InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 101. |
\(\frac{{\cos \theta }}{{1 - \sin \theta }} - \frac{{\cos \theta }}{{1 + sin\theta }}\; = \;\sqrt {12} \) is satisfied by which one of the following values of θ?1). π/22). π/33). π/44). π/6 |
|
Answer» $(\frac{{\COS \theta }}{{1 - \sin \theta }} - \frac{{\cos \theta }}{{1 + sin\theta }}\; = \;\SQRT {12} \Rightarrow \;\frac{{\cos \theta (1 + \sin \theta ) - \cos \theta (1 - \sin \theta )}}{{1 - {{\sin }^2}\theta }}\; = \;2\sqrt 3 )$ (? (a + b)(a – b) = a2 – b2 & sin2 x + cos2 x = 1) ⇒ cosθ + cosθsin θ – cosθ + cosθsinθ = 2√3cos2θ ⇒ 2sinθcosθ = 2√3cos2θ ⇒ sinθ/cosθ = √3 (? tan x = sin x/cos x) ⇒ tan θ = √3 ⇒ θ = 60° = π/3 ∴ θ = π/3 |
|
| 102. |
In ΔPQR measure of angle Q is 90o. If tan P = 24/7, and PQ = 14 cm, then what is the length (in cm) of side QR?1). 502). 203). 264). 48 |
|
Answer» <P>Given, ∠Q = 90, tan P = 24/7 and PQ = 14 cm tan P = perpendicular/base = QR/PQ = 24/7 ⇒ 24/7 = QR/PQ ⇒ QR = 24/7 × 14 = 48 cm ∴ the LENGTH of SIDE QR = 48 cm |
|
| 103. |
Sin 10 Sin 30 Sin 50 sin 70 1). \(\frac{1}{2}\)2). \(\frac{{\sqrt 3 }}{2}\)3). \(\frac{1}{8}\)4). \(\frac{1}{16}\) |
|
Answer» $({\RM{Given\;Sin\;}}10 \times {\rm{\;Sin\;}}30 \times {\rm{Sin\;}}50 \times {\rm{sin\;}}70)$ $(\Rightarrow \left( {\FRAC{1}{2}} \right) \times {\rm{Sin\;}}10 \times {\rm{Sin\;}}50 \times {\rm{sin\;}}70)$ (multiply and divide with 2 cos 10) $(\Rightarrow \frac{{{\rm{\;}}2 \times {\rm{cos}}10 \times {\rm{Sin\;}}10 \times {\rm{Sin\;}}50 \times {\rm{\;sin\;}}70{\rm{\;}}}}{{\left( {2 \times 2 \times {\rm{cos}}10} \right)}})$ ? (2SINA cosA = Sin2A) $(\Rightarrow \frac{{{\rm{\;}}\left( {{\rm{\;Sin\;}}20{\rm{\;}} \times {\rm{Sin\;}}50 \times {\rm{sin\;}}70} \right)}}{{{\rm{\;}}4{\rm{\;cos}}10}})$ (Multiply and divide with 2) $(\Rightarrow \frac{{2 \times {\rm{Sin\;}}20 \times {\rm{\;Sin\;}}50 \times {\rm{sin\;}}\left( {90{\rm{\;}} - {\rm{\;}}20} \right)}}{{2 \times {\rm{\;}}4{\rm{\;cos}}10}} \Rightarrow {\rm{\;}}\frac{{2 \times {\rm{Sin\;}}20 \times {\rm{cos}}20 \times {\rm{Sin\;}}50}}{{8{\rm{\;cos}}10}})$ $(\Rightarrow \frac{{{\rm{Sin\;}}40{\rm{\;}} \times {\rm{Sin\;}}50}}{{8{\rm{\;cos}}10}})$ Again multiply and divide with 2. $(\Rightarrow \frac{{\left( {2 \times \;Sin\;40\; \times Sin\;\left( {\;90\; - \;40} \right)} \right)\;}}{{2\;x\;8\;cos10}})$ $(\Rightarrow \frac{{\;2 \times Sin\;40\; \times cos40}}{{2\;x\;8\;cos\left( {\;90\; - \;80} \right)}})$ $(\Rightarrow \frac{{Sin\;80\;}}{{16\;Sin\;80}}{\rm{\;}} = \frac{1}{{16}}.)$ |
|
| 104. |
If tan θ = \(\frac{1}{{\sqrt 7 }}\) and 0° < θ < \(\frac{\pi }{2},\) then the value of \(\frac{{co{t^2}\theta - {{\sec }^2}\theta }}{{se{c^2}\theta + {{\cot }^2}\theta }}\) is1). \(\frac{{36}}{{51}}\)2). \(\frac{{33}}{{54}}\)3). \(\frac{{41}}{{57}}\)4). \(\frac{{46}}{{61}}\) |
|
