InterviewSolution
Saved Bookmarks
| 1. |
√(-2+2√3i) |
|
Answer» Let, (a + ib)2 = - 2 + 2√3 i Now using, (a + b)2 = a2 + b2 + 2ab ⇒ a2 + (bi)2 + 2abi = - 2 + 2√3 i Since i2 = -1 ⇒ a2 - b2 + 2abi = - 2 + 2√3 i Now, separating real and complex parts, we get ⇒ a2 - b2 = - 2…………..eq.1 ⇒ 2ab = 2√3 ……..eq.2 ⇒ a = √3/b Now, using the value of a in eq.1, we get ⇒ (√3/b)2 – b2 = -2 ⇒3 – b4 = -2b2 ⇒ b4 - 2b2 - 3= 0 Simplify and get the value of b2, we get, ⇒ b2 = -1 or b2 = 3 As b is real no. so, b2 = 3 b = √3 or b = -√3 Therefore, a = 1 or a = -1 Hence the square root of the complex no. is 1 + √3 i and -1 - √3 i. |
|