InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 201. |
ΔXYZ is right angled at Y. If sinX = 12/13, then what is the value of cosecZ ? 1). 5/122). 5/133). 13/54). 13/12 |
|
Answer» ⇒ sinX = 12/13 ⇒ YZ/XZ = 12/13 Let YZ = 12k and XZ = 13k By Pythagoras theorem, ⇒ XY = √(XZ2 – YZ2) = √{(13k)2 – (12k)2} = √(25k2) = 5k Now, ∴ COSEC Z = XZ/XY = 13k/5k = 13/5 |
|
| 202. |
For a man standing near a wall, the angles of elevation of the top of the wall from his head and foot is 30° and 60° respectively. If the height of the man is 200 cm, find the height of the wall.1). 2.4 m2). 2.7 m3). 3.0 m4). 3.5 m |
| Answer» | |
| 203. |
If sin θ + cos θ = 1, then sin θ cos θ is equal to:1). 02). 13). 24). -1 |
|
Answer» sin θ + cos θ = 1 squaring EQUATION, ⇒ sin2θ + 2sinθ. Cos θ + cos2 θ = 1 ⇒ sin θ cos θ = 0 |
|
| 204. |
A tower standing on a horizontal plane subtends a certain angle at a point 80 m apart from the foot of the tower. On advancing 50 m towards it, the tower is found to subtend an angle twice as before. Find the height of the tower?1). 30 m2). 40 m3). 60 m4). 50 m |
| Answer» | |
| 205. |
If sin A = x, then the value of tan A sec A1). \(\frac{x}{{\sqrt {1 + {x^2}} }}\)2). \(\sqrt {1 - {x^2}} \)3). \(\sqrt {\frac{{1 - {x^2}}}{{{x^2}}}}\)4). \(\frac{x}{{1 - {x^2}}}\) |
|
Answer» sin A = Perpendicular/Hypotenuse = X/1 From PYTHAGORAS theorem ⇒ Base = √(1 – x2) sec A = Perpendicular/Base = $(\frac{1}{{\SQRT {1 - {x^2}} }})$ tan A = Hypotenuse/Base = $(\frac{x}{{\sqrt {1 - {x^2}} }})$ tan A sec A = $(\frac{x}{{1 - {x^2}}})$ |
|
| 206. |
Find the value of cot x - tan x1). 2cot 2x2). sec x3). cosec x4). 3cot x |
|
Answer» $(\cot x - \tan x = \;\FRAC{{\cos x}}{{\SIN x}} - \frac{{\sin x}}{{\cos x}})$ = $(\frac{{co{s^2}x - SI{n^2}x}}{{\sin x\;cos\;x}})$ = $(\frac{{2cos2x}}{{2\sin x\;cos\;x}})$ = $(2 \times \frac{{\cos 2x}}{{\sin 2x}} = 2\cot 2x)$ |
|
| 207. |
1). -12). 23). 1/24). 0 |
|
Answer» ⇒ LETX = $(\left( {\FRAC{{\sin {\rm{\THETA }} + \sin \phi }}{{\cos {\rm{\theta }} + \cos \phi }} + \frac{{\cos {\rm{\theta }} - \cos \phi }}{{\sin {\rm{\theta }} - \sin \phi }}} \right))$ ⇒ x = [(sin θ + sin ?) (sin θ - sin ?) + (cos θ + cos ?)(cos θ - cos ?)]/(cos θ + cos ?) (sin θ - sin ?) ⇒ x = (sin2 θ + cos2 θ - sin2 ? - cos2 ?)/(cos θ + cos ?) (sin θ - sin ?) ⇒ x = (1 - 1)/(cos θ + cos ?) (sin θ - sin ?) ∴ x = 0 |
|
| 208. |
If \(\tan 75^\circ = 2\; + \;\sqrt 3\), then the value of cot215° is –1). \(7\; + \;\sqrt 3 \)2). \(7 - 2\sqrt 3\)3). \(7\; + \;2\sqrt 3\)4). \(7\; + \;4\sqrt 3\) |
|
Answer» tan75° = cot15° = 2 + √3 cot215° = (2 + √3)2 cot215° = 4 + 3 + 4√3 cot215° = 7 + 4√3 |
|
| 209. |