Answer» Given, tan θ = 1/√7 ? tan X = Opposite side/Adjacent side Opposite side = 1 unit Adjacent side = √7 units By Pythagorean Theorem, (Hypotenuse)2 = (Side)2 + (Side)2 ⇒ Hypotenuse2 = 12 + (√7)2 = 8 ⇒ Hypotenuse = √8 = 2√2 $(\BEGIN{array}{L} \frac{{co{t^2}\theta - {{\sec }^2}\theta }}{{SE{c^2}\theta + {{\cot }^2}\theta }}\; = \;\frac{{7 - \frac{8}{7}}}{{\frac{8}{7} + 7}}\; = \;\frac{{41}}{{57}}\\ \therefore \frac{{co{t^2}\theta - {{\sec }^2}\theta }}{{se{c^2}\theta+{{\cot }^2}\theta}}=\frac{{41}}{{57}}\END{array})$ |
|
| 105. |
What is \(\frac{{\left( {\sin \theta + \cos \theta } \right)\left( {\tan \theta + \cot \theta } \right)}}{{\sec \theta + {\rm{cosec}}\theta }}\) equal to1). 12). 23). sin θ4). cos θ |
|
Answer» $(\begin{array}{l} \Rightarrow \frac{{\LEFT( {\sin \THETA + \cos \theta } \right)\left( {\tan \theta + \cot \theta } \right)}}{{\sec \theta + {\rm{COSEC}}\theta }}\\ \Rightarrow \frac{{\left( {\sin \theta + \cos \theta } \right)\left( {\frac{{sin\theta }}{{cos\theta }} + \frac{{cos\theta }}{{sin\theta }}} \right)}}{{\frac{1}{{cos\theta }} + \frac{1}{{sin\theta }}}}\\ \Rightarrow \frac{{\frac{{\left( {\sin \theta + \cos \theta } \right)\left( {(SI{n^2}\theta + co{s^2}\theta } \right)}}{{sin\theta cos\theta }})}}{{\frac{{sin\theta + cos\theta }}{{sin\theta cos\theta }}}} \end{array})$ ? sin2 θ + cos2 θ = 1 $(\Rightarrow {\rm{\;}}\frac{{\left( {\sin \theta + \cos \theta } \right)}}{{\sin \theta + \cos \theta }} = {\rm{\;}}1)$ |
|
| 106. |
A straight tree breaks due to a storm and the broken part bends so that the top of the tree touches the ground making an angle of 60° with the ground. The distance from the foot of the tree of the point where the top touches the ground is 20 meters, the height of the tree (in meters) is1). (40√3)/32). 20(√3 + 1)3). 20(√3 + 2)4). 20√3 |
| Answer» | |
| 107. |
If cotθ = 3 then find the value of the expression \(\frac{{9{\rm{sin\theta \;}} + {\rm{\;}}7{\rm{cos\theta \;}}}}{{{\rm{co}}{{\rm{s}}^3}{\rm{\theta \;}} + {\rm{\;}}3{\rm{si}}{{\rm{n}}^3}{\rm{\theta \;}} + {\rm{\;}}5{\rm{sin\theta \;}}}}\)1). 15/42). 53). 30/74). 6 |
|
Answer» $(\frac{{9{\rm{sin\theta \;}} + {\rm{\;}}7{\rm{cos\theta \;}}}}{{{\rm{CO}}{{\rm{s}}^3}{\rm{\theta \;}} + {\rm{\;}}3{\rm{si}}{{\rm{n}}^3}{\rm{\theta \;}} + {\rm{\;}}5{\rm{sin\theta \;}}}})$ DIVIDING the expression by sinθ $(\Rightarrow {\rm{\;}}\frac{{9{\rm{\;}} + {\rm{\;}}7{\rm{cot\theta \;}}}}{{{\rm{cot\theta \;co}}{{\rm{s}}^2}{\rm{\theta \;}} + {\rm{\;}}3{\rm{si}}{{\rm{n}}^2}{\rm{\theta \;}} + {\rm{\;}}5{\rm{\;}}}})$ $(\Rightarrow {\rm{\;}}\frac{{9{\rm{\;}} + {\rm{\;}}7{\rm{cot\theta \;}}}}{{{\rm{cot\theta \;co}}{{\rm{s}}^2}{\rm{\theta \;}} + {\rm{\;}}3{\rm{si}}{{\rm{n}}^2}{\rm{\theta \;}} + {\rm{\;}}5{\rm{\;}}}})$ Putting cotθ = 3 $(\Rightarrow {\rm{\;}}\frac{{30{\rm{\;}}}}{{3{\rm{co}}{{\rm{s}}^2}{\rm{\theta \;}} + {\rm{\;}}3{\rm{si}}{{\rm{n}}^2}{\rm{\theta \;}} + {\rm{\;}}5{\rm{\;}}}})$ $(\Rightarrow {\rm{\;}}\frac{{30{\rm{\;}}}}{{3({\rm{co}}{{\rm{s}}^2}{\rm{\theta \;}} + {\rm{\;si}}{{\rm{n}}^2}{\rm{\theta }}){\rm{\;}} + {\rm{\;}}5{\rm{\;}}}}{\rm{}} = {\rm{}}\frac{{15}}{4})$ $(\therefore {\rm{\;}}\frac{{9{\rm{sin\theta \;}} + {\rm{\;}}7{\rm{cos\theta \;}}}}{{{\rm{co}}{{\rm{s}}^3}{\rm{\theta \;}} + {\rm{\;}}3{\rm{si}}{{\rm{n}}^3}{\rm{\theta \;}} + {\rm{\;}}5{\rm{sin\theta \;}}}}{\rm{}} = {\rm{}}\frac{{15}}{4})$ |
|
| 108. |
Maximum value of (9sinθ + 13 cosθ) is –1). √1902). √1603). √2704). √250 |
|
Answer» According to formula, MAXIMUM value of (a sin x ± b cos x) = √(a2 + b2) Minimum value of (a sin x ± b cos x) = - √(a2 + b2) ∴ Maximum value of (9sinθ + 13 cosθ) is = √(92 + 132) = √(81 + 169) = √250 |
|
| 109. |
If sin x + sin2x = 1, then value of cos2x + cos4 x is1). 12). 23). 1.54). None of these |
|
Answer» sin x + sin2 x = 1----(1) cos2 x + cos2 x = ?----(2) From equation (1) sin x + sin2 x = 1 (sin2x + cos2x = 1) sin x + 1 – cos2 x = 1 sin x = cos2 x sin2 x = cos4 x substituting VALUE of cos2 x and cos4 x in (2) cos2 x + cos4 x = sin x + sin2 x = 1 |
|
| 110. |
The height of a tower is 300 meters. When its top is seen from top of another tower, then the angle of elevation is 60°. The horizontal distance between the bases of the two towers is 120 metres. What is the height (in metres) of the small tower?1). 88.242). 106.713). 92.154). 112.64 |
| Answer» | |
| 111. |
If xcosθ – sinθ = 1 then x2 + (1 + x2)sinθ equals :1). 02). 3sec2θ (1 + sinθ) + 43). 4sec2θ (1 + sinθ)4). 4sec2θ (1 + sinθ) - 3 |
|
Answer» We know that, sec2θ - tan2θ = 1 Given, xcos θ – sinθ = 1 ⇒ xcosθ = 1 + sinθ Dividing the above EXPRESSION by cosθ ⇒ X = secθ + tanθ Squaring both SIDES, we get ⇒ x2 = (secθ + tanθ)2 ⇒ x2 = sec2θ + tan2θ + 2secθ tanθ ⇒ x2 = 1 + tan2θ + tan2θ + 2secθ tanθ ⇒ x2 = 1 + 2 tan2θ + 2secθ tanθ . . . . . . . eq (1) Adding 1 on both sides, we get ⇒ 1 + x2 = 2 + 2tan2θ + 2secθtanθ ⇒ (1 + x2) sinθ = 2sinθ + 2tan2θsinθ + 2secθtanθsinθ ⇒ (1 + x2) sinθ = 2sinθ + 2tan2θsinθ + 2tan2θ ⇒ x2 + (1 + x2)sinθ = 1 + 2 tan2θ + 2secθ tanθ + 2sinθ + 2tan2θ sinθ + 2tan2θ (from eq (1)) ⇒ x2 + (1 + x2)sinθ = 4 tan2θ + 1 + 2sinθ + 2tan2θ sinθ + 2secθ tanθ Using sec2θ – 1 = tan2θ, tanθ = sinθ/cosθ and secθ = 1/cosθ ⇒ x2 + (1 + x2)sinθ = 4sec2θ -4 + 1 + 2sinθ + 2 sec2θsinθ – 2sinθ + 2sec2θsinθ ⇒ x2 + (1 + x2)sinθ = 4sec2θ (1 + sinθ) - 3 |
|
| 112. |
A tree is broken by the wind. If the top of the tree struck the ground at an angle 30° and at a distance of 30 m from the root, then the height of the tree is1). 25√3 m2). 30√3 m3). 15√3 m4). 20√3 m |
| Answer» | |
| 113. |
1). \(\cot \theta= \frac{{2xy}}{{{x^2} - {y^2}}}\)2). \(\cot \theta= \frac{{2xy}}{{{x^2} + {y^2}}}\)3). \(\cot \theta= \frac{{x - y}}{{{x^2} + {y^2}}}\)4). \(\cot \theta= \frac{{xy\left( {x - y} \right)}}{{{x^2} + {y^2}}}\) |
