Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

151.

Find the Minimum value of 9 cos 2x + 2 sec 2x1). 3√22). 2√33). 6√34). 6√2

Answer»

Solution:

According to AM-GM inequality,

(a + B)/2 ≥ √ab 

Here a = 9 cos²x and b = 2 sec²x

Note: AM- GM inequality can be used ANYWHERE keeping in mind that a and b are positive.

So, (9 cos²x + 2 sec²x)/2≥√(9cos²x)(2sec²x)

(9 cos²x + 2 sec²x)/2≥√(9/sec²x)(2sec²x)

(9 cos²x + 2 sec²x)/2≥√(9)(2)

(9 cos²x + 2 sec²x)/2≥√18

(9 cos²x + 2 sec²x)≥2√18

(9 cos²x + 2 sec²x)≥2×3√2

(9 cos²x + 2 sec²x)≥6√2

So, the minimum value is 6√2.

The correct OPTION is 4). 6√2

152.

1). 12). π/23). 5/24). None of these

Answer»

We have, sin θ = 21/29

$(\Rightarrow {\RM{cos\theta }} = \sqrt {1 - {{\sin }^2}{\rm{\theta }}} = {\rm{\;}}\sqrt {1 - {{\left( {\FRAC{{21}}{{29}}} \RIGHT)}^2}} = {\rm{\;}}\sqrt {({{29}^2} - {{21}^2})/\left( {{{29}^2}} \right)} = \sqrt {\frac{{8 \times 50}}{{{{29}^2}}}} = {\rm{\;}}\frac{{20}}{{29}}{\rm{\;}})$

[We take only positive value of cos because θ lies between 0 and π/2]

Now, $(\sec {\rm{\theta \;}} + {\rm{\;tan\theta }} = {\rm{\;}}\frac{1}{{{\rm{cos\theta }}}}{\rm{\;}} + {\rm{\;}}\frac{{{\rm{sin\theta }}}}{{{\rm{cos\theta }}}} = {\rm{\;}}\frac{{1{\rm{\;}} + {\rm{\;sin\theta }}}}{{{\rm{cos\theta }}}} = {\rm{\;}}\frac{{1{\rm{\;}} + {\rm{\;}}\frac{{21}}{{29}}}}{{\frac{{20}}{{29}}}} = {\rm{\;}}\frac{{50}}{{20}} = {\rm{\;}}\frac{5}{2})$

153.

Find the value of 3(sin12A + 3sin10A + 3 sin8A + sin6A + 1) if (1/secA) + (1/sec2A) = 1?1). 32). 43). 84). 6

Answer»

⇒ (1/secA) + (1/sec2A) = 1

COSA + cos2A = 1

⇒ cosA = sin2A

3((sin4A) 3 + (sin2) 3 + 3sin6A(sin4A + sin2A) + 1)

⇒ 3((sin4A + sin2A) 3 + 1)

⇒ 3((cos2A + cosA) 3 + 1)

∴ 3(1 + 1) = 6
154.

ABC is a triangle with ∠BAC = 90°, then what is the value of sin2A + sin2B + sin2C?1). 12). 23). 34). 4

Answer»

sin2A + sin2B + sin2C

= sin290° + sin2(90° – C) + sin2C

(? In a RIGHT angled triangle SUM of other two angles = 90°)

= 1 + cos2C + sin2C

(? sin2θ + cos2θ = 1)

= 1 + 1 = 2

∴ sin2A + sin2B + sin2C = 2
155.

1). x/22). 2x3). x4). 1/2x

Answer»

By SOLVING the equation :

$(\RIGHTARROW {\rm{SEC\theta }} = \FRAC{{4{{\rm{X}}^2} + 1}}{{4{\rm{x}}}})$

Using right angle theorem:

⇒ sec

156.

If x, y are acute angles 0 < x + y < 90° and sin(2x – 20°) = cos(2y + 20°), then the value of tan(x + y) is1). 1/√32). √3/23). √34). 1

Answer»

We know that, cos θ = sin (90° - θ)

GIVEN expression,

sin (2X – 20°) = cos (2Y + 20°)

⇒ sin (2x – 20°) = sin [90° - (2y + 20°)]

⇒ (2x -20°) = n

157.

