Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

1.

निम्नलिखित समाकलों के मान ज्ञात कीजिए - `int_(0)^(pi//4)(1)/(1+cos2x)dx`

Answer» Correct Answer - `(1)/(2)`
2.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(1)/(1+cos2x)dx`

Answer» Correct Answer - `(1)/(2)tanx+c`
3.

निम्नलिखित समाकलों को हल कीजिए । (i) `int(2x^(3))/(4+x^(8))dx` (ii) `int(1)/(x^(2))sin.(1)/(x)dx`

Answer» (i) `(1)/(4)tan^(-1).(x^(4))/(2)+c` (ii) `cos((1)/(x))+c`
4.

निम्नलिखित समाकलों को हल कीजिए । `inte^(x).(1+be^(x))^(n)dx`

Answer» `((a+be^(x))^(n+1))/(b(n+1))+c`
5.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(1)/(1-cos2x)dx`

Answer» Correct Answer - `-(1)/(2)cotx+c`
6.

निम्नलिखित समाकलों को हल कीजिए । `int(xdx)/((1+x^(2))^(3//2))`

Answer» `-(1)/(sqrt(1+x^(2)))+c`
7.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(1+cos2x)/(1-cos2x)dx`

Answer» Correct Answer - `-cotx-x+c`
8.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- (i) `sqrt(1+sin.(x)/(2))dx`

Answer» (i) `4sin.(x)/(4)-2cos.(x)/(4)+c`
9.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(cos^(3)x+sin^(3)x)/(sin^(2)x.cos^(2)x)dx`

Answer» (i) `secx-"cosec"x+c` (ii) `-cotx-tanx+c`
10.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int tan^(2)xdx`

Answer» Correct Answer - `"cosec" x-cotx+c`
11.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `inte^(4-3x)dx`

Answer» `-(1)/(3).e^(4-3x)+c`
12.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `inte^(2x+5)dx`

Answer» `(1)/(2).e^(2x+5)+c`
13.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int((x+1)(2x-3))/(x)dx`

Answer» Correct Answer - `x^(2)-x-3logx+c`
14.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(x^(2)+3)/(x^(2)+1)dx`

Answer» Correct Answer - `x+2tan^(-1)x+c`
15.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `inte^(x+3)dx`

Answer» Correct Answer - `e^(x+3)+c`
16.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(x)/(x+a)dx`

Answer» Correct Answer - `x-alog(x+a)+c`
17.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(sinx)/(1+sinx)dx`

Answer» Correct Answer - `secx-tanx+x+c`
18.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `intsqrt(1-cos2x)dx`

Answer» Correct Answer - `-sqrt2cosx+c`
19.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `intsqrt(2x+(1)/(3))dx`

Answer» `(1)/(3)(2x+(1)/(3))^(3//2)+c`
20.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `intsqrt(1+cos2x)dx`

Answer» Correct Answer - `sqrt2sinx+c`
21.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(x^(2)+2x-5)/(sqrtx)dx`

Answer» `(2)/(5)x^(5//2)+(4)/(3)x^(3//2)-10sqrtx+c`
22.

निम्नलिखित समाकलों को हल कीजिए । `int(e^(sqrtx).sin e^(sqrtx))/(sqrtx)dx`

Answer» Correct Answer - `-2cos e^(sqrtx)+c`
23.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- (i) `int((1+x)^(3))/(sqrtx)dx` (ii) `int((1+x)^(3))/(x^(4))dx`

Answer» (i) `(2)/(7)x^(7//2)+(6)/(5)x^(5//2)+2x^(3//2)+2sqrtx+c` (ii) `-(1)/(3x^(3))-(3)/(2x^(2))-(3)/(x)+logx+c`
24.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `intsqrt(2x-1)dx`

Answer» `((2x-1)^(3//2))/(3)+c`
25.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(1-x)/(sqrtx)dx`

Answer» `2sqrtx-(2)/(3)x^(3//2)+c`
26.

`(cos sqrtx)/(sqrt(1+sinx))`

Answer» `int(cosx)/(sqrt(1+sinx))dx" माना "1+sinx=t`
`" "rArr" "cos x dx = dt`
`=int(1)/(sqrtt)dt=int t^(-1//2)dt`
`=(t^(1//2))/(1//2)+c=2sqrt(1+sinx)+c`
27.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- (i) `(1)/(5x+1)dx` (ii) `int(1)/(sqrt(x+1)+sqrtx)dx`

Answer» (i) `(1)/(5)log_(e)(5x+1)+c` (ii) `(2)/(3)[(x+1)^(3//2)-x^(3//2)]+c`
28.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(3-7x)^(5)dx`

Answer» `((3-7x)^(6))/(-42)+c`
29.