|
Answer» Given, $({\RM{cosec}}\THETA= \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}})$ As, cot2θ = cosec2θ – 1 $(\begin{array}{l} \Rightarrow co{t^2}\theta= \;{\LEFT( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}} \right)^2} - 1\\ \Rightarrow co{t^2}\theta= \;\frac{{{x^4} + {y^4} + 2{x^2}{y^2}}}{{{x^4} + {y^4} - 2{x^2}{y^2}}} - 1\\ \Rightarrow co{t^2}\theta= \;\frac{{{x^4} + {y^4} + 2{x^2}{y^2} - {x^4} - {y^4} + 2{x^2}{y^2}}}{{{x^4} + {y^4} - 2{x^2}{y^2}}}\\ \Rightarrow co{t^2}\theta= \;\frac{{4{x^2}{y^2}}}{{{{\left( {{x^2} - {y^2}} \right)}^2}}}\\ \Rightarrow \cot \theta= \;\frac{{2xy}}{{{x^2} - {y^2}}}\end{array})$ |
|
| 114. |
If secA – tanA = x, then the value of x is1). √[(1 + sinA) /(1 – sinA) ]2). √[(1 – sinA) /(1 + sinA) ]3). (1 – sinA) /(1 + sinA)4). (1 + sinA) /(1 – sinA) |
|
Answer» $(\begin{array}{l} \RIGHTARROW {\rm{\;}}x\; = \;secA - tanA\\ \Rightarrow {\rm{\;}}x\; = \;\frac{1}{{cosA}} - \frac{{sinA}}{{cosA}}\\ \Rightarrow {\rm{\;}}x\; = \;\frac{{1 - sinA}}{{cosA}}\; = \;\frac{{1 - sinA}}{{\SQRT {1 - {{\SIN }^2}A} }}\; = \;\frac{{\sqrt {{{\left( {1 - sinA} \RIGHT)}^2}} }}{{\sqrt {1 - {{\sin }^2}A} }}\\ \Rightarrow {\rm{\;}}x\; = \;\sqrt {\frac{{{{\left( {1 - sinA} \right)}^2}}}{{{1^2} - {{\sin }^2}A}}} \; = \;\sqrt {\frac{{\left( {1 - sinA} \right) \times \left( {1 - sinA} \right)}}{{\left( {1 - sinA} \right) \times \left( {1 + sinA} \right)}}} \\ \therefore {\rm{\;}}x\; = \;\sqrt {\frac{{1 - sinA}}{{\;1 + sinA}}} \end{array})$ |
|
| 115. |
If tan θ + cot θ = x and cos θ + sin θ = y, then the value of (x(y2 - 1))2 is1). 12). 23). 34). 4 |
|
Answer» tan θ + COT θ = x x = (sinθ/cosθ) + (cosθ/sinθ) = (sin2θ + cos2θ)/sinθ cosθ = 1/sinθ cosθ cos θ + sin θ = y y2 = cos2θ + sin2θ + 2sinθ cosθ y2 – 1 = 2 sinθ cosθ (x(y2 – 1))2 = ((1/sinθ cosθ) × 2 sinθ cosθ)2 = 4 |
|
| 116. |
If cos 4a = sin 14a, then find the value of tan 6a + cot 6a = ?1). 02). 13). \(\frac{{4\sqrt 3 }}{3}\)4). \(\frac{{2\sqrt 3 }}{3}\) |
|
Answer» COS 4a = sin 14a ⇒ cos 4a = cos (90 – 14a) ⇒ 4a + 14a = 90° ⇒ a = 5° tan 6A + cot 6a = tan 6(5) + cot 6(5) ⇒ tan 30° + cot 30° $(\RIGHTARROW \frac{1}{{\sqrt 3 }} + \sqrt 3)$ $(\Rightarrow \frac{4}{{\sqrt 3 }} \times \frac{{\sqrt 3 }}{{\sqrt 3 }})$ ∴ $(\frac{{4\sqrt 3 }}{3})$ |
|
| 117. |
1). 1/√22). 2√23). √34). √2 |
|
Answer» [(sin59°cos31° + cos59°sin31°) ÷ (cos20°cos25° - sin20°SIN 25°)] Sin(A + B) = SinACosB + CosASinB Cos(A + B) = COSACOSB - SinASinB ∴ [(sin59°cos31° + cos59°sin31°) ÷ (cos20°cos25° - sin20°sin 25°)] = Sin90°/Cos45° = √2 |
|
| 118. |
If sin x = 3/5, and 0° < x < 90°, the value of tan x + sec x is:1). 1/22). 23). 5/24). 3 |
|
Answer» $\sin x = \frac{3}{5} $ $\tan x = \frac{3}{4} $ $\SEC x = \frac{5}{4} $ $tan x + sec x = \frac{3}{4} + \frac{5}{4} = 2 $ |
|
| 119. |
