InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Prove that:`sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot` |
|
Answer» `R.H.S. = cos^2(A-B)+cos^2B-2cos(A-B)cosAcosB` `=cos^2B+cos(A-B)[cos(A-B)-2cosAcosB]` `=cos^2B+cos(A-B)[cosAcosB+sinAsinB-2cosAcosB]` `=cos^2B+cos(A-B)[-cosAcosB+sinAsinB]` `=cos^2B-cos(A-B)[cosAcosB-sinAsinB]` `=cos^2B-cos(A-B)[cos(A+B)]` Now, we know, `cos(A-B)cos(A+B) = cos^2A-sin^2B` So, it becomes, `=cos^2B-cos^2A+sin^2B` `=cos^2B+sin^2B-cos^2A` `=1-cos^2A` `=sin^2A = L.H.S.` |
|
| 2. |
Prove that: `sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2)sinA` |
|
Answer» `L.H.S. = sin^2(pi/8+A/2) - sin^2(pi/8-A/2)` `=(sin(pi/8)cos(A/2)+cos(pi/8)sin(A/2))^2-(sin(pi/8)cos(A/2)-cos(pi/8)sin(A/2))^2` As `a^2-b^2 = (a+b)(a-b)`, so it becomes `=(sin(pi/8)cos(A/2)+cos(pi/8)sin(A/2)+sin(pi/8)cos(A/2)-cos(pi/8)sin(A/2))(sin(pi/8)cos(A/2)-cos(pi/8)sin(A/2)-sin(pi/8)cos(A/2)+cos(pi/8)sin(A/2))` `=4(sin(pi/8)cos(A/2)(cos(pi/8)sin(A/2))` `=(2sin(pi/8)cos(pi/8))(2sin(A/2)cos(A/2))` `=sin(2*pi/8)sin(2*A/2)` `=sinpi/4sinA` `=1/sqrt2sinA = R.H.S.` |
|
| 3. |
If `2tanbeta+cotbeta=tanalpha`, prove that `cotbeta=2tan(alpha-beta)dot` |
|
Answer» `R.H.S. = 2tan(alpha-beta) = (2(tanalpha - tanbeta))/(1+tanalphatanbeta)` `=(2(2tanbeta+cotbeta- tanbeta))/(1+(2tanbeta+cotbeta)tanbeta)` `=(2(tanbeta+cotbeta))/(1+(2tan^2beta+cotbetatanbeta)` `=(2(tanbeta+1/tanbeta))/(1+(2tan^2beta+1/tanbetatanbeta)` `=(2((tan^2beta+1)/tanbeta))/(2(tan^2beta+1))` `=1/tanbeta = cotbeta = L.H.S.` |
|
| 4. |
If `cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2`, prove that`cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0` |
|
Answer» `cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha) = -3/2` `=>2(cosalphacosbeta+sinalphasinbeta)+2(cosbetacosgamma+sinbetasingamma)+2(cosalphacosgamma+sinalphasingamma) = -3` `=>2(cosalphacosbeta+cosbetacosgamma+cosalphacosgamma)+2(sinalphasinbeta+sinbetasingamma+sinalphasingamma)+3 = 0` `=>2(cosalphacosbeta+cosbetacosgamma+cosalphacosgamma)+2(sinalphasinbeta+sinbetasingamma+sinalphasingamma)+(cos^2alpha+sin^2alpha)+(cos^2beta+sin^2beta)+(cos^2gamma+sin^2gamma) = 0` `=>(cos^2alpha+cos^2beta+cos^2gamma +2(cosalphacosbeta+cosbetacosgamma+cosalphacosgamma))+(sin^2alpha+sin^2beta+sin^2gamma +2(sinalphasinbeta+sinbetasingamma+sinalphasingamma))=0` `=>(cosalpha+cosbeta+cosgamma)^2+(sinalpha+sinbeta+singamma)^2 = 0` `a^2+b^2 = 0` is possible onle when `a = b = 0.` `:. cosalpha+cosbeta+cosgamma = sinalpha+sinbeta+singamma= 0` |
|
| 5. |
If `tan(alpha+theta)=ntan(alpha-theta)`, show that `(n+1)sin2theta=(n-1)sin2alphadot` |
|
Answer» `tan(alpha+theta) = n tan(alpha-theta)` `=>tan(alpha+theta)/(tan(alpha-theta)) = n/1` Using componendo and dividendo, `=>(tan(alpha+theta)+tan(alpha-theta))/(tan(alpha+theta)-tan(alpha-theta)) = (n+1)/(n-1)` `=>(sin(alpha+theta)/cos(alpha+theta)+sin(alpha-theta)/cos(alpha-theta))/(sin(alpha+theta)/cos(alpha+theta)-sin(alpha-theta)/cos(alpha-theta)) = (n+1)/(n-1)` `=>(sin(alpha+theta)cos(alpha-theta)+cos(alpha+theta)sin(alpha-theta))/(sin(alpha+theta)cos(alpha-theta)+cos(alpha+theta)sin(alpha-theta)) =(n+1)/(n-1)` `=>(sin(alpha+theta+alpha-theta))/(sin(alpha+theta-alpha+theta))=(n+1)/(n-1)` `=>(sin2alpha)/(sin2theta) = (n+1)/(n-1)` `=>(n-1)sin2alpha = (n+1)sin2theta.` |
|