InterviewSolution
Saved Bookmarks
| 1. |
√-15-8i |
|
Answer» Let, (a + ib)2 = -15 - 8i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = -15 - 8i Since i2 = -1 ⇒ a2 - b2 + 2abi = -15 - 8i Now, separating real and complex parts, we get ⇒ a2 - b2 = -15…………..eq.1 ⇒ 2ab = -8…….. eq.2 ⇒ a = - 4/b Now, using the value of a in eq.1, we get ⇒ \((-\frac{4}{b})^2\) – b2 = -15 ⇒ 16 – b4 = -15b2 ⇒ b4 - 15b2 - 16 = 0 Simplify and get the value of b2, we get, ⇒ b2 = 16 or b2 = -1 As b is real no. so, b2 = 16 b = 4 or b = - 4 Therefore, a = -1 or a = 1 Hence the square root of the complex no. is -1 + 4i and 1 - 4i. |
|