1.

√(-2+2√3i)

Answer»

Let, (a + ib)2 = - 2 + 2√3 i

Now using, (a + b)2 = a2 + b2 + 2ab

⇒ a2 + (bi)2 + 2abi = - 2 + 2√3 i

Since i2 = -1

⇒ a2 - b2 + 2abi = - 2 + 2√3 i

Now, separating real and complex parts, we get

⇒ a2 - b2 = - 2…………..eq.1

⇒ 2ab = 2√3 ……..eq.2

⇒ a = √3/b

Now, using the value of a in eq.1, we get

⇒ (√3/b)2 – b2 = -2

⇒3 – b4 = -2b2

⇒ b4 - 2b2 - 3= 0

Simplify and get the value of b2, we get,

⇒ b2 = -1 or b2 = 3

As b is real no. so, b2 = 3

b = √3 or b = -√3

Therefore, a = 1 or a = -1

Hence the square root of the complex no. is 1 + √3 i and -1 - √3 i.



Discussion

No Comment Found