InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
If a, b,c are the pth, qth, and rth terms of a HP, then the vectors ` vecu= a^(-1) hati +b^(-1) hatj +c^(-1) hatk and vecv = ( q -r) hati + ( q -r) hati + ( r-p) hatj + ( p-q) hatk`A. are parallelB. are othogonalC. satisfy `vecu .vecv =1`D. satisfy `|vecu xx vecv| =hati +hatj +hatk` |
|
Answer» Correct Answer - B Let A be the first term and D be the common difference of the corresponding AP. Then, ` 1/a = A + ( p -1) D, 1/b = A + ( q-1) D and , 1/c = A + ( r-1)D` ` a^(-1) (q-r) + b^(-1) (r-p) +c^(-1) (p-q) =0` ` Rightarrow vecu.vecv =0 Rightarrow vecu bot vecv` Hence, ` vecu and vecv ` are othogonal vectors. |
|
| 2. |
The number of vectors of unit length perpendicular to the vectors ` hata = hati +hatj and vecb = hatj + hatk` isA. 1B. 2C. 4D. infinite |
|
Answer» Correct Answer - B Required vectors are given by `+-(vecaxxvecb)/(|vecaxxvecb|)` Hence , there are two vectors. |
|
| 3. |
For any vector `vecr, (vecr.hati) ^(2) + (vecr.hatj)^(2) + ( vecr.hatk)^(2) ` is equal toA. 1B. `|vecr|`C. `vecr`D. `|vecr|^(2)` |
|
Answer» Correct Answer - D Let `vecr= xhati +y hatj +z hatk,` Then , ` vecr.hati =x, vecr.hatj =y and vecr.hatk =z ` ` ( vecr.hati)^(2) + ( vecr.hatj)^(2) + ( vecr.hatk) ^(2) =x^(2) +y^(2) +z^(2) = |vecr|^(2)` |
|
| 4. |
A vector of magnitude 4 which is equally inclined to the vectors `hati +hatj,hatj +hatk and hatk +hati`, isA. `4/sqrt3 (hati -hatj -hatk)`B. ` 4/sqrt3 (hati +hatj -hatk)`C. ` 4/sqrt3 (hati +hatj +hatk)`D. `4/sqrt3 (hati +hatj -hatk)` |
|
Answer» Correct Answer - C Let the required vector be ` vecr = xhati + yhaty + zhatk` , Then ` |vecr| =4 Rightarrow x^(2) +y^(2) +z^(2) =16` Now, `vecr`, sequally inclined to the vectors `hati +hatj ,hatj + hatk and hati` ` (vecr. (hati + hatj)/(|vecr|sqrt2)= (vecr.(hatj +hatk))/(|vecr|sqrt2) = (vecr.(hatj+hati))/(|vecr|sqrt2)` ` Rightarrow x + y=y +z =z +x =lambda (say) ` ` Rightarrow 2(x +y +z) =3 lambda Rightarrow x+y +z = (3 lambda)/2` Now, ` x + y+ lambda and x +y + z = (3lambda)/2 Rightarrow z = lamnbda/2` Similarly, we have, ` x=y = lambda/2` Substituting these values in (i) , we get ` lambda = +- 8/sqrt3` Hence, ` vecr= -+ 8/(2sqrt3) ( hati +hatj +hatk) = -+ 4/sqrt3 (hati +hatj + hatk)` |
|
| 5. |
Let ` vecu = u_(1)hati + u_(2)hatj +u_(3)hatk` be a unit vector in ` R^(3) and vecw = 1/sqrt6 ( hati + hatj + 2hatk)` , Given that there exists a vector `vecv " in " R^(3)` such that ` | vecu xx vecv| =1 and vecw . ( vecu xx vecv) =1` which of the following statements is correct ?A. There is exactly one choice for such ` vecv`B. There are exactly two for such `vecv`C. There are exactly for such `vecv`D. There are infinitely many choices for such `vecv` |