What is the simplified value of (sec4 A - tan2 A) - (tan4 A + sec2 A)?1). -12). -1/23). 04). 1

Answer»

Put A = 0

⇒ sec A = 1 and tan A = 0

Now put this in the required expression

⇒ (sec4 A – tan2 A) - (tan4 A + sec2 A)

⇒ (1) - (1) = 0

∴ The SIMPLIFIED value of (sec4 A - tan2 A) - (tan4 A + sec2 A) is 0

158.

Solve: 1 + tan2 θ = ?1). cos2 θ2). sec2 θ3). tan2 θ4). 2

Answer»
159.

1). 12). -13). 04). 2

Answer»

$(\frac{{\left[ {4cos\left( {90 - A} \RIGHT).si{n^3}\left( {90\; + \;A} \right)} \right] - \left[ {4sin\left( {90\; + \;A} \right).CO{s^3}\left( {90 - A} \right)} \right]}}{{cos\left( {\frac{{180\; + \;8A}}{2}} \right)\;}})$

$(\Rightarrow \frac{{\left( {4sinA.co{s^3}A} \right) - \left( {4cosA.si{n^3}A} \right)}}{{ - sin4A}})$

$(\Rightarrow \frac{{\left( {4sinA.co{s^3}A} \right) - \left( {4cosA.si{n^3}A} \right)}}{{ - 2sin2Acos2A}})$

$(\Rightarrow \frac{{\left( {4sinA.co{s^3}A} \right) - \left( {4cosA.si{n^3}A} \right)}}{{ - 4sinA.cosA.COS2A}})$

$(\Rightarrow \frac{{co{s^2}A - si{n^2}A\;}}{{ - cos2A}})$

Since, cos2A = cos2A – sin2A

$(\Rightarrow \frac{{co{s^2}A - si{n^2}A\;}}{{-\left( {co{s^2}A-si{n^2}A} \right)}})$

⇒ -1
160.

If \(sin\left( {A - B} \right) = \frac{1}{2}\) and \(\cos \left( {A + B} \right) = \frac{1}{2}\) where A > B > 0 and A + B is an acute angle, then the value of angle B is1). π/62). π/123). π/44). π/2

Answer»

GIVEN,

$(sin\left( {A - B} \right) = \frac{1}{2})$

$(\because\sin \frac{\pi }{6} = \frac{1}{2})$

∴ A – B = π/6…..(1)

And,

$(cos\left( {A + B} \right) = \frac{1}{2})$

$(\because\cos \frac{\pi }{3} = \frac{1}{2})$

∴ A + B = π/3…..(2)

(2) – (1)

A + B – A + B = π/3 – π/6

⇒ 2B = π/6

⇒ B = π/12
161.

What is the minimum value of 4 sin2 θ + 6 cos2 θ?1). 42). 53). 34). 1

Answer»

Formula: sin2 θ + cos2 θ = 1

⇒ Let the minimum value be x.

⇒ x = 4 sin2 θ + 6 cos2 θ

⇒ x = 4 (1 - cos2 θ) + 6 cos2 θ

⇒ x = 4 - 4 cos2 θ + 6 cos2 θ

⇒ x = 4 + 2 cos2 θ

⇒ Value of cos θ is minimum (0) at 90

⇒ x = 4 + 2 × 0

∴ x = 4
162.

The angle of elevation of the top of a tower from point P is 15°. Point P is on the ground level. Point P is at a distance of 100 meters from the foot of the tower. Find the height of the tower.1). 26.8 meters2). 25.9 meters3). 30.5 meters4). 29.9 meters

Answer»
163.

Value of (tan1° tan2° tan3° ………..tan89°) is:1). 12). 893). Undefined4). 0

Answer»

We KNOW that, TAN(90 - θ) = cot(θ)

tan 89 can be written as cot 1 [tan(90 - 1) = cot 1]

So,

tan 88 = cot 2

tan 87 = cot 3

up to tan 46 = cot 44

then middle one is tan 45 = 1

Hence the expression becomes

tan 1 × tan 2...........tan 44 × tan 45 × cot 44..............cot 1

as tanθ × cotθ = 1 hence tan and cot GETS cancelled

Thus the value that remain is tan 45 i.e. 1
164.