In ΔXYZ measure of angle Y is 90o. If sec X = 17/8, and XY = 0.8 cm, then what is the length (in cm) of side XZ?1). 1.72). 1.53). 24). 2.5 |
|
Answer» ⇒ Sec x = hypotenuse/base = XZ/XY = 17/8 If XY = 0.8 ⇒ 8 unit = 0.8 ⇒ 1 unit = 0.1 ⇒ (XZ) = 17 unit = 1.7 Therefore length of XZ is 1.7 cm |
|
| 210. |
If Sin A + Cos A = 0.5, find the value of Sin A.Cos A = ?1). -0.6252). -1.03). 1.454). -0.375 |
|
Answer» (SIN A + COS A)² = Sin² A + Cos² A + 2 Sin A Cos A ⇒ (0.5)² = 1 + 2 Sin A Cos A ⇒ 0.25 – 1 = 2 Sin A Cos A ⇒ 2 Sin A Cos A = -0.75 ∴ Sin A Cos A = ?-0.375 |
|
| 211. |
If sin 13θ = cos 25° (0° < θ < 90°), then the value of θ is1). 3°2). 2°3). 5°4). 12° |
|
Answer» SIN 13θ = COS 25° = sin(90° – 25°) = sin 65° ⇒ 13θ = 65° ⇒ θ = 5°. |
|
| 212. |
If \(tan\;\theta \; = \;\frac{m}{n}\),then what is \(\frac{{msec\theta- ncosec\theta }}{{msec\theta+ ncosec\theta }}\) equal to?1). \(\frac{{m - n}}{{m + n}}\)2). \(\frac{{{n^2} - {m^2}}}{{{n^2} + {m^2}}}\)3). \(\frac{{{m^2} - {n^2}}}{{{m^2} + {n^2}}}\)4). 1 |
|
Answer» Given, ⇒ Hypotenuse = √(m2 + n2) $(\begin{array}{l}\frac{{msec\theta- ncosec\theta }}{{msec\theta+ ncosec\theta }}\; = \;\frac{{m\; \times \;\frac{{\sqrt {{m^2} + {n^2}} }}{n} - n\; \times \;\frac{{\sqrt {{m^2} + {n^2}} }}{m}}}{{m\frac{{\sqrt {{m^2} + {n^2}} }}{n} + n\frac{{\sqrt {{m^2} + {n^2}} }}{m}}}\; = \;\frac{{\frac{m}{n} - \frac{n}{m}}}{{\frac{m}{n} + \frac{n}{m}}}\; = \;\frac{{{m^2} - {n^2}}}{{{m^2} + {n^2}}}\\\therefore \;\frac{{msec\theta- ncosec\theta }}{{msec\theta+ ncosec\theta }}\; = \;\frac{{{m^2} - {n^2}}}{{{m^2} + {n^2}}}\end{array})$ |
|
| 213. |
ΔPQR is right angled at Q. If m∠R = 45°, then find the value of (tan P - 1/2).1). (2 - √3)/√32). (2√3 - √6)/2√23). 1/24). (√6 - 6)/3√3 |
| Answer» | |
| 214. |
Simplify \(\sqrt {\left( {1 - {{\sin }^2}\theta } \right) \div \left( {1 - {{\cos }^2}\theta } \right)}\)1). cot θ2). tan θ3). sec θ4). cosec θ |
|
Answer» $(\Rightarrow \sqrt {\left( {1 - {{\SIN }^2}\THETA } \RIGHT) \div \left( {1 - {{\cos }^2}\theta } \right)}= \sqrt {\left( {{{\cos }^2}\theta } \right) \div \left( {{{\sin }^2}\theta } \right)}= \sqrt {\left( {{{\cot }^2}\theta } \right)}= \left( {\cot \theta } \right))$ |
|
| 215. |
\({\left( {1 + {\rm{tanA}}} \right)^2} + {\left( {1{\rm{\;}} - {\rm{\;tanA}}} \right)^2}\) is equal to1). 2cosec2A2). cosec2A3). sec2A4). 2 sec2A |
|
Answer» $(\RIGHTARROW {\rm{\;}}{\LEFT( {1 + {\rm{tanA}}} \right)^2} + {\left( {1{\rm{\;}} - {\rm{\;tanA}}} \right)^2})$ $(\Rightarrow 1 + 2{\rm{tanA}} + {\tan ^2}{\rm{A}} + 1{\rm{\;}} - {\rm{\;}}2{\rm{tanA}} + {\tan ^2}{\rm{A}} = 2 + 2{\tan ^2}{\rm{A\;}})$ $(= 2\left( {1 + {\rm{TA}}{{\rm{N}}^2}{\rm{\;A}}} \right) = {\rm{\;}}2{\sec ^2}{\rm{A}})$ |
