InterviewSolution
Saved Bookmarks
| 1. |
√-11-60i |
|
Answer» Let, (a + ib)2 = -11 - 60i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = -11 - 60i Since i2 = -1 ⇒ a2 - b2 + 2abi = -11 - 60i Now, separating real and complex parts, we get ⇒ a2 - b2 = -11…………..eq.1 ⇒ 2ab = - 60…….. eq.2 ⇒ a = -30/b Now, using the value of a in eq.1, we get ⇒ \((-\frac{30}{b})^2\) – b2 = -11 ⇒ 900 – b4 = -11b2 ⇒ b4 - 11b2 - 900 = 0 Simplify and get the value of b2 , we get, ⇒ b2 = 36 or b2 = -25 as b is real no. so, b2 = 36 b = 6 or b = -6 Therefore , a = - 5 or a = 5 Hence the square root of the complex no. is - 5 + 6i and 5 – 6i. |
|