √{(169 - 144) /122} = √(52/122) = 5/12

∴ Cot θ is 5/12
100.

(Assume that ψ and θ are both positive acute angles with ψ < 75° and θ < 60°)1). 12). √33). 1/√34). √3/2

Answer»

COS(75° - ψ) = SIN(60° - θ)

⇒ 75° - ψ = 60° - θ = 45°

⇒ ψ = 30°; θ = 15°

COT(θ + ψ) = cot 45° = 1