If √(1 + cot2A) = x, then the value of x is?1). secA2). sinA3). cosecA4). cosA

Answer»

⇒ x = √(1 + cot2A)

⇒ x = √(1 + (cos2A/sin2A))[? cotA = cosA/sinA]

⇒ x = √((sin2A + cos2A)/sin2A)

⇒ x = √(1/sin2A)[? sin2A + cos2A = 1]

⇒ x = 1/sinA = COSECA
165.

If (cotA – tan A)/2 = x, then the value of x is1). tan2A2). cot2A3). tanA4). cotA

Answer»

From the GIVEN data,

COTA = cosA/SINA and tanA = sinA/cosA

⇒ [(cosA/sinA) - (sinA/cosA)]/2 = x

⇒ (cos2A - sin2A)/ (2sinAcosA) = x

We know that, COS2A = cos2A - sin2A and sin2A = 2 × sinA × cosA

⇒ cos2A/sin2A = x

⇒ x = cot2A
166.

The value of \(\left( {{{\sin }^2}16\frac{{1^\circ }}{2} + {{\sin }^2}73\frac{{1^\circ }}{2}} \right)\) is1). 12). 23). 04). 4

Answer»

$(\Rightarrow \;\LEFT( {{{\SIN }^2}16\FRAC{{1^\circ }}{2} + {{\sin }^2}73\frac{{1^\circ }}{2}} \right)\; = \;\left( {{{\sin }^2}16\frac{{1^\circ }}{2} + {{\sin }^2}(90 - 16\;\frac{{1^\circ }}{2}} \right)\; = \;\left( {{{\sin }^2}16\frac{{1^\circ }}{2} + {{\cos }^2}16\frac{{1^\circ }}{2}} \right))$

(? sin2x + cos2x = 1)

= 1

167.

What is the value of \(\frac{{\cos 2{\rm{A\;}} + {\rm{\;}}2{{\cos }^2}{\rm{A\;}} - {\rm{\;}}2\cos 2{\rm{A}}\cos {\rm{A}}}}{{\sin 2{\rm{A\;}} - {\rm{\;}}2{{\sin }^2}{\rm{A}}\sin 2{\rm{A}}}}?\)1). (8 - 2√3) / √32). (2 + √3) / √33). (2√3 - 2) / √34). (2 - 2√3) / √3

Answer»

$(\frac{{\COS 2{\rm{A\;}} + {\rm{\;}}2{{\cos }^2}{\rm{A\;}} - {\rm{\;}}2\cos 2{\rm{A}}\cos {\rm{A}}}}{{\sin 2{\rm{A\;}} - {\rm{\;}}2{{\sin }^2}{\rm{A}}\sin 2{\rm{A}}}})$

PUT A = 30°

$(\Rightarrow \frac{{\cos 60{\rm{\;}} + {\rm{\;}}2{{\cos }^2}30 - {\rm{\;}}2\cos 60\cos 30}}{{\sin 60{\rm{\;}} - {\rm{\;}}2{{\sin }^2}30\sin 60}})$

$(\Rightarrow \frac{{\frac{1}{2}{\rm{\;}} + {\rm{\;}}2{\rm{\;}} \times {\rm{\;}}\frac{3}{4}\; - {\rm{\;}}2{\rm{\;}} \times {\rm{\;}}\frac{{\sqrt 3 }}{2}\; \times {\rm{\;}}\frac{1}{2}{\rm{\;}}}}{{\frac{{\sqrt 3 }}{2}{\rm{\;}} - {\rm{\;}}2 \times {\rm{\;}}\frac{1}{4}\; \times {\rm{\;}}\frac{{\sqrt 3 }}{2}}})$

⇒ (2 - √3/2) / (√3/2 - √3/4) = (8 - 2√3) /√3
168.