`int(x^(3)-x^(2)+x-1)/(x-1)dx` का मान होगा -A. `(x^(2))/(3)+x+c`B. `(x^(3))/(3)-x+c`C. `(x^(3))/(3)+x+c`D. `(x^(5))/(3)+2x+c`

Answer» Correct Answer - C
30.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(ax+b)^(3)dx`

Answer» `((ax+b)^(4))/(4a)+c`
31.

`int(x^(3)-1)/(x^(2))dx` का मान होगा -A. `(x^(2))/(4)+(1)/(2)x+c`B. `(x^(3))/(3)-x^(2)+c`C. `(x^(2))/(2)+(1)/(2)+c`D. `x^(2)+c`

Answer» Correct Answer - C
32.

`sqrt((1-sqrtx)/(1+sqrtx))`

Answer» माना `I=intsqrt((1-sqrtx)/(1+sqrtx))`
माना `sqrtx=cost`
`rArr" "x=cos^(2)t rArr dx=2cos t (-sin t)dt`
`therefore" "I=intsqrt((1-cost)/(1+cost))(-2sint cost)dt`
`I=-2intsqrt((2sin^(2).(t)/(2))/(2cos^(2).(t)/(2))).2sin.(t)/(2)cos.(t)/(2).cost dt`
`=-4intsin^(2).(t)/(2).cost dt`
`=-4int(1-cost)/(2).costdt`
`=-2int(cost-cos^(2)t)dt`
`=-2int(cost-(1+cos2t)/(2))dt`
`=-2sint+t+(1)/(2)sin2t+C`
`=-2sqrt(1-cos^(2)t)+t+(1)/(2)(2sqrt(1-cos^(2)t).cost)+C`
`=-2sqrt(1-x)+cos^(-1)sqrtx+sqrtxsqrt(1-x)+C`
`=-2sqrt(1-x)+cos^(-1)sqrtx+sqrt(x-x^(2))+C`
33.

`int(x^(2//3)+1)dx` का मान होगा -A. `(3)/(5)x^(5//3)+x+c`B. `(3)/(5)x^(2//3) +c`C. `(3)/(7)x^(5//3) + 2x + c`D. `2x^(2)+c`

Answer» Correct Answer - A
34.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(3x-2)^(3)dx`

Answer» `(27x^(4))/(4)-18x^(3)+18x^(2)-8x+c`
35.

मान ज्ञात कीजिए - `int x^(2)(1-(1)/(x^(2)))dx`

Answer» Correct Answer - `(x^(3))/(3)-x+c`
36.

`int(x^(2))/((a+bx)^(2))dx` का मान है -A. `(x^(2))/(b(a+bx))+(2)/(b^(2))x+c`B. `(-x^(2))/(b(a+bx))+(2)/(b^(2))[x-(a)/(b)log(a+bx)]+c`C. `(-x^(2))/(b(a+bx))-(2)/(b^(2))[x-(1)/(b)log(a+bx)]+c`D. इनमे से कोई नहीं |

Answer» Correct Answer - B
37.

मान ज्ञात कीजिए -`int (2x^(2)+e^(x))dx`

Answer» `(2)/(3)x^(3)+e^(x)+c`
38.

`intx^(2) (1-(1)/(x^(2)))dx` का मान होगा -A. `(x^(3))/(3)+x+c`B. `(x^(2))/(2)+x+c`C. `(x^(3))/(3)-x+c`D. `(x^(2))/(2)-x+c`

Answer» Correct Answer - C
39.

`int(ax^(2)+bx+c)dx` का मान होगा -A. `ax^(2)+bx+c`B. `(ax^(3))/(3)+(bx^(2))/(2)+cx+d`C. `ax^(3)+bx^(2)+cx`D. `ax+b`

Answer» Correct Answer - B
40.

`(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrtx+cos^(-1)sqrtx),(x in [0,1])`