|
| 216. |
What is the value of Sin 30° + Cos 30°?1). (√6 + 1) /√32). (√3 + 2) /√33). (1 + √3) /24). 5/√3 |
|
Answer» SINCE we know that SIN 30 = 1/2 and cos 30 = √3/2, put this in the REQUIRED equation ⇒ Sin 30° + Cos 30° = ½ + √3/2 = (1 + √3) /2 ∴ the value of Sin 30° + Cos 30° is (1 + √3) /2 |
|
| 217. |
From the top of a building 75 meters high, the angle of depression of the top and bottom of a tower are observed to be 30° and 60°. The height of the tower in meters is1). 602). 653). 504). 55 |
| Answer» | |
| 218. |
1). 02). 13). 24). √3/2 |
|
Answer» tan70° tan20° + SIN280° + sin2 10° we KNOW that, TAN (π/2 – θ) = cot θ also, sin (π/2 – θ) = cos θ ∴ tan70° tan20° + sin280° + cos210° = tan (π/2 – 20°) tan 20° + sin2(π/2 – 10°) + sin210° = cot20° tan20° + (cos210° + sin210°)(? cotθ tanθ = 1 and cos2θ + sin2θ = 1) = 1 + 1 = 2 |
|
| 219. |
1). 12/52). 13/53). 5/13 4). 5/12 |
|
Answer» Using TRIGONOMETRIC IDENTITIES, sec2 θ = 1 + tan2 θ ⇒ tan2 θ = sec2 θ - 1 = 169/144 - 1 = 25/144 ⇒ cot2 θ = 1/tan2 θ = 144/25 ∴ cot θ = √(144/25) = 12/5 |
|
| 220. |
ΔDEF is right angled at E. If sec D = 25/7, then what is the value of cosec F?1). 7/252). 24/73). 25/74). 7/24 |
| Answer» | |
| 221. |
If \(\frac{{sec\theta\; + \;tan\theta }}{{sec\theta\; - \; tan\theta }} = \frac{5}{3}\), then sinθ is equal to1). 1/42). 1/33). 2/34). 3/4 |
|
Answer» $(\frac{{sec\theta\; + \;tan\theta }}{{sec\theta\; - \; tan\theta }} = \frac{5}{3})$ Further solving the above equation we have, $(\frac{{\frac{{1 \;+ \;SIN\theta }}{{cos\theta }}}}{{\frac{{1\; - \; sin\theta }}{{cos\theta }}}} = \frac{5}{3})$ ⇒ 3(1 + sin θ) = 5(1 - sin θ) ⇒ 8sinθ = 2 ⇒ sinθ = 1/4 |
|
| 222. |
1). sinA/22). cosA3). secA4). sinA |
| Answer» | |
| 223. |
Find the value of 1 – 2 sin2θ + sin4θ.1). sin4θ2). cos4θ3). cosec4θ4). sec4θ |
|
Answer» We KNOW that, ⇒ sin2θ = 1 – cos2θ Squaring on both sides (? (a + B)2 = a2 + 2ab + b2) ⇒ sin4θ = 1 + cos4θ – 2cos2θ Now, 1 – 2 sin2θ + sin4θ (? cos 2x = 2cos2x – 1 = 1 – 2sin2x) = 2cos2θ – 1 + 1 + cos4θ – 2cos2θ = cos4θ ∴ 1 – 2 sin2θ + sin4θ = cos4θ |
|
| 224. |
1). 72). 83). 94). 10 |
|
Answer» tan (x2 - 8X + 60°) = cot (6x - 5°) tan (x2 - 8x + 60°) = tan {90° - (6x - 5°)} x2 - 8x + 60° = 90° - 6x + 5 x2 - 2x = 35 ∴ x (x -2) = 7× 5 ∴ x = 7 |
|
| 225. |
1). ½2). 13). 24). 3 |
|
Answer» Given, sinA + sin2A = 1 ⇒ sinA = 1 – sin2A = cos2A----(1)(? sin2θ + cos2θ = 1) Squaring on both sides sin2A = cos4A----(2) Substitute (1) and (2) in the given expression. cos2A + cos4A = sinA + sin2A = 1 ∴ cos2A + cos4A = 1 |
|
| 226. |
1). \(\frac{{{a^2} + \sqrt {{a^2} - 1} }}{a}\)2). \(\frac{{{a^2} + \sqrt {1 - {a^2}} }}{a}\)3). \(\frac{{{a^2} - \sqrt {{a^2} - 1} }}{a}\)4). 1 |