1). 02). -13). 14). 2

Answer»

secθ $( = \sqrt {2 + \sqrt {2 + \sqrt {2 +\ldots\ldots\ldots\ldots \INFTY } } } )$

∴ secθ = $(\sqrt {2 + {\RM{sec\theta }}} )$

sec2θ = 2 + secθ

sec2θ - secθ - 2 = 0

secθ $(= \frac{{1 \pm \sqrt {1 + 8} }}{2})$

secθ $( = \frac{{1 \pm 3}}{2})$

∴ secθ = 2, -1

[secθ = -1 not possible]

∴ θ = 60° for 0 < θ <$(\frac{{\rm{\PI }}}{2})$

cosθ (1 +2cosθ) = cos60°(1 +2×cos60°)

∴ $( = \frac{1}{2}\left\{ {1 + 2 \times \frac{1}{2}} \RIGHT\} = 1)$

Shortcut: -

Secθ = 2

Cosθ $( = \frac{1}{2})$

∴ θ = 60°

cos60° (1 + 2 cos60°)

$( = \frac{1}{2}\left\{ {1 + 2 \times \frac{1}{2}} \right\})$

= 1

169.

If a cot θ= b, the value of \(\frac{{a\sin \theta \; + \;b\cos \theta }}{{a\sin \theta - b\cos \theta }}\)1). \(\frac{{a - b}}{{{a^2}\; + \;{b^2}}}\)2). \(\frac{{a\; + \;b}}{{{a^2}\; + \;{b^2}}}\)3). \(\frac{{{a^2}\; + \;{b^2}}}{{{a^2} - {b^2}}}\)4). \(\frac{{{a^2} - {b^2}}}{{{a^2}\; + \;{b^2}}}\)

Answer»

a COT θ= b

tanθ = a/b

$(\frac{{a\SIN \theta \; + \;b\cos \theta }}{{a\sin \theta - b\cos \theta }} = \;\frac{{a(\sin \theta /cos\theta ) - b(\cos \theta /cos\theta )}}{{a(\sin \theta /cos\theta )\; + \;b(\cos \theta /cos\theta )}}\; = \frac{{a\tan \theta \; + \;b}}{{a\tan \theta - b}} = \frac{{a\; \times \;\LEFT( {\frac{a}{b}} \right)\; + \;b}}{{a\; \times \;\left( {\frac{a}{b}} \right) - b}} = \;\frac{{{a^2}\; + \;{b^2}}}{{{a^2} - {b^2}}})$
170.

The value of 1/(1 – cot2 α) + 1/(1 – tan2 α) is equal to1). -1/22). -13). 14). ½

Answer»

cotα = cosα/sinα, tanα = sinα/cosα

1/(1 – cot2 α) + 1/(1 – tan2 α) = [sin2 α/(sin2 α – cos2 α)] + [cos2 α/( cos2 α - sin2 α)] =

[sin2 α/(sin2 α – cos2 α)] - [cos2 α/(sin2 α – cos2 α)] = 1
171.

What is the value of \(\frac{{\cot x}}{{1 - \tan x}} + \frac{{\tan x}}{{1 - \cot x}}?\)1). sin x cos x + 12). sec x cosec x + 13). tan x cot x + 14). sec2x cosec2 x + 1

Answer»

$({{\COT x}}{{1 - \tan x}} + \frac{{\tan x}}{{1 - \cot x}} = \frac{{cosx}}{{\frac{{sinx}}{{1 - \frac{{sinx}}{{cosx}}}}}} + \frac{{sinx}}{{\frac{{cosx}}{{1 - \frac{{cosx}}{{sinx}}}}}} = \frac{{cosx}}{{\frac{{sinx}}{{\frac{{cosx - sinx}}{{cosx}}}}}} + \frac{{sinx}}{{\frac{{cosx}}{{\frac{{sinx - cosx}}{{sinx}}}}}})$

$(= \frac{{co{s^2}x}}{{sinx\left( {cosx - sinx} \RIGHT)}} + \frac{{si{n^2}x}}{{cosx\left( {sinx - cosx} \right)}})$

$(= \frac{{co{s^2}x}}{{sinx\left( {cosx - sinx} \right)}} - \frac{{si{n^2}x}}{{cosx\left( {cosx - sinx} \right)}})$

$(= \frac{{co{s^3}x - si{n^3}x}}{{\left( {cosx - sinx} \right)sinx\;cosx}} = \frac{{\left[ {\left( {cosx - sinx} \right)\left( {si{n^2}x +co{s^2}x\; + \;sinx\;cosx} \right)} \right]}}{{\left( {cosx - sinx} \right)\sin cosx}}\;)$

$(= \frac{{1 +sinx\;cosx}}{{SINXCOSX}})$

$(= COSECX\;secx + 1)$
172.