|
Answer» Correct Answer - D Clearly, `vecw` is a unit vector such that ` |vecu xx vecv|=1 and vecw , (vecu xx vecv) =1 ` Now, ` ` vecw .(vecu xx vecv) =1` ` Rightarrow vecw = vecu xx vecv` ` Rightarrow |vecw| = |vecu xx vecv|` ` Rightarrow 1 = |vecu||vecv| sin theta " where " theta` is the angle betweeen ` vecu and vecv` ` Rightarrow vecc sin theta =1` Clearly, p can take infinitely many positions on the line at a unit distance from OA. Consequently, ` vec(OP) =vecv` has, infinitely, many chocies. |
|
| 6. |
IF the force represented by ` 3hati +2hatk` is acting through the point ` 5hati +4hatj -3hatk` , then its moment about th point (1,3,1) isA. ` 14 hati -8 hatj +12hatk`B. ` -14hati +8hatj -12hatk`C. ` -6hati -hatj +9hatk`D. ` 6hati +hatj -9hatk` |
|
Answer» Correct Answer - A we have, ` vecF= 3hatj +2hatk` Let P ( 5,4,-3) and O (1,3,1) be the given points. Then , ` vectr = vec(OP) =4hati +hatj -4hatk` Moment of ` vecF ` about O is given by ` vecr xx vecF = |{:(hati,hatj,hatk),(4,1,-4),(0,3,2):}|=14ghati -8hatj +12hatk` |
|
| 7. |
Forces of magnitudes 5 and 3 units acting in the directions ` 6hati + 2hatj + 3hatk and 3 hati - hati +6hatk` respectively act on a particle which is displaced from the point ( 2,2,-1) to ( 4,3,1) . The work done by the forces, isA. 148 unitB. ` 148/7` unitC. 296 unitsD. none of these |
|
Answer» Correct Answer - B Let ` vecF` be the resultant force and `vecd` be the displacement vector. Then, ` vecF=5 ((6hati +2hatj +3hatk))/ (sqrt(36+4+9))+3 ((3hati -2hatj +6hatk)) /(sqrt(9 +4+ 36)) = 1/7 (39 hati + 4hatj +33 hatk)` ` and vecd = (4hati + 3hatj +hatk) - (2hati +2hatj -hatk) = 2hati +hatj + 2hatk` Total work done = ` vecF. vecd` `Rightarrow ` Total work done = ` 1/7 (39 hati +4hatj +33hatk).(2hati +hatj +2hatk) ` Total work done ` = 1/7 ( 78 +4 +66) = 148/7` units. |
|
| 8. |
Unit vectors equally inclined to the vectors ` hati , 1/3 ( -2hati +hatj +2hatk) = +- 4/sqrt3 ( 4hatj +3hatk)` areA. `+- 1/sqrt51 (hati - 5hatj +5hatk)`B. ` +- 1/sqrt51 (hati -5hatj -5hatk)`C. `+- 1/sqrtt51 (hati+ 5hatj + 5hatk)`D. none of these |
|
Answer» Correct Answer - A Let the require unit be ` vecb = xhati + yhati + yhatj + zhatk` It is equally inclined to the given units vectors. Therefore, `(x hati +yhatj +zhatk) .hati = 1/3 ( - 2hati +hatj +2hatk) . (x hati +yhatj +zhatk)` ` -1/5 ( 4hatj +3hatk) . (xhati +yahtj +3hatk)` ` x = 1/3 ( -2x +y +2z) = -1/5 ( 4y +3z)` ` x= 1/3 ( -2 x + y +2z) = -1/5 ( 4y +3z)` ` Rightarrow 5x -y -2x =0 and 5x +4y +3z=0` ` Rightarrow x/1 = y/(-5) = z/5 lambda (say) , Rightarrow x=lambda, y =-5 lambda, z= 5lambda` It is given that ` vecr =xhati +yhatj +zhatk` is a unit vector. ` |vecr| =1 Rightarrow x^(2) +y^(2) +z^(2) =1 Rightarrow lambda = +- 1/sqrt51` ` vecr = +- 1/sqrt51 (hati -5hatj+5hatk)` |