Answer» माना `I=int(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrtx+cos^(-1)sqrtx)dx`
हम जानते हैं कि `sin^(-1)sqrtx+cos^(-1)sqrtx=(pi)/(2)`
`rArr cos^(-1)sqrtx=(pi)/(2)-sin^(-1)sqrtx`
`therefore" "I=int(sin^(-1)sqrtx-((pi)/(2)-sin^(-1)sqrtx))/((pi)/(2))dx`
`" "=int(2sin^(-1)sqrtx-(pi)/(2))/((pi)/(2))dx`
`" "=(2)/(pi)int(2sin^(-1)sqrtx-(pi)/(2))dx`
`" "=(4)/(pi)intsin^(-1)sqrtxdx-int1dx`
`" "=(4)/(pi)intsin^(-1)sqrtx dx-x`
`rArr" "I=(4)/(pi)I_(1)-x+C" ...(1)"`
जहाँ `" "I_(1)=intsin^(-1)sqrtx dx`
माना `sqrtx=t" "rArr" "x=t^(2)" "rArr" "dx=2tdt`
`I_(1)=intsin^(-1)t 2t dt = 2 int underset("I ")(sin^(-1))underset("II")(t.t) dt `
`=2(sin^(-1)t.(t^(2))/(2)-int(1)/(sqrt(1-t^(2))).(t^(2))/(2)dt)`
`=t^(2)sin^(-1)t-int(t^(2))/(sqrt(1-t^(2)))dt`
`=t^(2)sin^(-1)t-int(-(1-t^(2))+1)/(sqrt(1-t^(2)))dt`
`=t^(2)sin^(-1)t+intsqrt(1-t^(2))dt-int(1)/(sqrt(1-t^(2)))dt`
`=t^(2)sin6(-1)t+(tsqrt(1-t^(2)))/(2)+(1)/(2)sin^(-1)t-sin^(-1)t`
`=(t^(2)-(1)/(2))sin^(-1)t+(1)/(2)tsqrt(1-t^(2))`
`=(1)/(2)[(2x-1)sin^(-1)sqrtx+sqrtxsqrt(1-x)]`
`=(1)/(2)[(2x-1)sin^(-1)sqrtx+sqrt(x-x^(2))]`
`I_(1)` का मान समीकरण (1 ) में रखने पर,
`int(sin^(-1)sqrtx-cos^(-1)sqrtx)/(sin^(-1)sqrtx+cos^(-1)sqrtx)dx`
`=(2)/(pi)[(2x-1)sin^(-1)sqrtx+sqrt(x-x^(2))]-x+C`
41.

निम्नलिखित समाकलों के मान ज्ञात कीजिए- `int(ax^(2)+bx+c)dx`

Answer» `(ax^(3))/(3)+(bx^(2))/(2)+cx+k`
42.

मान ज्ञात कीजिए -`int (ax^(2)+bx+c)dx`

Answer» `(ax^(3))/(3)+(bx^(2))/(2)+cx+c_(1)`
43.

`int((ax^(4)+bx^(2)+c)/(x^(4)))dx` का मान ज्ञात कीजिए ।

Answer» `int((ax^(4)+bx^(2)+c)/(x^(4)))dx`
`=int((ax^(4))/(x^(4))+(bx^(2))/(x^(4))+(c)/(x^(4)))dx`
`=aint1dx+b intx^(-2)dx+c intx^(-4)dx`
`=ax+(b.x^(-1))/(-1)+(c.x^(-3))/(-3)+k`
`" "` (k = समाकल अचर है )
`=ax-(b)/(x)-(c)/(3x^(3))+k`
44.

`intx^(2)(1-(1)/(x^(2)))dx`

Answer» `intx^(2)(1-(1)/(x^(2)))dx=int(x^(2)-1)dx`
`=intx^(2)dx-int1.dx=(x^(3))/(3)-x+c`
45.

`int(ax^(2)+bx+c)dx`

Answer» `int(ax^(2)+bx+c)dx`
`=aintx^(2)dx+b intxdx+cint1.dx`
`=(ax^(3))/(3)+(bx^(2))/(2)+cx+k`
जहाँ k = समाकल नियतांक है।
46.

दर्शाइए कि `int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx,` यदि f और g को `f(x)=f(a-x)` एवं `g(x)+g(a-x)=4` के रूप में परिभाषित किया गया है।

Answer» माना `I=int_(0)^(a)f(x)g(x)dx" …(1)"`
`I=int_(0)^(a)f(a-x)g(a-x)dx`
`" "[because int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx]`
`rArr" "I=int_(0)^(a)f(x){4-g(x)}dx" ..(2)"`
`[because f(x)=f(a-x)" तथा "g(x)=g(a-x)=4" (दिया है)" ]`
समीकरण (1 ) और (2 ) को जोड़ने पर
`rArr " "@I=int_(0)^(a)4f(x)dx rArr I=2 int_(0)^(a)f(x)dx`
47.

`int_(0)^(4)|x-1|dx`

Answer» माना `I=int_(0)^(4)|x-1|dx`
`therefore" "I=int_(0)^(1)|x-1|dx+int_(1)^(4)|x-1|dx`
`=int_(0)^(1)(1-x)dx+int_(1)^(4)(x-1)dx`
`=[x-(x^(2))/(2)]_(0)^(1)+[(x^(2))/(2)-x]_(1)^(4)`
`=(1-(1)/(2))-0+((4^(2))/(2)-4)-((1)/(2)-1)`
`=(1)/(2)+4+(1)/(2)=5`
48.