|
Answer» Sin(90°– a) = cos a Given, cos (10° 7’ 32”) = a cos2a + sin2a = 1 sin(10° 7’ 32”) = √(1 – a2) tan(10° 7’ 32”) = $(\FRAC{{\sqrt {1 - {a^2}} }}{a})$ sin (79° 52’ 28”) + tan (10° 7’ 32”) $(= a + \frac{{\sqrt {1 - {a^2}} }}{a}\;)$ $(= \frac{{{a^2} + \sqrt {1 - {a^2}} }}{a})$ |
|
| 227. |
1). 502). \(\frac{{200}}{{\sqrt 3 }}\)3). 100√34). 100 |
| Answer» | |
| 228. |
What is the value of cosec(-7π/6)?1). -22). 23). 2/√34). -2/√3 |
|
Answer» ⇒ COSEC - 7π/6 = -cosec 210° = -cosec (360° - 150°) = - cosec (-150°) [As, the VALUE of cosec REPEATS after 360° INTERVAL] ⇒ cosec (150°) = 2. |
|
| 229. |
If \(\tan \theta = \frac{p}{q}then\frac{{p\sin \theta - q\cos \theta }}{{p\sin \theta + q\cos \theta }}\) is equal to:1). \(\frac{{{P^2} - {q^2}}}{{{p^2} + {q^2}}}\)2). \(\frac{{{P^2} - {q^2}}}{{2pq}}\)3). \(\frac{{2pq}}{{{p^2} - {q^2}}}\)4). \(\frac{{{p^2} + {q^2}}}{{{p^2} - {q^2}}}\) |
|
Answer» Given, $(\FRAC{{\SIN \theta }}{{\COS \theta }} = \frac{p}{q})$ $(\cos \theta = \sin \theta\times \frac{q}{p})$ ⇒ $(? = \frac{{p\sin \theta- q\cos \theta }}{{p\sin \theta + q\cos \theta }})$ ⇒ $(? = \frac{{\left( {\frac{p}{q}\sin \theta - \frac{{\rm{q}}}{{\rm{p}}}\sin \theta } \right)}}{{\left( {\frac{p}{q}\sin \theta + \frac{{\rm{q}}}{{\rm{p}}}\sin \theta } \right)}})$ ⇒ $(? = \frac{{{p^2} - {q^2}}}{{{p^2} + {q^2}}})$ |
|
| 230. |
If (a² − b²) sinθ + 2ab cosθ = a² + b², then the value of secθ is:1). 1/2 × (a² + b²)2). 1/2ab × (a² – b²)3). 1/2ab × (a² + b²)4). 1/ab × (a² + b²) |
|
Answer» Dividing the whole equation by cosθ, ⇒ (a² − b²)tanθ + 2AB = (a² + b²)secθ (? 1/cosθ = secθ) ⇒ 2ab = (a² + b²)secθ – (a² − b²)tanθ ⇒ 2ab = a² (secθ – tanθ) + b² (secθ + tanθ) Dividing the whole by ab, ⇒ 2 = (a/b)(secθ – tanθ) + (b/a)(secθ + tanθ) ………… (1) Now, ⇒ sec²θ – tan²θ = 1 ⇒ (secθ + tanθ) × (secθ – tanθ) = 1 ⇒ (secθ + tanθ) = 1/(secθ – tanθ) Substitute above in (1), ⇒ 2 = (a/b)(secθ – tanθ) + (b/a) × 1/(secθ – tanθ) Let (a/b)(secθ – tanθ) = Z ⇒ 2 = z + 1/z ⇒ 2z = z² + 1 ⇒ z² – 2z + 1 = 0 ⇒ (z – 1)² = 0 ⇒ z = 1 ⇒ (a/b) (secθ – tanθ) = 1 ⇒ (secθ – tanθ) = b/a ⇒ (secθ + tanθ) = a/b (? it is INVERSE of (sec θ – TAN θ)) Solving above, ⇒ 2secθ = b/a + a/b ⇒ 2secθ = (a² + b²)/ab ∴ secθ = 1/2 ab × (a² + b²) |
|
| 231. |
If a person travels from a point L towards east for 12 km and then travels 5 km towards north and reaches a point M, then shortest distance from L to M is:1). 142). 123). 174). 13 |
| Answer» | |
| 232. |
What is the value of (2/√3 + tan45°) ?1). (1 + √6)/√32). (2 + √3)/√33). 4/√34). √3 + 2 |
|
Answer» Value of (2/√3 + tan45°) = (2/√3) + 1 = (2 + √3)/√3 ∴ REQUIRED ANSWER = (2 + √3)/√3 |
|