1). √32). 13). -14). -½ |
|
Answer» ⇒ cot (-225°) = x ⇒ - cot (180° + 45°) = x ⇒ - cot 45° = x ⇒ - 1 = x |
|
| 120. |
If tan (θ - 30) = √3, θ is any angle then find the value of sinθ + cosθ.1). 12). 03). 24). ½ |
|
Answer» We KNOW that, tan 60° = (√3). So, θ - 30° = 60 So, θ = 90°. SIN θ + COS θ = sin 90° + cos 90° = 1 + 0 = 1 |
|
| 121. |
1). 22). 13). 1/24). 0 |
|
Answer» SINA = cosA when θ is minimum ∴ A = 45°$ tanA - COTA = tan45° - cot45° |
|
| 122. |
1). 273 m2). 270 m3). 253 m4). 263 m |
| Answer» | |
| 123. |
1). cos2θ2). sin2θ3). tan2θ4). cotθ.sin2θ |
|
Answer» ⇒ cosA + COSB = 2COS[(A + B)/2].COS[(A - B)/2] APPLYING the formula on (cos3θ + cos7θ) in the numerator and on (cosθ + cos5θ) in denominator, we get ⇒ (2cos5θ.cos2θ + 2cos5θ) / (2cos3θ.cos2θ + 2cos3θ) + sin2θ.tan3θ ⇒ [{2cos5θ × (cos2θ + 1)} / {2cos3θ × (cos2θ + 1)}] + (sin2θ.sin3θ)/cos3θ ⇒ (cos5θ/cos3θ) + {(sin2θ.sin3θ)/cos3θ} ⇒ (cos5θ + sin2θ.sin3θ) / cos3θ ⇒ [cos(3θ + 2θ) + sin2θ sin3θ]/cos3θ ⇒ [cos3θ.cos2θ - sin2θ.sin3θ + sin2θ.sin3θ]/cos3θ = cos2θ |
|
| 124. |
1). 3√3/22). 1 + √33). (2√2 + 1)/24). (3√3 + 1)/6 |
| Answer» | |
| 125. |
Two buildings of heights 60 m and 40 m are built in a society. From the roof of the taller building the angle of depression of the roof of the smaller building is 30°. Find the distance between the two buildings.1). 20 m2). 20√3 m3). 40 m4). 40√3 m |
| Answer» | |
| 126. |
1). sin x2). cosx3). -1 + sin x4). 1 - cosx |
|
Answer» $(\because 1 - {\sin ^2}x = \LEFT( {1 - \sin x} \right)\left( {1 + \sin x} \right))$ $(\FRAC{{\left( { - 1} \right)\left( {1{\RM{\;}} + {\rm{\;sinx}}} \right)\left( {1 - \sin {\rm{x}}} \right)}}{{\sin {\rm{x\;}} + {\rm{\;}}1}} = \sin {\rm{x}} - 1)$ |
|
| 127. |
What is \(\sqrt {\frac{{1 + sin\theta }}{{1 - sin\theta }}}\) equal to?1). sec θ – tan θ2). sec θ + tan θ3). cosec θ + cot θ4). cosec θ – cot θ |
|
Answer» $(\begin{ARRAY}{l} \Rightarrow \;\sqrt {\frac{{1 + SIN\theta }}{{1 - sin\theta }}} \; = \;\sqrt {\frac{{1 + sin\theta }}{{1 - sin\theta }}\; \TIMES \;\frac{{1 + sin\theta }}{{1 + sin\theta }}} \; = \;\sqrt {\frac{{{{\left( {1 + sin\theta } \right)}^2}}}{{1 - {{\sin }^2}\theta }}} \; = \;\frac{{1 + sin\theta }}{{cos\theta }}\; = \;\frac{1}{{cos\theta }} + \frac{{sin\theta }}{{cos\theta }}\; = \;sec\theta+ tan\theta \\\THEREFORE \;\sqrt {\frac{{1 + sin\theta }}{{1 - sin\theta }}} \; = \;sec\theta+ tan\theta\end{array})$ |
|
| 128. |
The least value of 2 sin2 θ + 3 cos2 θ is1). 12). 23). 34). 5 |
| Answer» | |
| 129. |
The value of sec233° + sin227° – cot257° + sin263° is1). 02). 13). 24). \(\frac{1}{2}\) |
|
Answer» sec233° + sin227° – cot257° + sin263° = sec233° – cot2(90° – 33°) + sin227° + sin2(90° – 27°) (? cot (90 – X) = tan x & sin (90 – x) = cos x) = sec233° – tan233° + sin227° + cos227° (? sin2x + cos2x = 1 &sec2x – tan2x = 1) = 1 + 1 = 2 ∴ sec233° + sin227° – cot257° + sin263° = 2 |