ΔDEF is right angled at E. If ∠F = 45°, then what is the value of 2 Sin F x Cot F?1). √22). 23). 1/√24). 1/2

Answer»

GIVEN, ∠F = 45°

2 sin F X cot F

⇒ 2 sin F × (COS F/sin F)

⇒ 2 cos F

⇒ 2 cos 45°

⇒ 2 × (1/√2)(? cos 45° = 1/√2)

⇒ √2
173.

1). (1 + sinA)/(1 - sinA)2). √[(1 - sinA)/(1 + sinA)]3). (1 - sinA)/(1 + sinA)4). √[(1 + sinA)/(1 - sinA)]

Answer»

(secA - TANA)2

= (1/cos A – sinA/cosA)2

= [(1 – sinA)/cosA]2

= (1 – sinA)2/cos2A

= (1 – sinA)2/[(1 – sinA)(1 + sinA)]

= (1 – sinA)/(1 + sinA)

∴ x = (1 – sinA)/(1 + sinA)

174.

What is the simplified value of sin2(90 – θ) – [{sin(90 – θ)sin θ}/tanθ]?1). 12). cosec θ3). 04). cos θ

Answer»

We KNOW that: SIN(90 – θ) = cosθ

So, sin2(90 – θ) – [{sin(90 – θ)sinθ}/tanθ] = cos2θ – [(cosθ sinθ)/(sinθ/cosθ)]

⇒ cos2θ – cos2θ

0

175.

1). 452). 2003). 1004). 136.6

Answer»
176.

If sin(3θ)sec(2θ) = 1, then what is the value of [3tan2(5θ/2) – 1]?1). 02). 13). 24). 3

Answer»

⇒ sin3θ = 1/sec2θ

⇒ cos(π/2 – 3θ) = cos2θ

⇒ π/2 – 3θ = 2θ

⇒ π/2 = 5θ

⇒ θ = π/10

To FIND: [3tan2(5θ/2) – 1]

⇒ 3tan2(π/4) – 1

3 × 1 – 1 = 2

∴ the CORRECT option is 3)
177.

1). 182). 123). 244). 23

Answer»
178.

If (1 + sec A)/tan A = x, then x is1). cot (A/2)2). tan(A/2)3). cosec(A/2)4). sec(A/2)

Answer»

⇒ (1 + SEC A)/tanA $(= \frac{{1{\rm{}} + {\rm{}}\frac{1}{{{\rm{cosA}}}}}}{{{\rm{tanA}}}} = \frac{{1{\rm{}} + {\rm{cosA}}}}{{{\rm{sinA}}}} = \frac{{1{\rm{}} + {\rm{cosA}}}}{{\SQRT {1 - {\rm{co}}{{\rm{s}}^2}{\rm{A}}} }})$

$(\begin{ARRAY}{l} = \frac{{1{\rm{}} + {\rm{cosA}}}}{{\sqrt {\LEFT( {1{\rm{}} + {\rm{cosA}}} \right)\left( {1 - {\rm{cosA}}} \right)} }}\\ = \frac{{\sqrt {1{\rm{}} + {\rm{cosA}}} }}{{\sqrt {1 - {\rm{cosA}}} }} \end{array})$

 = cot(A/2)

179.

If 5 secθ – 3 tanθ = 5, then what is the value of 5 tanθ – 3 secθ?1). 12). 23). 34). 4

Answer»

5 sec Θ - 3tan Θ = 5

⇒ 5 √(tan² Θ + 1) = 5 + 3tanΘ

⇒ 25(tan² Θ + 1) = 25 + 9tan² Θ + 30 tanΘ

⇒ 25 tan² Θ – 9tan² Θ = 30 tanΘ

16 tan² Θ - 30 tanΘ = 0

⇒ 2tanΘ (8 tanΘ – 15) = 0

⇒ tanΘ = 0 or tanΘ = 15/8

If TAN Θ = 0

5 sec Θ - 3 tan Θ = 5

5SEC Θ – 3 × 0 = 5

⇒ sec Θ = 1

If tan Θ = 15/8

5sec Θ – 3 × 15/8 = 5

⇒ 5 sec Θ = 5 + 45/8

⇒ 5 secΘ = 85 /8

⇒ sec Θ = 17/8

So, 5 tanΘ – 3 sec Θ = 5 × 0 – 3 × 1 = -3

Or, 5 × 15/8 – 3 × 17/8 = 75/8 - 51/8 = 24/8 = 3

180.