|
| 9. |
A force of 39 kg. wt is acting at a point p ( -4,2,5) in the direaction ` 12hati -4hatj -3hatk` . The moment of this force about a line through the origin having the direction of ` 2hati -2hatj + hatk` isA. 76 unitsB. - 76 unitsC. ` 42hati + 144 hatj -24 hatk`D. none of these |
|
Answer» Correct Answer - B we have, Force, ` (vecF) = 39 ((12hati -4hatj -3hatk))/(sqrt (144 +16+9) ) = 36 hati -12 hatj -9hatk` Let `vecM` be the moment of ` vecF` about a point O ( origin) on the given line . Then ` vecM = vecr xx vecF, " where " vecr = vec(OP) = - 4hati +2 hatj +5hatk` `Rightarrow vecM=|{:(hati,hatj,hatk),(-4,2,5),(36,-12,-9):}|=42hati+144hatj-24hatk` So, the moment of ` vecF` about a line having the direction `veca =2hati -2hatj +hatk` is given by ` vecM l.hata = (42 hati +144 hatj -24hatk) . (( 2hati -2hatj +hatk))/(sqrt( 4+4+1)) = -76 ` units |
|
| 10. |
If ` veca, vecb` are unit vectors such that ` |veca +vecb|=1 and |veca -vecb|=sqrt3`, " then " |3veca +2vecb|=`A. 7B. 4C. ` sqrt7`D. `sqrt19` |
|
Answer» Correct Answer - C Let `theta` the angle between `veca and vecb` . Then, ` tan "" theta/2= (|veca -vecb|)/(|veca +vecb|) Rightarrow tan "" theta/2 = sqrt3 Rightarrow theta =120^(@)` ` veca.vecb = |veca||vecb| cos theta =cos 120^(@) = -1/2` Now , ` |3 veca = 2vecb|^(2) = 9 |veca|^(2) + 4 |vecb|^(2) + 12(veca .vecb)` ` Rightarrow |3veca + 2veca|^(2) = 9 +4+12 xx ( - 1/2) =7` ` Rightarrow |3veca +2vecb|= sqrt7` |
|
| 11. |
Let `veca , vecb , vecc` be three unit vectors such that ` |veca + vecb +vecc| =1 and veca bot vecb , " if " vecc` makes angles ` delta beta " with " veca, vecb` respectively, then ` cos delta + cos beta ` is equal toA. 1B. -1C. `3/2`D. 0 |
|
Answer» Correct Answer - B we have ` veca bot vecb` , therefore, ` veca.vecb =0` Also, `vecc. Veca = cos delta and vecc. Vecb =cos beta` . now , ` |veca + vecb + vecc|= 1` `Rightarrow |veca + vecb + vecc|^(2) =1` ` Rightarrow |veca|^(2) + |vecb|^(2) + |vecc|^(2) + 2 (veca.vecb + vecb.vecc + vecc.veca) =1` ` Rightarrow 1+1+1+2 ( cos delta + cos beta) =1` ` Rightarrow cos delta + cos beta = -1` |
|
| 12. |
If the vectors `veca = ( c log_(2) x ) hatk ` make an obtuse angle for any ` x ne ( 0 , oo) ` then c belongs toA. ` ( - oo, 0)`B. ` ( - oo , -4//3)`C. ` ( -4//3,0)`D. ` (-4//3, oo)` |
|