`int_(0)^((pi)/(2))(2log sin x- log sin 2x)dx`

Answer» माना `" "I=int_(0)^(pi//2)(2log sin x-log sin 2x)dx`
`=int_(0)^(pi//2)(log sin^(2)x-log sin 2x)dx`
`=int_(0)^(pi//2)log((sin^(2)x)/(sin2x))dx`
`=int_(0)^(pi//2)log((sin^(2)x)/(2sin x cos x))dx`
`=int_(0)^(pi//2)log((tanx)/(2))dx`
`=int_(0)^(pi//2)log(tanx)-log 2dx`
`=int_(0)^(pi//2)log(tanx)dx-int_(0)^(pi//2)log2dx`
`rArr" "I=I_(1)-log2[x]_(0)^((pi)/(2))=I_(1)-((pi)/(2)-0)log 2" ...(1)"`
जहाँ,`" "I_(1)=int_(0)^(pi//2)log(tan x)dx" ...(2)"`
`rArr" "I_(1)=int_(0)^(pi//2)log[tan((pi)/(2)-x)]dx`
`[because int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx]`
`rArr" "I_(1)=int_(0)^(pi//2)log(cotx)dx" ...(3)"`
समीकरण (2 ) और (3 ) को जोड़ने पर ,
`2I_(1)=int_(0)^(pi//2){(log(tanx)+log(cotx)}dx`
`int_(0)^(pi//2)log(tanxcotx)dx`
`=int_(0)^(pi//2)log 1dx=0`
`rArr" "I_(1)=0`
`I_(1)` का मान समीकरण (1 ) में रखने पर,
`I=0-(pi)/(2)log 2=-(pi)/(2)log 2`
49.

`int_(0)^(2)(dx)/(x+4-x^(2))`

Answer» `int_(0)^(2)(1)/(x+4-x^(2))dx`
`=int_(0)^(2)(1)/(x+4-x^(2)-((1)/(2))^(2)+((1)/(2))^(2))dx`
`=int_(0)^(2)(1)/(4+(1)/(4)-[(x^(2)-x+(1)/(4))])dx`
`=int_(0)^(2)(1)/(((sqrt(17))/(2))^(2)-(x-(1)/(2))^(2))dx`
`=(1)/(2.(sqrt(17))/(2))[log|((sqrt(17))/(2)+x-(1)/(2))/((sqrt(17))/(2)-x+(1)/(2))|]_(0)^(2)`
`=(1)/(sqrt(17))[log|(sqrt(17)+2x-1)/(sqrt(17)-2x+1)|]_(0)^(2)`
`=(1)/(sqrt(17))[log|(sqrt(17)+3)/(sqrt(17)-3)-log|(sqrt(17)-1)/(sqrt(17)+1)|]`
`=(1)/(sqrt(17))log|(sqrt(17)+3)/(sqrt(17)-3)div(sqrt(17)-1)/(sqrt(17+1))|`
`(1)/(sqrt(17))log|((sqrt(17)+3)(sqrt(17)+1))/((sqrt(17-3))(sqrt(17)-1))|`
`=(1)/(sqrt(17))log|(20+4sqrt(17))/(20-4sqrt(17))|`
`=(1)/(sqrt(17))log|(5+sqrt(17))/(5-sqrt(17))xx(5+sqrt(17))/(5+sqrt(17))|`
`=(1)/(sqrt(17))log|((5+sqrt(17))^(2))/((5)^(2)-(sqrt(17))^(2))|`
`" "[because (a-b)(a+b)=a^(2)-b^(2)]`
`=(1)/(sqrt(17))log|(25+17+10sqrt(17))/(25-17)|`
`=(1)/(sqrt(17))log|(42+10sqrt(17))/(8)|`
`=(1)/(sqrt(17))log|(21+5sqrt(17))/(4)|`
50.

`(1)/(x^(2)(x^(4)+1)^((3)/(4)))`

Answer» `int(1)/(x^(2)(x^(4)+1)^(3//4))dx`
`" "=int(1)/(x^(2){x^(4)(1+(1)/(x^(4)))}^(3//4))dx`
`" "=int(1)/(x^(5)(1+(1)/(x^(4)))^(3//4))dx`
माना`" "1+(1)/(x^(4))=t" "rArr(-4)/(x^(5))dx=dtrArr(1)/(x^(5))dx=(dt)/(4)`
`" "=int(1)/(x^(3//4)).(dt)/(-4)=-(1)/(4).intt^(-3//4)dt`
`" "=-(1)/(4).(t^(1//4))/(1//4)+C`
`" "=-(1+(1)/(x^(4)))^(1//4)+C`
`" "=-((x^(4)+1)/(x^(4)))^(1//4)+C`
`" "=-(1)/(x)(x^(4)+1)^(1//4)+C`