If 4a = sec θ and 4/a = tanθ, then \(8\left( {{a^2} - \frac{1}{{{a^2}}}} \right)\) is1). 1/162). 1/83). 1/24). 1/4

Answer»

⇒ 4a = sec θ

⇒ a = sec θ/4----1

⇒ 4/a = tanθ

⇒ 1/a = tanθ/ 4----2

⇒ We NEED to find the value of $(8\left( {{a^2} - \FRAC{1}{{{a^2}}}} \right))$

⇒ $(8\left( {{a^2} - \frac{1}{{{a^2}}}} \right))$= 8(a – (1/a)) (a + (1/a))

⇒ Putting the value of a and 1/a in above we get

⇒ $(8\left( {{a^2} - \frac{1}{{{a^2}}}} \right))$= 8 ((sec θ/4) - (tanθ/4)) × ((sec θ/4) + (tanθ/4))

⇒ $(8\left( {{a^2} - \frac{1}{{{a^2}}}} \right))$= 8/16 (sec2 θ - tan2 θ)

$(\THEREFORE \;8\left( {{a^2} - \frac{1}{{{a^2}}}} \right))$= 1/2
181.

If secθ(cosθ + sinθ) = √2, then what is the value of 2sinθ/(cosθ - sinθ)?1). 3√22). 3/√23). 1/√24). √2

Answer»

Simplifying the GIVEN equation,

1 + TAN θ = √2

⇒ tan θ = √2 - 1----(1)

Now, 2sinθ/(cosθ - sinθ)

Dividing by sinθ in both the numerator and denominator.

⇒ 2/(cotθ - 1)

Putting the VALUE of cotθ from equation 1,

⇒ 2/[1/(√2 - 1) - 1]

⇒ (2√2 - 2)/(1 - √2 + 1)

⇒ (2√2 - 2)/(2 - √2) = √2

∴ 2sinθ/(cosθ - sinθ) = √2
182.

If π sin θ = 1, π cosθ = 1, then the value of\(\left\{ {\sqrt 3 \tan \left( {\frac{2}{3}\theta } \right) + 1} \right\}\) is1). 02). √33). 24). 1

Answer»

⇒ given:π sin θ = 1-----1 and π cosθ = 1-----2

⇒ dividing both the above equation we get

⇒ π sin θ/π cosθ = 1/1

TAN θ = 1

⇒ θ = 45

⇒ Let x = $(\left\{ {\sqrt 3 \tan \left( {\FRAC{2}{3}\THETA } \right) + 1} \right\})$

⇒ putting the VALUE of θ in

⇒ x = √3 tan (2/3)x 45) + 1

⇒ x = √3 tan (30) + 1)

⇒ x = √3 x (1/√3) + 1

∴ x = 2
183.

1). √[(1 + cosA)/(1 - cosA)]2). cosecA - cotA3). √[(1 - cosA)/2]4). √[(1 + cosA)/2]

Answer»

As per the given data,

COT (A/2) = x

COS (A/2)/SIN (A/2) = x

we know that:

cos2A = (1 + cos 2A)/2

sin2A = (1 – cos 2A)/2

$(\frac{{\surd \left( {\frac{{1\; + \;cosA}}{2}} \right)}}{{\surd \left( {\frac{{1 - cosA}}{2}} \right)}})$ = x

x = $(\frac{{\surd \left( {1\; + \;\cos A} \right)}}{{\surd \left( {1 - \cos A} \right)}})$

184.

The value of sin2 15° + sin2 20°+ sin2 25° + ….. + sin2 75° ---1). tan2 15° + sin2 20° + tan2 25° + …. tan2 75°2). cos2 15° + cos2 20° + cos2 25° + …. cos2 75°3). cot2 15° + cot2 20° + cot2 25° + …. cot2 75°4). sec2 15° + sec2 20° + sec2 25° + …. sec2 75°

Answer»

sin2 15° + sin20° + sin25° + ..... sin75°

= [COS (90° - 15°)]2 + [cos (90° - 20°)]2 + ..... [cos (90° - 75°)]2 [cos (90 - θ) = sinθ]

= cos75° + cos70° + cos65° + ...... cos15°

= cos15° + cos20° + cos25° + ..... cos75°
185.