Answer» Correct Answer - C For the vectors ` veca and vecb` to be inclined at an obtuse angle we must have ` veca. Vecb lt o) " for all " x ne ( 0, oo)` ` Rightarrow 2(log_(2) x) ^(2) - 12 + 6 c ( log_(2) x ) lt 0 " for all " x ne ( 0, oo)` ` Rightarrow 2y^(2) + 6 cy -12 lt 0 " for all " y ne R, " where " y = log_(2) x ` ` Rightarrow c lt 0 and 36 c^(2) + 48 c lt 0` ` Rightarrow c lt 0 and c ( 3c + 4) lt 0` ` c lt 0 and - 4/3 lt c lt 0` ` Rightarrow c in ( -4//3 , 0)` |
|
| 13. |
If ` veca , vecb` are unit vectors such that the vector ` veca + 3vecb ` is peependicular to ` 7 veca - vecb and veca -4vecb` is prependicular to ` 7 veca -2vecb` then the angle between ` veca and vecb` isA. ` pi//6`B. ` pi//4`C. ` pi//3`D. ` pi//2` |
|
Answer» Correct Answer - C Let ` theta` be the angle between `veca and vecb` is we have, ` ( veca + 3vecb) bot ( 7 veca - 5vecb)` ` Rightarrow ( veca + 3vecb) . ( 7 veca -5vecb) =0 ` ` Rightarrow 7|veca|^(2) + 16(veca .vecb) -15 |vecb|^(2) =0` ` Rightarrow 15-30 cos theta =0 Rightarrow cos theta = 1/2 Rightarrow 1/2 Rightarrow theta = pi/3` And, ` (veca - 4 vecb ) bot ( 7veca - 2vecb)` ` Rightarrow (veca -4vecb) . ( 7 veca - 2 vecb) =0` ` Rightarrow 7| veca|^(2) + 8|vecb|^(2) -30 (veca .vecb) =0` ` Rightarrow 15-30 cos theta =0 Rightarrow = 1/2 Rightarrow = pi /3` |
|
| 14. |
If ` veca , vecb` are unit vectors such that ` |vec a+vecb|=-1 " then " |2veca -3vecb| =`A. 19B. `sqrt19`C. `sqrt13`D. 4 |
|
Answer» Correct Answer - B we have, `|veca +vecb|=1` ` Rightarrow |veca|^(2) +|vecb|^(2) + 2(veca .vecb) =1 ` ` Rightarrow 1+1 +2 (veca.vecb) =1 Rightarrow veca.vecb= -1/2 ` Now, ` |2 veca -3 vecb|^(2) =4 |veca|^(2) +9|vecb|^(2) -12(veca.vecb)` ` Rightarrow |2veca -3vecb|^(2) =4+9 =19` ` Rightarrow |2veca -3vecb|= sqrt19` |
|
| 15. |
The moment of the couple consisting of the force through the point `2hati -3hatj -hatk` isA. 5B. `5sqrt5`C. `sqrt5`D. 25 |
|
Answer» Correct Answer - B Let A and B be the points having position vectors ` hati - hatj + hatk and 2hati -3hatj -hatk` respectively, then `vecr = vec(BA) = (hati -hatj +hatk) - ( 2hati -3hatj -hatk) = - hati + 2hatj + 2hatk` Let `vecM` b the moment of the couple. Then, ` vecM = vecr xx vecF |{:(hati, hatj ,hatk),(-1,2,2),( 3,2,-1):}| = -6 hati +5hatj -8hatk` Moment fo the couple = ` |vecM|= sqrt(36+25+ 64) = 5sqrt5` |
|
| 16. |
If two out to the three vectors , `veca, vecb , vecc` are unit vectors such that ` veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0` then the length of the third vector isA. 3B. 2C. 1D. 0 |
|
Answer» Correct Answer - C Let ` |veca|-1 and |vecb| =1` we have, ` veca + vecb+ vecc = vec0` ` Rightarrow |veca|^(2) + |vecb|^(2) + 2 (veca.vecb +vecb.vecc + vecc.veca)=0` ` Rightarrow 1+1 + |vecc|^(2) -3=0 Rightarrow |vecc| =1` |
|
| 17. |
If ` veca. Vecb and vecc` are unit vectors satisfying ` |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| ` is equal to |