|
| 130. |
\(\frac{{{{\sec }^2}\theta- {{\cot }^2}\left( {90^\circ- \theta } \right)}}{{cose{c^2}67^\circ- {{\tan }^2}23^\circ }} + {\sin ^2}40^\circ+ {\sin ^2}50^\circ\)is equal to1). 02). 43). 24). 1 |
|
Answer» TAN(90° - θ) = cotθ Sin(90° - θ) = cosθ Sin2θ + cos2θ = 1 Sec2θ – tan2θ = 1 cosec2θ – COT2θ = 1 Given, $(\frac{{{{\sec }^2}\theta- {{\cot }^2}\left( {90^\circ- \theta } \right)}}{{COSE{c^2}67^\circ- {{\tan }^2}23^\circ }} + {\sin ^2}40^\circ+ {\sin ^2}50^\circ)$ $(= \frac{{{{\sec }^2}\theta- {{\tan }^2}\theta }}{{cose{c^2}67^\circ- {{\tan }^2}(90^\circ- \;67^\circ )}} + {\sin ^2}40^\circ+ {\sin ^2}\left( {90^\circ- 40^\circ } \right))$ $(= \frac{1}{{cose{c^2}67^\circ- {{\cot }^2}67^\circ }} + \;{\sin ^2}40^\circ+ co{s^2}40^\circ)$ = 1 + 1 = 2 |
|
| 131. |
ΔABC is right angled at B. If cot C = 24/7, then what is the value of cosec C?1). 7/252). 25/73). 24/74). 7/24 |
| Answer» | |
| 132. |
\(\sqrt {\frac{{1 + {\rm{sin\theta }}}}{{1 - {\rm{sin\theta }}}}} \) is equal to?1). secθ - tanθ2). secθ + tanθ3). cosecθ + cotθ4). cosecθ - cotθ |
|
Answer» $(\sqrt {\frac{{1 + {\RM{sin\THETA }}}}{{1 - {\rm{sin\theta }}}}} )$ $(= \sqrt {\frac{{1 + {\rm{sin\theta }}}}{{1 - {\rm{sin\theta }}}} \times \frac{{1 + {\rm{sin\theta }}}}{{1 + {\rm{sin\theta }}}}} )$ $(= \frac{{1 + {\rm{sin\theta }}}}{{\sqrt {1 - {\rm{si}}{{\rm{n}}^2}{\rm{\theta }}} }})$ $(= \frac{{1 + {\rm{sin\theta }}}}{{{\rm{cos\theta }}}})$ secθ + tanθ = |
|
| 133. |
If cos 330° = x, then the value of x is1). √3/22). 1/23). 2/√34). √2 |
|
Answer» ⇒ COS 330° ⇒ cos (360° - 30°) ∴ √3/2 |
|
| 134. |
What is the measure of an exterior angle of a regular dodecagon?1). 45°2). 40°3). 36°4). 30° |
|
Answer» Measure of an exterior angle of a polygon with n SIDES = 360°/n For dodecagon has 12 sides, n = 12 Measure of an exterior angle of a regular dodecagon = 360° /12 = 30° |
|
| 135. |
If x = sin θ + cos θ and y = sin θ – cos θ, then the value of (x2 + y2 - 1) × (x2 + y2 + 5) will be1). 62). 93). 74). 10 |
|
Answer» Given, X = sin θ + cos θ and y = sin θ – cos θ Thus, x + y = 2sinθ Also, xy = sin2θ – cos2θ (x + y)2 = x2 + y2 + 2xy ⇒ 4sin2θ = x2 + y2 + 2sin2θ – 2cos2θ ⇒ x2 + y2 = 2(sin2θ + cos2θ) = 2 Thus, (x2 + y2 – 1) × (x2 + y2 + 5) = (2 – 1) × (2 + 5) = 7 |
|
| 136. |
1). (√3 + 8)/√32). (√3 + 8)/33). (√3 - 8)/√34). (√3 - 8)/3 |
|
Answer» Since we know that tan 45 = 1 and sec 60 = 2, Put this in the REQUIRED expression ⇒ Tan 45° + 4/√3 Sec 60° = 1 + 8/ √3 ⇒ Tan 45° + 4/√3 Sec 60° = (√3 + 8)/√3 ∴ Tan 45° + 4/√3 Sec 60° = (√3 + 8)/√3 |
|
| 137. |
A kite is flying at the height of 75m from the ground. The string makes an angle θ (where cotθ =8/15) with the level ground. Assuming that there is no slack in the string, the length of the string is equal to:1). 75m2). 85m3). 40m4). 65m |
|