\(\frac{{\cot {\rm{A\;}} + {\rm{\;}}\tan {\rm{B}}}}{{\cot {\rm{B\;}} + {\rm{\;}}\tan {\rm{A}}}}\) is equal to1). tanA cotB2). cotA tanB3). 14). None of these

Answer»

$( \Rightarrow \frac{{{\rm{COTA}}+{\rm{COTB}}}}{{{\rm{cotB}} + {\rm{tanA}}}} = \frac{{\frac{{{\rm{COSA}}}}{{{\rm{SINA}}}}+\frac{{{\rm{sinB}}}}{{{\rm{cosB}}}}}}{{\frac{{{\rm{cosB}}}}{{{\rm{sinB}}}} + \frac{{{\rm{sinA\;}}}}{{{\rm{cosA}}}}}}=\frac{{\frac{{{\rm{cosAcosB}}+{\rm{sinAsinB}}}}{{{\rm{sinAcosB}}}}}}{{\frac{{{\rm{cosAcosB}}+{\rm{sinAsinB}}}}{{{\rm{sinBcosA}}}}}}=\frac{{{\rm{sinBcosA}}}}{{{\rm{sinAcosB}}}}={\rm{cotAtanB}})$

186.

1). √3/22). 1/√33). 2/√34). √(2/3)

Answer»

(5cosec2θ + 3cot2θ) = 21---- (1)

We KNOW that:

(cosec2θ – cot2θ) = 1

∴ (3cosec2θ – 3cot2θ) = 3---- (2)

ADDING equations (1) and (2)

⇒ 8cosec2θ = 24

⇒ cosecθ = √3

∴ cosθ = √(2/3)

187.

If cos Ɵ = √3/2 and 0° < Ɵ < 90°, then the value of cosec (Ɵ – 15°) is1). 12). √2 + √63). 1/√34). √2

Answer»

If COS ? = √3/2

⇒ ? = 30°

COSEC (? – 15°) = cosec (30° – 15°) = cosec 15° = 1/(sin 15°)

 Since sin 15° = sin (45° – 30°) = sin 45° cos 30° – cos 45° sin 30°

(? sin (A – B) = sin A cos B – cos A sin B)

∴ sin 15° $(= \frac{1}{{\sqrt 2 }} \times \frac{{\sqrt 3 }}{2} - \frac{1}{{\sqrt 2 }} \times \frac{1}{2} = \frac{{\sqrt 3 \;-1}}{{2\sqrt 2 }})$ 

⇒ cosec 15° = $(\frac{{2\sqrt 2 }}{{\sqrt 3 - 1}} = \frac{{2\sqrt 2 }}{{\sqrt 3 - 1}} \times \frac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}} = \;\frac{{2\sqrt 6 + 2\sqrt 2 }}{{3 - 1}} = \sqrt 2 + \sqrt 6 )$
188.

If \(0^\circ \le \theta \le 90^\circ \;and\;sinx + \sqrt 3 \;cosx = 1\) then the value of x -1). 30°2). 45°3). 60°4). 90°

Answer»
189.

If the value of θ = 30°, then value of tan2 θ + cot2θ1). 1/32). 4/33). 9/34). 10/3

Answer»

The value of tan2 θ + cot2θ = tan2 30° + cot2 30°

= (1/√3)2 + (√3)2

= 1/3 + 3 = (1 + 9)/3 = 10/3
190.

If 5(sin A cos3 A + sin3 A cos A)3 – 2 sin3 A cos3 A = x sin3 2A, find the value of x.1). 1/32). 1/83). 2/34). 3/8

Answer»

? sin 2A = 2 sin A cos A

⇒ sin A cos A = (sin 2A)/2

Now,

5(sin A cos3 A + sin3 A cos A)3 – 2 sin3 A cos3 A

⇒ 5[sin A cos A (cos2 A + sin2 A)]3 – 2 (sin A cos A)3

⇒ 5(sin A cos A)3 – 2(sin A cos A)3[? (cos2 A + sin2 A) = 1]

⇒ 3(sin A cos A)3

⇒ 3[(sin 2A)/2]3

⇒ (3/8) sin3 2A

∴ Comparing, we get, X = 3/8
191.