|
Answer» Correct Answer - D we know that ` |veca + vecb + vecc|^(2) = |veca|^(2) +|vecb|^(2) +|vecc|^(2) + 2 ( veca .vecb + vecb.vecc + vecc.veca)` ` and |veca -vecb|^(2) + |vecb -vecc|^(2) +|vecc -veca|^(2) ` ` = 2 (|veca|^(2) +|vecb|^(2) +|vecc|^(2) ) -2 (veca.vecb + vecb.vecc + vecc.veca)` ` |veca -vecb|^(2) + |vecb - vecc|^(2) + |vecc -veca|^(2) ` ` = 3 { |veca|^(2) +|vecb|^(2) |vecc|^(2) } - |veca +vecb +vecc|^(2)` ` Rightarrow 9 = 3xx 3 - |veca + vecb + vecc|^(2) ` ` Rightarrow |veca + vecb + vecc|^(2) =0` ` Rightarrow veca + vecb + vecc = vec0` ` Rightarrow vecb + vecc =- veca` ` therefore | 2 veca + 5 vecb + 5vecc| = | 2 vecb +5( -veca)| = 3|veca|=3` |
|
| 18. |
If ` veca and vecb` are unit vectors inclined to x-axis at angle ` 30^(@) and 120^(@)` then ` |veca +vecb|` equalsA. `sqrt(2//3)`B. `sqrt2`C. `sqrt3`D. 2 |
|
Answer» Correct Answer - B Clearly, `veca and vecb` are at angle angle. ` |veca +vecb|^(2) =|vecb|^(2) +2|veca||vecb| cos 90^(@)` ` Rightarrow | veca +vecb|^(2) = 1+ 1+0=2 Rightarrow |veca + vecb| = sqrt2` |
|
| 19. |
The vactors ` veca = 3hati -2hati + 2hatk and vecb =- hati -2hatk` are the adjacent sides of a parallelogram. Then , the acute angle between ` veca and vecb` isA. `pi//4`B. ` pi//3`C. ` 3pi//4`D. `2pi//3` |
|
Answer» Correct Answer - A The diagonals of the parallelogram are given by ` vecalpha =veca =vecb and vecbeta = +- (veca -vecb)` i.e ` vecalpha = 2hati -2hatj and vecbeta = +- ( 4hati -2hatj +4hatk)` Let ` theta` be the angle between the diagonals. Then , ` cos theta = ( vecalpha .vecbeta)/(|vecalpha||vecbeta|)` ` Rightarrow cos theta= 1/sqrt2 or, cos theta = - 1/sqrt2 Rightarrow theta = pi//4, or , theta = 3pi//4` |
|
| 20. |
Let ` veca , vecb,vecc` be three vectors such that ` veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 `, ` |vecc| =3 , " then " | veca + vecb + vecc|` is,A. ` sqrt6`B. 14C. ` sqrt14`D. none of these |
|
Answer» Correct Answer - C we have, ` veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) ` ` Rightarrow veca.vecb + veca.vecc =0, vecb.veca =0, vecc.veca + vecc.vecb =0` ` Rightarrow veca.vecb = vecb.vecc= vecc.veca =0` ` |veca + vecb + vecc|^(2) = |veca|^(2) + 2 (veca.vecb + vecb.vecc + vecc. veca)` ` Rightarrow |veca + vecb + vecc|^(2) = 1+ 4+9 =14` ` Rightarrow |veca + vecb+ vecc| = sqrt 14` |
|
| 21. |
The length of the longer diagonal of the parallelogram constructed on ` 5veca + 2vecb and veca - 3vecb, ` if it is given that ` |veca|=2sqrt2, |vecb|=3 and veca. Vecb= pi/4` isA. 15B. `sqrt3`C. `sqrt593`D. `sqrt369` |
|