Answer» Solution; Given: Height, h = 75M which is the OPPOSITE side. θ is the angle subtended by the string with the ground level and, Length of the string = ? (This is the hypotenuse of the triangle). It's also given that, cotθ = 8/15 We know that, cotθ = opposite side / adjacent side So, adjacent side /opposite side = 8/15 adjacent side/75= 8/15 Adjacent side = (75×8)/15= 600/15= 40 Now, we know that Hypotenuse² = (opposite side)² + (adjacent side)² So, Hypotenuse ² = 75² + (40)² Hypotenuse ² =5625 + 1600 Hypotenuse ² = 7225 Hypotenuse = 85m The length of the string is 85m. So, the correct option is 2).85m |
|
| 138. |
From the top of a tower 100 m high, a man observes two cars on the opposite sides of the tower with angles of depression 30° and 45° respectively. Find the distance between the cars. [Use √3 = 1.732]1). 273.32 m2). 400 m3). 139.32 m4). 232 m |
| Answer» | |
| 139. |
1). \(\frac{{12}}{{13}}\)2). \(\frac{{13}}{{12}}\)3). \(\frac{{7}}{{13}}\)4). \(\frac{{12}}{{5}}\) |
|
Answer» cos θ = √(1 – sin2θ) and secθ = 1/cosθ sin θ = 5/13 $(cos\theta= \sqrt {1 - {{\left( {\frac{5}{{13}}} \right)}^2}})$ ⇒ cos θ = 12/13 sec θ = 13/12 |
|
| 140. |
If \({\rm{x}} + \frac{1}{{\rm{x}}} = 2{\rm{cos\alpha }}\), then the value of \({{\rm{x}}^2} + \frac{1}{{{{\rm{x}}^2}}}\) -1). 4 cos2α2). 4 cos2α - 13). 2(cos2α - sin2α)4). cos2α - sin2α |
| Answer» | |
| 141. |
1). (1 + 3√2)/√3 2). (√3 + 2)/√3 3). √3 + 2 4). (√3 + 2)/2 |
|
Answer» SINCE we know that SEC 30 = 2/√3 and tan 60 = √3, put this in the required equation ⇒ (½) Sec 30° + √2 tan 60° ⇒ (1/2) × 2/√3 + (√2) × (√3) = (1 + 3√2)/√3 ∴ the value of (1/2) Sec 30° + √2 Tan 60° is (1 + 3√2)/√3 |
|
| 142. |
If A is an acute angle and cosec A + cot A = 3, then the value of cos A is?1). 2/52). 3/53). 4/54). 1/5 |
|
Answer» ⇒ 1/sin A + COSA/sinA = 3 ⇒ cosA + 1 = 3SIN A ⇒ On squaring both sides, we get:- ⇒ COS2A + 2 cosA + 1 = 9 sin2A = 9(1 – cos2A) ⇒ 10cos2A + 2cosA – 8 = 0 ⇒ 5cos2A + cosA – 4 = 0 ⇒ 5cosA (cosA + 1) – 4 (cosA + 1) = 0 ⇒ (cosA + 1) (5cosA – 4) = 0 Since A is an ACUTE angle, ∴ cos A = 4/5 |
|
| 143. |
1). \( - \frac{1}{2}\)2). 1/23). 54). \(\frac{1}{{\sqrt 2 }}\) |
|
Answer» 2cos2θ + 11 sinθ - 7 = 0 2(1 - sin2θ) + 11 sinθ - 7 = 0 2sin2θ - 11 sinθ + 5 = 0 2sin2 θ - 10 sin θ - sin θ + 5 = 0 2sinθ (sinθ - 5) - 1 (sinθ - 5) = 0 (2sinθ - 1) (sinθ - 5) = 0 ∴ sinθ $( = \FRAC{1}{2})$ [As sinθ = 5 is not possible] [As we know sinθ = 0 ≤ θ ≤ $(\frac{{\RM{\pi }}}{2})$] |
|
| 144. |
What is the simplified value of (cosec4 A – cot2 A) – (cot4 A + cosec2 A)?1). 02). 53). 64). 9 |
|
Answer» To SIMPLIFY the EXPRESSION: (cosec4A – cot2A) – (cot4A + cosec2A) [IDENTITY USED: 1 + cot2A = cosec2A] ⇒ cosec4A – cot4A – cot2A – cosec2A Since, cosec4A = 1 + cot4A + 2 cot2A, we have ⇒ 1 + cot4A + 2 cot2A – cot4A – cot2A – cosec2A ⇒ 1 + cot2A – cosec2A ⇒ cosec2A - cosec2A ⇒ 0 ∴ the correct OPTION is 1) |