1). 24/252). 7/253). 24/74). 25/7

Answer»

Given SEC θ = 25/24, so Cos θ = 24/25 Sin θ can be given as

⇒ Sin θ = √(1COS2 θ) = √(1 – 242/252) = √{(625 – 57 6)/252} = √(72/252) = 7/25

∴ Sin θ is 7/25

192.

If cos2 θ - sin θ = 1/4, then what is the value of sin θ?1). -12). 1/23). 14). 3/2

Answer»

Cos2 θ = 1 - (SIN θ)2

Let sin θ = X

Equation becomes

1 - X2 - X = 1/4

X2 + X - 3/4 = 0

∴ X = Sin θ = 1/2

Answer is (2)
193.

If cos4 θ – sin4 θ = 3/5, then the value of 1 – 2 sin2 θ is1). 02). 3/53). 1/34). 4/3

Answer»

cos4 θ – sin4 θ = (cos2 θ)2 – (sin2 θ)2

We know that,

a2 – b2 = (a + b) (a – b)

Hence,

(cos2 θ)2 – (sin2 θ)2 = (cos2 θ + sin2 θ) (cos2 θ - sin2 θ)

But, (cos2 θ + sin2 θ) = 1

Hence,

(cos2 θ)2 – (sin2 θ)2 = (cos2 θ - sin2 θ)

ALSO cos 2θ = cos2 θ - sin2 θ = 1 – 2sin2 θ

Therefore,

cos4 θ – sin4 θ = 1 – 2sin2 θ = 3/5
194.

What is the value of (1/√3 + cot600)?1). 3√3/22). 7/2√33). (4 + √3)/2√34). 2/√3

Answer»
195.

Find the square root of the expression: 16 sec4 a – 16 sec2 a1). 4 tan a sec2 a2). 16 tan a sec a3). 16 tan2 a sec a4). 4 tan a sec a

Answer»

16 sec4 a – 16 seca = 16(sec4 a – seca)

⇒ 16 sec2 a (sec2 a - 1)

USING sec2 a – TAN2 a = 1 we get

= 16(sec2 a).(tan2 a)

TAKING square root of the expression we will get 4 tan a sec a.
196.

If sec (3x – 20)° = cosec (3y + 20)°, what is the value of tan (x + y)?1). 12). √33). 1/√34). 2√3

Answer»

Since we know that SEC(x) = cosec (90 - x), From the given equation

⇒ sec (3x – 20) = sec{90 – (3y + 20)} comparing the terms in BRACKETS on LHS and RHS

⇒ 3x - 20 = 90 – (3y + 20)

⇒ x + y = 30

TAN(x + y) = tan(30) = 1/√3
197.

What is the value of (1/√3 – sin 45°)?1). 1/2√32). (√2 – √3)/√63). 1 – √24). (4 – √3)/2

Answer»

GIVEN that,

(1/√3 – SIN 45°)

⇒ 1/(√3) – 1/(√2)

⇒ (√2 – √3)/(√6)
198.

What is the value of (√2/3 - cosec60o)?1). (√6 - 6)/3√32). (2 - 2√3)/√33). (1 - √6)/√24). (4 - √3)/2√3

Answer»

∴ (√2/3 - cosec60o) = √2/3 - 2/√3 = (√6- 6)/3√3

199.

1). 12sin 30°2). 6sin 45°3). 12cos 30°4). 6sin 60°

Answer»

TAN θ – cot θ = 0

⇒ tan θ = cot θ

⇒ θ = 45o

√6(4SIN θ + 2COS θ)

√6(4sin 45° + 2cos 45°)

(? sin 45 = cos 45 = 1/√2)

⇒ √6(6/√2) = 6√3 = 12 × (√3/2) = 12 cos 30°

∴ √6(4sin θ + 2cos θ) = 12 cos 30°
200.

1). 702). 753). 804). 85

Answer»