Answer» Correct Answer - C The diagonals of the parallelogram are ` vecalpha = 5veca + 2vecb + veca -3vecb = 6veca - vecb and beta = +- ( 4 veca + 5vecb)` Now, ` |vecalpha|= | 6 veca - vecb|` ` Rightarrow |vecalpha| = sqrt(36 |veca|^(2) + |vecb|^(2) -12 (veca .vecb))` `|vecalpha|=sqrt(36xx8+9-12xx 2sqrt2xx3xx1/sqrt2) =15` and, ` |vecbeta|=|4veca +5vecb|` `|vecbeta|=sqrt(16|veca|^(2)+25|vecb|^(2)+40(veca.vecb))` `|vecbeta|=sqrt(16xx8+25xx9 +40xx2sqrt2xx3xx1/sqrt2)=sqrt593` Clearly, `|vecbeta| gt |vecalpha|` Hence, the length of the longer diagonal is `sqrt593` |
|
| 22. |
Angle between vectors ` veca and vecb " where " veca,vecb and vecc` are unit vectors satisfying ` veca + vecb + sqrt3 vecc = vec0` isA. ` pi/6`B. `pi/4`C. `pi/3`D. ` pi/2` |
|
Answer» Correct Answer - C we have, ` veca + vecb + sqrt3 vecc = vec0` ` Rightarrow veca | vecb = sqrt3 vecc` ` Rightarrow |veca + vecb| = sqrt3 |vecc|` ` Rightarrow |veca + vecb|^(2) =3 |vecc|^(2) ` ` Rightarrow |veca|^(2) +|vecb|^(2) + 2|veca||vecb| cos theta =3 |veca|^(2) ` where ` theta ` is the angle between ` veca and vecb` . ` Rightarrow 1 +1 + 2 cos theta =3 Rightarrow = 1/2 Rightarrow theta = pi/3` |
|
| 23. |
If ` veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7` , then the angle between ` veca and vecb` isA. `pi/2`B. ` pi/4`C. ` pi/6`D. ` pi/3` |
|
Answer» Correct Answer - D we have, ` veca + vecb +vecc= vec0` ` Rightarrow vecc = - ( veca + vecb)` ` Rightarrow |vecc| = |-(veca + vecb)|` ` Rightarrow |vecb|^(2) = |veca + vecb|^(2)` ` Rightarrow |vecc|^(2) =|veca|^(2) + |vecb|^(2) + 2( veca.vecb)` ` Rightarrow |veca|^(2) = |veca|^(2) +|vecb|^(2) + 2 |veca||vecb| cos theta` where ` theta` is angle between ` veca and vecb`. ` Rightarrow 49 = 9 + 25 + 30 cos theta` ` Rightarrow 15= 30 cos theta Rightarrow cos theta = 1/2 Rightarrow theta = pi/3` |
|
| 24. |
If ` veca,vecb, vecc` are three vectors such that ` veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3` , then ` veca.vecb + vecb .vecc +vecc + vecc.veca ` is equal toA. 1B. 0C. -7D. 7 |
|
Answer» Correct Answer - C we have, ` veca + vecb + vecc = vec0` ` Rightarrow |veca + vecb + vecc | = 0` ` Rightarrow |veca + vecb + vecc|^(2) =0` ` Rightarrow |veca|^(2) + |vecb|^(2) + 2 ( veca .vecb + vecb .vecc + vecc. veca) =0` `Rightarrow 1+4+ 9+2 ( veca .vecb +vecb .vecc + vecc .veca) = 0` ` Rightarrow veca. vecb + vecb.vecc + vecc.veca = - 7 ` |
|
| 25. |
If `|veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0` then the value of `( veca. Vecb + vecb.vecc)` is equal tio |
|
Answer» Correct Answer - B we have, ` veca +vecb + vecc= vec0` ` Rightarrow ( veca + vecb + vecc) , vecb = vec0 .vecb` [ Taking dot product with ` vecb`] ` veca.vecb + vecb.vecb + vecc.vecb =0` ` Rightarrow veca. Vecb + |vecb|^(2) + vecb.vecc =0 Rightarrow veca. vecb + vecb.vecc=-25` |