|
| 145. |
1). 30°2). 60°3). 45°4). 90° |
|
Answer» (sinθ + cosecθ) = 2.5 sinθ $(+\; \frac{1}{{{\rm{sin\theta }}}} = 2.5)$ -sin2θ + 2.5 sinθ - 1 = 0 sin2θ - 2.5sinθ + 1 = 0 sinθ $( = \frac{{ + 2.5 \PM \SQRT {6.25 - 4} }}{2})$ sinθ $( = \frac{{ + 2.5 \pm 1.5}}{2})$ ∴ sinθ = 2,$(\frac{1}{2})$ sinθ = 2 ∴ Not possible for 0 < θ < $(\frac{{\rm{\pi }}}{2})$ ∴ sinθ = $(\frac{1}{2})$ ∴ θ = 30° |
|
| 146. |
1). -12). 03). 14). 2 |
|
Answer» $(\frac{{5{\rm{sin}}75^\circ {\rm{sin}}77^\circ + 2{\rm{cos}}13^\circ {\rm{cos}}15^\circ }}{{{\rm{cos}}15^\circ {\rm{sin}}77^\circ }} - \frac{{7{\rm{sin}}81^\circ }}{{{\rm{cos}}9^\circ }})$ $(= \frac{{{\rm{\;}}2\cos \left( {90^\circ - 75^\circ } \RIGHT){\rm{sin}}77^\circ + 2\sin \left( {90^\circ - 13^\circ } \right){\rm{cos}}15^\circ }}{{{\rm{cos}}15^\circ {\rm{sin}}77^\circ }} - 7\frac{{{\rm{sin}}81^\circ }}{{\sin \left( {90^\circ - 9^\circ } \right)}})$ $(= 5\frac{{{\rm{cos}}15^\circ {\rm{sin}}77^\circ }}{{{\rm{cos}}15^\circ {\rm{sin}}77^\circ }} + 2\frac{{{\rm{sin}}77^\circ {\rm{cos}}15^\circ }}{{{\rm{cos}}15^\circ {\rm{sin}}77^\circ }} - 7\frac{{{\rm{sin}}81^\circ }}{{{\rm{sin}}81^\circ }})$ = 5 + 2 - 7 = 7 - 7 = 0 |
|
| 147. |
If 5 tanθ = 4, then the value of \(\left( {\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 3\cos \theta }}} \right)\) is1). 1/72). 2/73). 5/74). 2/5 |
|
Answer» Given, 5tanθ = 4 ⇒tanθ = 4/5 We have to find the value of $(\LEFT( {\FRAC{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 3\cos \theta }}} \right))$ $(= \;\left( {\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 3\cos \theta }}} \right))$ $(=\left( {\frac{{cos\theta (5\frac{{\sin \theta }}{{cos\theta }} - 3)}}{{cos\theta (5\frac{{\sin \theta }}{{cos\theta }} + 3)}}} \right))$ (taking cosθ COMMON from numerator and DENOMINATOR) $(= \left( {\frac{{5tan\theta - 3}}{{5tan\theta + 3}}} \right))$ $(= \left( {\frac{{5 \times \frac{4}{5} - 3}}{{5 \times \frac{4}{5} + 3}}} \right))$ $(= \frac{{4 - 3}}{{4 + 3}})$ = 1/7 |
|
| 148. |
Find the exact value of [tan(25o) + tan(50o]/[1 - tan(25o) tan(50o)]1). √32). √3 + 23). 34). -√3 |
|
Answer» The addition FORMULA for the tangent may be used to write ⇒ [TAN(25o) + tan(50o)]/[1 - tan( 25o) tan(50o)] = tan(25o + 50o) = tan(75o) = tan(45o + 30o) ⇒ [tan(45o) + tan(30o)]/[1 - tan(45o)tan(30o) ] = [ 1 + 1/√3 ]/[1 - 1 × 1/√3] = √3 + 2 |
|
| 149. |
From the top of a building 60 metre high, the angle of depression of the top and bottom of a tower are observed to be 30° and 60°. The height of the tower in metre is1). 402). 453). 504). 55 |
| Answer» | |
| 150. |
1). 5/√3 2). (√6 + 1)/√3 3). (√3 + 2)/√3 4). (1 + √3)/2 |
|
Answer» We can write, sec 30° + tan 60° ⇒ 1/cos 30° + SIN 60°/cos 60°(? cos 30° = sin 60° = √3/2, cos 60° = 1/2) ⇒ 2/√3 + (√3/2)/(1/2) ⇒ 2/√3 + √3 ⇒ (2 + 3)/√3 ⇒ 5/√3 |
|