|
| 26. |
If the area of parallelogram whose diagonals coincide with the following pair of vectors is `5sqrt3`,then vectors areA. ` 3hati + 2hati -hatk ,3hati -hatj+4hatk`B. ` 3/2hati +1/2hatj -hatk , 2hati -6hatj +8hatk`C. ` 3hati + hatj -2hatk,hati + 3hatj +4hatk`D. none of these |
|
Answer» Correct Answer - B If `veca , vecb` are diagonals of a parallelogram, then its area is `1/2 |veca xx vecb|` Clearly, ` 1/2 |veca xx vecb|= 5sqrt3` is sattisfied by the pair of vectors given in option (b) ` |
|
| 27. |
If the vectors ` veca.veca = xhati + y hatj + zhatk and vecb =hatj` are such that ` veca, vecb ,and vecb` from a right handed system , then ` vecc ` idA. ` xhati -xhatk`B. `vec0`C. `y hatj`D. `-zhat + x hatk` |
|
Answer» Correct Answer - A Since ` veca , vecb, vecb` form a right handed system ` veca xx vecc = vecb, vecc xx veca and vecb xx veca = vecc` Now, ` vecc = vecb xx vecb xx veca Rightarrow vecc= |{:( hati,hatj,hatk),(0,1,0),(x,y,z):}| =zhati -xhatk` |
|
| 28. |
if ` veca , vecb ,vecc ` are three vectors such that ` veca +vecb + vecc = vec0` thenA. ` veca .vecb= vecb .vecc= vecc.veca`B. ` veca xx vecb = vecb xx vecc = vecc xx veca`C. ` veca xx vecb = vecb xx vecc = veca xx vecc`D. ` vecb xx veca = vecb xx vecc = vecc xx veca` |
|
Answer» Correct Answer - B we have, ` veca +vecb +vecc= vec0` ` Rightarrow veca xx (veca + vecb + vecc ) = veca xx vec0` [ Taking cross product with `veca` ] ` Rightarrow veca +veca + veca xx vecb + vecc xx veca =0` ` Rightarrow vec0 + veca xx vecb -vecc xx veca =0` ` Rightarrow veca xx vecb = vecc xx veca` Taking cross product of (i) with ` vecb, " we get " veca xx vecb = vecb xx vecc` ` veca xx vecb = vecc xx veca` |
|
| 29. |
Let ` veca , vecb , vecc` be unit vectors such that ` veca .vecb =0=veca.vecc` . If the angle between `vecb and vecc " is " pi/6 , " then " veca ` equalsA. ` +- 2(vecb xx vecc)`B. ` 2(vecb xx vecc)`C. ` +- 1/2(vecb xx vecc)`D. ` - 1/2 (vecb xx vecc)` |
|
Answer» Correct Answer - A we have , ` veca.vecb= veca.vecc = vec0` ` Rightarrow veca bot vecb, veca bot vecc` ` Rightarrow veca || (vecb xx vecc)` ` Rightarrow veca = +- (vecb xx vecc)/(|vecb xx vecc|) =+- (|vecb xx vecc|)/(|vecb||vecc| sin pi/3) = +- 2 ( vecb xx vecc)` |
|
| 30. |
Let `triangle PQR` be a triangle. Let ` veca = vec(QR) , vecb = vec(RP) and vecc= vec(PQ) . " if " |veca| = 12, |vecb| = 4sqrt3 and vecb , vecc = 24` , then which of the following is ( are ) true ?A. `1/2|vecc|^(2) -|veca| =12`B. `1/2|vecc|^(2) + |veca| =30`C. ` |veca xx vecb + vecc xx veca| = 48sqrt3`D. `veca.vecb= -72` |
|
Answer» Correct Answer - A::C::D `veca= vec(QR) ,vecb = vec(RP) and vecc= vec(PQ)` ` Rightarrow veca + vecb + vecc = vec(QR) + vec(RP) + vec(PQ)` ` Rightarrow veca + vecb + vecc = vec(OQ) ` ` Rightarrow veca + vecb + vecc= vec0` ` Rightarrow vecb + vecc = -veca` ` Rightarrow vecb + vecc = |-veca|` ` |vecb + vecc|^(2) =|veca|^(2)` ` |vecb|^(2) +|vecc|^(2) + 2(vecb .vecc) = |veca|^(2) ` ` 48 + |vecc|^(2) + 48 = 144 ` ` |vecc| = 4sqrt3` ` 1/2 |vecc|^(2) - |veca| = 24 -12 =12 and 1/2 |vecc|^(2) + | veca| = 24 + 12 =36` So, option (a) is true and option (b) is not true. Again. ` veca + vecb + vecc= vec0` ` Rightarrow |veca + vecb| = | -vecc|` ` Rightarrow |veca + vecb|^(2) +2 (veca.vecb) = |vecc|^(2)` ` Rightarrow 144 + 48+2 (veca .vecb) = 48` ` Rightarrow veca.vecb = -72` So, option (d) is true. Again ` veca + vecb + vecc= vec0` ` Rightarrow veca xx ( veca + vecb + vecc) = veca xx vec0` ` Rightarrow veca xx veca + veca xx vecb + veca xx vecc= vec0` ` Rightarrow veca xx vecb = vecc xx veca ` ` therefore |veca xx vecb + vecc xx veca| = |2 (veca xx vecb)| = 2|veca xx vecb|` ` 2 sqrt(|veca|^(2) |vecb|^(2) -(veca -vecb)^(2) )` ` 2 sqrt(144xx 48 -(-72) ^(2)) = 48sqrt3` So, option (c) is correct Hence, option (a),(c) and (d) are ture. |
|
| 31. |
The value of x for which the angle between ` veca = 2x^(2) hati + 4x hatj =hatk +hatk and vecb = 7hati -2hatj =x hatk` , is obtuse and the angle between ` vecb` and the z-axis is acute and less than `pi//6`, areA. ` a lt x lt 1//2`B. ` 1//2 lt x lt 15`C. ` x gt 1//2 or x lt 0`D. none of these |
|
Answer» Correct Answer - D The angle between `veca and vecb` is obtuse. `veca.vecb lt 0` ` Rightarrow 14x^(2) - 8x +x gt 0 Rightarrow 7x(2x -1) gt 0 Rightarrow 0 lt x lt 1//2 …(1)` The angle between `vecb` and z-axis is acute and less thann `pi//6` . ` ( vecb.veck)/(|vecb||veck|) gt cos "" pi/6 " " [ therefore, theta , pi/6 Rightarrow cos theta gt cos "" pi/6]` ` x/ (sqrt(x^(2) +53)) gt sqrt3/2` ` Rightarrow 4x^(2) gt 3x^(2) + 159` ` Rightarrow x^(2) gt 159 Rightarrow gt sqrt(159) or x gt - sqrt159 ` Clearly, (i) and (ii) cannot hold togerther. |
|
| 32. |
`(veca.hati)(vecaxxhati)+(veca.hatj)+(veca.hatk)(vecaxxhatk)` is equal toA. ` 3veca`B. `veca`C. `vec0`D. `2veca` |
|
Answer» Correct Answer - C Let `veca =a_(1)hati+a_(2)hati +a_(2)hatj +a_(3)hatk`, Then, ` veca.hati=a_(1),veca.hatj=a_(2), veca.hatk =a_(3)` ` veca xx hati =- a_(2) hatk + a_(2) hatj ,veca xx hatj = a_(1)hatk -a_(3)hati , veca xx hatk = - a_(1)hatk + a_(2)hati ` ` (veca .hati) (veca xx hati) + (veca .hatj) (veca xx hatj) + ( veca .hatk) (veca xx hatk)` ` = a_(1) (-a_(2)hatk + a_(3)hatj) + a_(2) (a_(1)hatk -a_(3) hati) + a_(3) (-a_(1)hatj + a_(2)hati) = vec0` |
|